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Abstract

The maximum cardinality and maximum weight matching problems can be solved in time Õ(m
√
n),

a bound that has resisted improvement despite decades of research. (Here m and n are the number of
edges and vertices.) In this article we demonstrate that this “m

√
n barrier” is extremely fragile, in the

following sense. For any ε > 0, we give an algorithm that computes a (1 − ε)-approximate maximum
weight matching in O(mε−1 log ε−1) time, that is, optimal linear time for any fixed ε. Our algorithm is
dramatically simpler than the best exact maximum weight matching algorithms on general graphs and
should be appealing in all applications that can tolerate a negligible relative error.

Our second contribution is a new exact maximum weight matching algorithm for integer-weighted bi-
partite graphs that runs in timeO(m

√
n logN). This improves on theO(Nm

√
n)-time andO(m

√
n log(nN))-

time algorithms known since the mid 1980s, for 1 � logN � logn. Here N is the maximum integer
edge weight.

1 Introduction

Graph matching is one of the most well studied problems in combinatorial optimization. The original mo-
tivations of the problem were minimizing transportation costs [62, 71] and optimally assigning personnel to
job positions [29, 107]. Over the years matching algorithms have found applications in scheduling, approxi-
mation algorithms, network switching, and as key subroutines in other optimization algorithms, for example,
undirected shortest paths [82], planar max cut [93, 55], Chinese postman tours [32, 81], and metric traveling
salesman [15]. In most practical applications it is not critical that the algorithm produce an exactly optimum
solution. In this article we explore the extent to which this freedom—not demanding exact solutions—allows
us to design simpler and more efficient algorithms.

In order to discuss prior work with precision we must introduce some notation and terminology. The
input is a weighted graph G = (V,E,w) where n = |V | and m = |E| are the number of vertices and edges and
w is the edge weight function. If w assigns integer (rather than real) weights, let N be the largest magnitude
of a weight. An unweighted graph is one for which w(e) = 1 for all e ∈ E. A matching is a set of vertex-
disjoint edges and a perfect matching is one in which all vertices are matched. The weight of a matching is
the sum of its edge weights. We use mwm (and mwpm) to denote the problem of finding a maximum weight
(perfect) matching, as well as the matching itself. We use mcm and mcpm for the cardinality (unweighted)
versions of these problems. The mwpm problem on bipartite graphs is often called the assignment problem.

The mwpm and mwm problems are reducible to each other. Given an instance G of mwm, let G′ consist
of two copies of G with zero-weight edges connecting copies of the same vertex. Clearly a mwpm in G′
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dation. H.-H. Su is supported by a Taiwan (R.O.C.) Ministry of Education Fellowship. Authors’ emails: duanr02@gmail.com,
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Table 1: Cardinality Matching

Year Authors Time Bound & Notes

folklore/trivial mn bipartite

1965 Edmonds poly(n)

1965 Witzgall & Zahn

1969 Balinski

1974 Kameda & Munro

1976 Gabow
mn or mnα(m,n) or n3

1976 Lawler

1976 Karzanov

1971 Hopcroft & Karp

1973 Dinic & Karzanov
m
√
n bipartite

1980 Micali & Vazirani

1991 Gabow & Tarjan
m
√
n

1981 Ibarra & Moran nω cardinality only,randomized,bipartite

nω cardinality only,randomized
1989 Rabin & Vazirani

nω+1 randomized

1991 Alt, Blum, Mehlhorn & Paul n
√
nm/ log n bipartite

1991 Feder & Motwani

1997 Goldberg & Kennedy
m
√
n/κ bipartite, κ = logn

log(n2/m)

1996 Cheriyan & Mehlhorn n2 + n5/2/w bipartite, w = machine word size

2004 Goldberg & Karzanov m
√
n/κ

2004 Mucha & Sankowski

2006 Harvey
nω randomized

Note: Here ω < 2.376 is the exponent of n× n matrix multiplication.

corresponds to a pair of mwms in G. In the reverse direction, if G is an instance of mwpm with weight
function w, find the mwm of G using the weight function w′(e) = w(e) + nN . Maximum weight matchings
with respect to w′ necessarily have maximum cardinality. Call a matching δ-approximate, where δ ∈ [0, 1],
if its weight is at least a factor δ of the optimum matching. Let δ-mwm (and δ-mcm) be the problem of
finding δ-approximate maximum weight (cardinality) matching, as well as the matching itself.

Tables 1, 2, and 3 give an at-a-glance history of exact matching algorithms. Algorithms are dated
according to their initial publication, and are included either because they establish a new time bound, or
employ a noteworthy technique, or are of historical interest. Table 4 gives a history of approximate mcm
and mwm algorithms.

1.1 Algorithms for Bipartite Graphs

The mwm problem is expressible as the following integer linear program, where x represents the incidence
vector of the matching.
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maximize
∑
e∈E

w(e)x(e)

subject to 0 ≤ x(e) ≤ 1 ∀e ∈ E (1)∑
e=(u,u′)∈E

x(e) ≤ 1 ∀u ∈ V

x(e) is an integer ∀e ∈ E (2)

It is well known that in bipartite graphs the integrality requirement (2) is redundant, that is, the basic
feasible solutions of the LP (1) are nonetheless integral. See [10, 18]. The dual of (1) is

minimize
∑
u∈V

y(u)

subject to y(e) ≥ w(e) ∀e ∈ E (3)

y(u) ≥ 0 ∀u ∈ V

where, by definition, y(u, v)
def
= y(u) + y(v)

(In the mwpm problem
∑
e=(u,u′) x(e) = 1 holds with equality in the primal and y(u) is unconstrained

in the dual.) Kuhn’s [76, 78] publication of the Hungarian method stimulated research on this problem from
an algorithmic perspective, but it was not without precedent. Kuhn noted that the algorithm was latent in
the work of Hungarian mathematicians König and Egerváry.1 However, the history goes back even further.
A recently rediscovered article of Jacobi from 1865 describes a variant of the Hungarian algorithm; see [90].
Although Kuhn’s algorithm self-evidently runs in polynomial time, this mark of efficiency was noted later:
Munkres [89] showed that O(n4) time is sufficient.

Kuhn’s Hungarian algorithm is sometimes described as a dual (rather than primal) algorithm, due to the
fact that it maintains feasibility of the dual (3) and progressively improves the primal objective (1) by finding
augmenting paths. Gleyzal [50] (see also [8]) gave a primal algorithm for the assignment problem in which
the primal is feasible (the current matching is perfect) and the dual objective is progressively improved via
weight-augmenting cycles.2

The search for faster assignment algorithms began in earnest in the 1960s. Dinic and Kronrod [24] gave an
O(n3)-time algorithm and Edmonds and Karp [33] and Tomizawa [111] observed that assignment is reducible
to n single-source shortest path computations on a non-negatively weighted directed graph.3 Using Fibonacci
heaps, n executions of Dijkstra’s [21] shortest path algorithm take O(mn + n2 log n) time. On integer
weighted graphs this algorithm can be implemented slightly faster, in O(mn + n2 log log n) time [57, 109]
or O(mn) time (randomized) [4, 110], independent of the maximum edge weight. Gabow and Tarjan [46],
improving an earlier algorithm of Gabow [41], gave a scaling algorithm for the assignment problem running
in O(m

√
n log(nN)) time, which is just a log(nN) factor slower than the fastest mcm algorithm [65].4 For

reasonably sparse graphs Gabow and Tarjan’s [46] assignment algorithm remains unimproved. However,
faster algorithms have been developed when N is small or the graph is dense [14, 72, 103]. Of particular
interest is Sankowski’s algorithm [103], which solves mwpm in O(Nnω) time, where ω is the exponent of
square matrix multiplication.

1A translation of Egerváry’s work appears in Kuhn [77].
2The idea of cycle canceling is usually attributed to Robinson [101]. Some assignment algorithms simply do not fit the

primal/dual mold. Von Neumann [115], for example, gave a reduction from the assignment problem to finding the optimum
strategy in a zero-sum game given as an n× n2 matrix, which can be solved in polynomial time [12].

3It was known that the assignment problem is reducible to n shortest path computations on arbitrarily weighted graphs.
See Ford and Fulkerson [35], Hoffman and Markowitz [63], and Desler and Hakimi [19] for different reductions.

4Gabow and Tarjan’s algorithm takes a Hungarian-type approach. The same time bound has been achieved by Orlin and
Ahuja [92] using the auction approach of Bertsekas [9], and by Goldberg and Kennedy [54] using a preflow-push approach.
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Table 2: Weighted Matching: Bipartite Graphs

Year Authors Time Bound & Notes

1946 Easterfield 2npoly(n)

1953 von Neumann

1955 Kuhn

1955 Gleyzal poly(n)

1957 Munkres

1964 Balinski & Gomory

1969 Dinic & Kronrod n3

1970 Edmonds & Karp SP+ = time for one SSSP computation on

1971 Tomizawa
n · SP+

a non-negatively weighted graph

1975 Johnson mn logd n d = 2 +m/n

mn3/4 logN integer weights
1983 Gabow

Nm
√
n mwm only, integer weights

1984 Fredman & Tarjan mn+ n2 log n

1988 Gabow & Tarjan

1992 Orlin & Ahuja m
√
n log(nN) integer weights

1997 Goldberg & Kennedy

1996 Cheriyan & Mehlhorn n5/2 log(nN)( log logn
logn )1/4 integer weights

Nm
√
n/κ mwm only, integer weights

1999 Kao, Lam, Sung & Ting
N(n2 + n5/2/w) mwm only, integer weights

2004 Mucha & Sankowski Nnω mwm only, randomized, integer weights

2006 Sankowski Nnω randomized, integer weights

m
√
n logN mwm only, integer weights

new
m
√
n log(nN) integer weights

Note: N is the maximum integer edge weight, w is the machine word size, and κ = log n/ log(n2/m).
The time bounds of Johnson [70] and Fredman and Tarjan [36] reflect faster priority queues. The
time bound of Mucha and Sankowski [88] follows from Kao et al.’s [72] reduction.

1.2 Algorithms for General Graphs

Whereas the basic solutions to (1,3) are integral on bipartite graphs, the same is not true for general graphs.
For example, if the graph is a unit-weighted cycle with length 2k+ 1 the mwm has weight k but (1) achieves
its maximum of k + 1/2 by setting x(e) = 1/2 for all e ∈ E. Let Vodd be the set of all odd-size subsets
of V . Clearly every feasible solution to the integer linear program (1,2) also satisfies the following odd-set
constraints. ∑

e∈E(B)

x(e) ≤ (|B| − 1)/2 ∀B ∈ Vodd (4)

Edmonds [30, 31] proved that if we replace the integrality constraints (2) with (4), the basic solutions to
the resulting LP are integral.5 Edmonds’ algorithm mimics the structure of the Hungarian algorithm but
the search for augmenting paths is complicated by the presence of odd-length alternating cycles and the fact
that matched edges must be searched in both directions. Edmonds’ solution is to contract blossoms as they
are encountered. A blossom is defined inductively as an odd-length cycle alternating between matched and

5In the mwpm problem
∑

e=(u,u′) x(e) = 1, for all u ∈ V , and we have the freedom to use an alternative variety of odd-set

constraints, namely,
∑

e=(u,v)∈E : u∈B,v 6∈B x(e) ≥ 1, ∀B ∈ Vodd.
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Table 3: Weighted Matching: General Graphs

Year Authors Time Bound & Notes

1965 Edmonds poly(n)

1974 Gabow

1976 Lawler
n3

1976 Karzanov n3 +mn log n

1978 Cunningham & Marsh poly(n)

1982 Galil, Micali & Gabow mn log n

mn3/4 logN integer weights
1985 Gabow

Nm
√
n mwm only, integer weights

1989 Gabow, Galil & Spencer mn log log logd n+ n2 log n d = 2 +m/n

1990 Gabow mn+ n2 log n

1991 Gabow & Tarjan m
√
n log n log(nN) integer weights

2006 Sankowski Nnω weight only, integer weights

Nm
√
n/κ mwm only, integer weights

2012 Huang & Kavitha
Nnω mwm only, randomized, integer weights

Note: N is the maximum integer edge weight, ω is the exponent of n×n matrix multiplication, and
κ = log n/ log(n2/m).

unmatched edges, whose components are either single vertices or blossoms in their own right. Blossoms are
discussed in detail in Section 2.1.

The fastest implementation of Edmonds’ algorithm, due to Gabow [42], runs in O(mn + n2 log n) time,
which matches the running time of the best bipartite mwpm algorithm [36]. Gabow and Tarjan [47] extended
their scaling algorithm for mwpm to general graphs, achieving a running time of O(m

√
n log n log(nN)),

which is the fastest known algorithm for integer-weighted graphs and nearly matches the O(m
√
n) time

bound of the best mcm algorithms [86, 113].6 As in the bipartite case, faster algorithms for mwm and
mwpm are known when the graph is dense or N is small. Sankowski [103] noted that the weight of the
mwpm could be computed in O(Nnω) time; however, it remains an open problem to adapt the cardinality
matching algorithms of [88, 60] to weighted graphs. Huang and Kavitha [66], generalizing [72], proved
that mwm is reducible to N mcm computations, which, by virtue of [53, 88, 60], implies a new bound of
O(N ·min{nω,m

√
n log(n2/m)/ log n}).

1.3 Approximating Weighted Matching

The approximate mwm problem is remarkable in that it has been studied for decades, has practical applica-
tions, and yet, as late as 1999, essentially nothing better than the greedy algorithm was known.7 Moreover,
the (1− ε)-mcm problem had been solved satisfactorily in the early 1970s. Although not stated as such, the
O(m

√
n)-time exact mcm algorithms [65, 23, 74, 86] are actually (1−ε)-mcm algorithms running in O(mε−1)

time. These algorithms are based on three observations (i) a maximal set of shortest augmenting paths can
be found in linear time, (ii) augmenting along such a set increases the length of the shortest augmenting
path, and (iii) that after k rounds of such augmentations the resulting matching is a (1− 1

k+1 )-mcm.

Preis [97] gave a linear time 1
2 -mwm algorithm, which improves on the greedy algorithm’s O(m log n)

6Gabow and Tarjan [47] claim a running time of O(m
√
n lognα(m,n) log(nN)), where the α(m,n) factor comes from an

O(mα(m,n)) implementation of the split-findmin data structure [40]. This can be reduced to O(m logα(m,n)) [95]. However,
Thorup [108] noted that split-findmin can be implemented in O(m) time on integer-weighted graphs.

7The greedy algorithm repeatedly includes the heaviest edge in the matching and removes all incident edges. Gabow and
Tarjan [46, 47] observed that by retaining the O(log(n/ε)) high-order bits of the edge weights, their exact scaling algorithms
become Õ(m

√
n)-time (1− ε)-mwm algorithms for bipartite and general graphs.
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Table 4: Approximate Maximum Cardinality/Weight Matching

Year Authors Approx. Problem Time Bound & Notes

1971 Hopcroft & Karp

1973 Dinic & Karzanov
(1− ε)-mcm mε−1 bipartite

1980 Micali & Vazirani

1991 Gabow & Tarjan
(1− ε)-mcm mε−1

folklore/trivial 1
2 -mwm m log n

1988 Gabow & Tarjan (1− ε)-mwm m
√
n log(n/ε) bipartite

1991 Gabow & Tarjan (1− ε)-mwm m
√
n log n log(n/ε)

1999 Preis

2003 Drake & Hougardy
1
2 -mwm m

2003 Drake & Hougardy ( 2
3 − ε)-mwm mε−1

2004 Pettie & Sanders ( 2
3 − ε)-mwm m log ε−1

2010 Duan & Pettie

2010 Hanke & Hougardy
( 3

4 − ε)-mwm m log n log ε−1

2010 Hanke & Hougardy ( 4
5 − ε)-mwm m log2 n log ε−1

mε−1 log ε−1 arbitrary weights
new (1− ε)-mwm

mε−1 logN integer weights
Note: N is the maximum integer edge weight and ε > 0 is arbitrary.

running time but not its approximation guarantee. Drake and Hougardy [114] presented the first linear
time algorithm with an approximation guarantee greater than 1/2. Specifically, they gave a ( 2

3 − ε)-mwm
algorithm running in O(mε−1) time, for any ε > 0. The dependence on ε was later improved by Pettie
and Sanders [96]. These algorithms are based on a weighted version of Hopcroft and Karp’s [65] argument,
namely that any matching whose weight-augmenting paths and cycles have at least k unmatched edges is
necessarily a (1 − 1

k )-mwm. Algorithms are presented in [27, 58, 59] with different time/approximation
tradeoffs: a ( 3

4 −ε)-mwm algorithm running in time O(m log n log ε−1) and a ( 4
5 −ε)-mwm algorithm running

in O(m log2 n log ε−1) time.

1.4 New Results

We present the first (1− ε)-mwm algorithm that significantly improves on the Õ(m
√
n) running times of [46,

47]. Our algorithm runs in O(mε−1 log ε−1) time on general graphs and O(min{mε−1 log ε−1,mε−1 logN})
time on integer-weighted general graphs. This is optimal for any fixed ε and near-optimal as a function of ε,
given the state-of-the-art in mcm algorithms.8 Moreover, our algorithm is as simple as one could reasonably
hope for. Its search for augmenting paths uses depth first search [47, §8] rather than the double depth first
search of [86]. It uses no priority queues, split-findmin structures [40], or the blossom “shells” that arise
from Gabow and Tarjan’s [47] scaling technique.

Our second result is a new algorithm for exact mwm on bipartite graphs running in O(m
√
n logN) time,

which improves on [41, 46] for 1� logN � log n. According to the mwpm→mwm reduction, this also yields
a new O(m

√
n log(nN)) mwpm algorithm, matching the performance of [46]. However, our algorithm can be

used to solve mwpm directly, in log(
√
nN) scales rather than log(nN), which might be practically significant.

In terms of technique, our algorithm is a synthesis of the dual (Hungarian-type) approach of Gabow and

8Note that any (1−ε)-mwm algorithm running in O(f(ε)m) time yields an exact mcm algorithm running in O(m ·(f(ε)+εn))
time, for any ε. Thus, any (1 − ε)-mwm algorithm running in o(mε−1) time would improve the O(m

√
n) mcm algorithms [65,

23, 74, 86].
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Tarjan [46] and the primal approach of Balinski and Gomory [8], among others. The
√
n factor in our

running time arises not from the standard blocking flow-type argument [74, 65] but Dilworth’s lemma [22],
which ensures that every partial order on n elements contains a chain or anti-chain with size

√
n. Dilworth’s

lemma has also been used in Goldberg’s [52] single-source shortest path algorithm.

1.5 Remarks on Approximate Weighted Matching and Its Applications

Our focus is on algorithms that accept arbitrary input graphs and that give provably good worst-case
approximations. These twin objectives are self-evidently attractive, yet nearly all work (prior to Preis [97]) on
approximate weighted matching focused on specialized cases or weaker approximation guarantees. Early work
on the problem usually considered complete bipartite graphs, and confirmed the efficiency of heuristics either
experimentally or analytically with respect to inputs over some natural distribution [11, 107, 87, 79, 80, 5].
See Avis [6] for a more detailed discussion of heuristics.

Most work in the area considers graphs defined by metrics, often Euclidean metrics. Reingold and
Tarjan [100] proved that the greedy algorithm for metric mwpm9 has an approximation ratio of ≈ nlog 3

2 >
n0.58. Goemans and Williamson [51] gave a 2-approximation for metric mwpm that can be implemented
in O(n2) time [44], or O(m log2 n) time [16] in metrics defined by m-edge graphs. The Euclidean mwpm
comes in two flavors: the monochromatic version is given 2n points and the bichromatic version is given 2n
points, n of which are colored blue, the rest red, where the matching cannot include monochromatic edges.10

Varadarajan and Agarwal [112] gave (1 + ε)-mwpm algorithms for the mono- and bichromatic variants
running in time O(npoly(ε−1 log n)) and O(n3/2poly(ε−1 log n)), respectively. Other time-approximation
tradeoffs for the bichromatic variant are possible [1, 13], including an O(npoly(log n)) time algorithm for
O(1)-approximating the weight of the mwpm [68]. Some work considers the even more specialized case of
Euclidean matching in the unit square, which allows for algorithms that guarantee absolute upper bounds
on the weight of the matching; see [69, 99, 6] and the references therein.

There are several applications of mwm (on general or bipartite graphs) in which one would gladly sacrifice
matching quality for speed. In input-queued switches packets are routed across a switch fabric from input
to output ports. In each cycle one partial permutation can be realized. Existing algorithms for choosing
these matchings, such as iSLIP [84] and PIM [3], guarantee 1

2 -mcms and it has been shown [85, 49] that
(approximate) mwms have good throughput guarantees, where edge weights are based on queue-length. See
also [83, 106, 105]. Approximate mwm algorithms are a component in several multilevel graph clustering
libraries.11 (PARTY, for example, builds a hierarchical clustering by iteratively finding and contracting
approximate mwms; see [98].) Approximate mwm algorithms are used as a heuristic preprocessing step in
several sparse linear system solvers [91, 28, 104, 56]. The goal is to permute the rows/columns to maximize
the weight on or near the main diagonal.

1.6 Organization

Section 2 introduces some notation, states well known properties of augmenting paths and blossoms, and
reviews Edmonds’ optimality conditions for weighted matching. In Section 3 we present our (1 − ε)-mwm
algorithm and in Section 4 we present exact algorithms for bipartite mwm and mwpm.

2 Preliminaries

We use E(H) and V (H) to refer to the edge and vertex sets of H or the graph induced by H, that is, V (E′)
is the set of endpoints of E′ ⊆ E and E(V ′) is the edge set of the graph induced by V ′ ⊆ V . A matching M
is a set of vertex-disjoint edges. Vertices not incident to an M edge are free. An alternating path (or cycle)

9For metric inputs let mwpm be the minimum weight perfect matching problem.
10The weight of the bichromatic mwpm is also known as the earth mover distance between the red and blue points.
11E.g., METIS [73], PARTY [98], PT-SCOTCH [94] CHACO [61], JOSTLE [116], and KaFFPa/KaFFPaE [64, 102].
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is one whose edges alternate between M and E\M . An alternating path P is augmenting if P begins and

ends at free vertices, that is, M ⊕ P def
= (M\P )∪ (P\M) is a matching with cardinality |M ⊕ P | = |M |+ 1.

When we seek (1 − ε) approximate solutions, we can afford to scale and round edge weights to small
integers. To see this, observe that the weight of the mwm is at least wmax = max{w(e) | e ∈ E(G)}. It
suffices to find a (1−ε/2)-mwmM with respect to the weight function w̃(e) = bw(e)/γc where γ = ε·wmax/n.
Note that w(e)− γ < γ · w̃(e) ≤ w(e) for any e. It follows from the definitions that:

w(M) ≥ γ · w̃(M) Defn. of w̃

≥ γ · (1− ε/2)w̃(M∗) Defn. of M , M∗ is the mwm

> (1− ε/2)(w(M∗)− γn/2) Defn. of w̃, |M∗| ≤ n/2
= (1− ε/2)(w(M∗)− ε · wmax/2) Defn. of γ

> (1− ε)w(M∗) Since w(M∗) ≥ wmax

Since it is better to use an exact mwm algorithm when ε < 1/n [42, 47], we assume, henceforth, that
w : E → {1, 2, . . . , N}, where N ≤ n2 is the maximum integer edge weight. For notational convenience we
also assume that N is a power of 2.

2.1 Blossoms and the LP Formulation of MWM

The dual LP of (1,4) is

minimize
∑

u∈V (G)

y(u) +
∑

B∈Vodd

|B| − 1

2
· z(B)

subject to yz(e) ≥ w(e) ∀e ∈ E(G)

y(u) ≥ 0, z(B) ≥ 0 ∀u ∈ V (G),∀B ∈ Vodd

where, by definition, yz(u, v)
def
= y(u) + y(v) +

∑
B∈Vodd,

(u,v)∈E(B)

z(B)

Despite the exponential number of primal constraints and dual z-variables, Edmonds demonstrated that
an optimum matching could be found in polynomial time without maintaining information (z-values) on
more than n/2 elements of Vodd at any given time. At intermediate stages of Edmonds’ algorithm there is a
matching M and a laminar (nested) subset Ω ⊆ Vodd, where each element of Ω is identified with a blossom.
Blossoms are formed inductively as follows. If v ∈ V then the set {v} is a trivial blossom. An odd length
sequence (A0, A1, . . . , A`) forms a nontrivial blossom B =

⋃
iAi if the {Ai} are blossoms and there is a

sequence of edges e0, . . . , e` where ei ∈ Ai ×Ai+1 (modulo `+ 1) and ei ∈M if and only if i is odd, that is,
A0 is incident to unmatched edges e0, e`. See Figure 1. The base of blossom B is the base of A0; the base
of a trivial blossom is its only vertex. The set of blossom edges EB are {e0, . . . , e`} and those used in the
formation of A0, . . . , A`. The set E(B) = E ∩ (B × B) may, of course, include many non-blossom edges. A
short proof by induction shows that |B| is odd and that the base of B is the only unmatched vertex in the
subgraph induced by B.

Matching algorithms represent a nested set Ω of active blossoms by rooted trees, where leaves represent
vertices and internal nodes represent nontrivial blossoms. A root blossom is one not contained in any other
blossom. The children of an internal node representing B are ordered according to the odd cycle that formed
B, where one child is distinguished as containing the base of B. As we will see, it is often possible to treat
blossoms as if they were single vertices. Let the contracted graph G/Ω be obtained by contracting all root
blossoms and removing spurious edges. To dissolve a root blossom B means to delete its node in the blossom
forest and, in the contracted graph, to replace B with individual vertices A0, . . . , A`. Lemma 1 summarizes
some useful properties of the contracted graph.

8



Lemma 1. Let Ω be a set of blossoms with respect to a matching M .

1. If M is a matching in G then M/Ω is a matching in G/Ω.

2. Every augmenting path P ′ relative to M/Ω in G/Ω extends to an augmenting path P relative to M in
G. (That is, P is obtained from P ′ by substituting for each non-trivial blossom vertex B in P ′ a path
through EB. See Figure 1(a,b).)

3. If P is an augmenting path and P/Ω is also an augmenting path relative to M/Ω, then Ω remains a valid
set of blossoms (possibly with different bases) for the augmented matching M ⊕ P . See Figure 1(a,b).

4. The base u of a blossom B ∈ Ω uniquely determines a maximum cardinality matching of EB, having
size (|B| − 1)/2. See Figure 1(a,b).

Implementations of Edmonds’ algorithm grow a matchingM while maintaining Property 1, which controls
the relationship between M , Ω and the dual variables.

Property 1. (Complementary Slackness Conditions)

1. Nonnegativity: z(B) ≥ 0 for all B ∈ Vodd and y(u) ≥ 0 for all u ∈ V (G).

2. Active Blossoms: Ω contains all B with z(B) > 0 and all root blossoms B have z(B) > 0. (Non-root
blossoms may have zero z-values.)

3. Domination: yz(e) ≥ w(e) for all e ∈ E.

4. Tightness: yz(e) = w(e) when e ∈M or e ∈ EB for some B ∈ Ω.

If the y-values of free vertices become zero, it follows from domination and tightness that M is a maximum
weight matching, as the following short proof attests. Here M∗ is any maximum weight matching.

w(M) =
∑
e∈M

w(e)

=
∑
e∈M

yz(e) tightness

=
∑

u∈V (G)

y(u) +
∑
B∈Ω

|B| − 1

2
· z(B) Note

∑
u∈V (G)

y(u) =
∑

u∈V (M)

y(u)

≥
∑

u∈V (M∗)

y(u) +
∑
B∈Ω

|E(B) ∩M∗| · z(B) y, z non-negative

=
∑
e∈M∗

yz(e) ≥ w(M∗) domination

3 A Scaling Algorithm for Approximate mwm

Our algorithm maintains a dynamic relaxation of complementary slackness. In the beginning domination is
weak but becomes progressively tighter at each scale whereas tightness is weakened at each scale, though
not uniformly. The degree to which a matched edge or blossom edge may violate tightness depends on when
it last entered the blossom or matching.

Recall that N is the maximum integer edge weight. The parameter ε′ = Θ(ε) will be selected later to
guarantee that the final matching is a (1− ε)-mwm. Henceforth, assume that N ≥ 1 and ε′ ≤ 1/4 are powers
of two. Define δ0 = ε′N and δi = δ0/2

i. At scale i we use the truncated weight function wi(e) = δibw(e)/δic.
Note that wi+1(e) = wi(e) or wi(e) + δi+1.
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(a) (b)

Figure 1: Thick edges are matched, thin unmatched. (a) A blossom B1 = (u1, u2, B2, u8, u9, u10, B3) with
base u1 containing non-trivial sub-blossoms B2 = (u3, u4, u5, u6, u7) with base u3 and B3 = (u11, u12, u13)
with base u11. Vertices u15, u16, and u17 are free. The path (u16, u2, u3, u7, u6, u5, u4, u17) is an exam-
ple of an augmenting path that exists in G but not G/B1, the graph obtained by contracting B1. (b)
The situation after augmenting along (u15, u14, B1, u17) in G/B1, which corresponds to augmenting along
(u15, u14, u1, u2, u3, u7, u6, u5, u4, u17) in G. After augmentation B1 and B2 have their base at u4.

Property 2. (Relaxed Complementary Slackness) There are L + 1 scales numbered 0, . . . , L, where L =
logN . Let i ∈ [0, L] be the current scale.

1. Granularity: z(B) is a nonnegative multiple of δi, for all B ∈ Vodd, and y(u) is a nonnegative multiple
of δi/2, for all u ∈ V (G).

2. Active Blossoms: Ω contains all B with z(B) > 0 and all root blossoms B have z(B) > 0. (Non-root
blossoms may have zero z-values.)

3. Near Domination: yz(e) ≥ wi(e)− δi for all e ∈ E.

4. Near Tightness: Call a matched or blossom edge type j if it was last made a matched or blossom edge
in scale j ≤ i. (That is, it entered the set M ∪

⋃
B∈ΩEB in scale j and has remained in that set, even

as M and Ω evolve as augmenting paths are found and blossoms are formed and dissolved.) If e is such
a type j edge then yz(e) ≤ wi(e) + 2(δj − δi).

5. Free Vertex Duals: The y-values of free vertices are equal and strictly less than the y-values of matched
vertices.

Lemma 2 allows us to measure the quality of a matching M , given duals y and z satisfying Property 2.

Lemma 2. Let M be a matching satisfying Property 2 at scale i and let M∗ be a maximum weight matching.
Let f be the number of free vertices, each having y-value φ, and let ε̂ be such that yz(e)−w(e) ≤ ε̂ ·w(e) for
all e ∈M . Then w(M) ≥ (1+ ε̂)−1(w(M∗)−2δi|M∗|−fφ). If i = L and φ = 0 then M is a (1−ε′− ε̂)-mwm.

10



Proof. The claim follows from Property 2.

w(M) =
∑
e∈M

w(e) defn. of w(M)

≥ (1 + ε̂)−1
∑
e∈M

yz(e) near tightness, defn. of ε̂

= (1 + ε̂)−1

 ∑
u∈V (M)

y(u) +
∑
B∈Ω

|B| − 1

2
· z(B)

 defn. of yz

≥ (1 + ε̂)−1

 ∑
u∈V (M∗)

y(u) +
∑
B∈Ω

|E(B) ∩M∗| · z(B)− fφ

 (5)

≥ (1 + ε̂)−1

( ∑
e∈M∗

yz(e)− fφ

)
defn. of yz

≥ (1 + ε̂)−1 (wi(M
∗)− fφ− δi · |M∗|) near domination

> (1 + ε̂)−1 (w(M∗)− fφ− 2δi · |M∗|) defn. of wi

Inequality (5) follows from several facts, namely, that no matching can contain more than (|B| − 1)/2 edges
in B, that V (M∗)\V (M) contains only free vertices (with respect to M), whose y-values are φ, and that
y- and z-values are nonnegative. Note that the last inequality is loose by δi|M∗| if i = L since in that case
wL = w.

The integrality of edge weights implies that w(M∗) ≥ |M∗|. If i = L and φ = 0 then δL = ε′N/2L = ε′

and w(M) ≥ (1 + ε̂)−1(w(M∗) − δL|M∗|) ≥ (1 + ε̂)−1(1 − ε′)w(M∗) > (1 − ε′ − ε̂)w(M∗), that is, M is a
(1− ε′ − ε̂)-mwm.

While not suggesting an algorithm per se, Lemma 2 tells us which invariants our algorithm must maintain
and when it may halt with a (1− ε)-mwm. For example, if at the last scale L we have δL ≤ ε/2 and for any
type j edge e ∈ M , δj ≤ (ε/4)w(e) (i.e., ε̂ = ε/2) then as soon as y-values at free vertices reach zero, the
current matching must be a (1− ε)-mwm.

3.1 The Scaling Algorithm

Initially M = ∅,Ω = ∅, and y(u) = N/2−δ0/2 for all u ∈ V , which clearly satisfies Property 2 for scale i = 0,
since yz(e) = 2(N/2−δ0/2) ≥ w0(e)−δ0. The algorithm, given in Figure 2, consists of scales 0, . . . , L = logN ,
where the purpose of scale i is to halve the y-values of free vertices while maintaining Property 2. In each
iteration of scale i the algorithm (1) augments a maximal set of augmenting paths of eligible edges, (2) finds
and contracts blossoms of eligible edges, (3) performs dual adjustments on y- and z-values, and (4) dissolves
previously contracted root blossoms if their z-values become zero. Each dual adjustment step decrements
by δi/2 the y-values of free vertices. Thus, there are roughly (N/2i)/(δi/2) = O(ε−1) iterations per scale,
independent of i. The efficiency and correctness of the algorithm depend on eligibility being defined properly.

Definition 1. At scale i, an edge e is eligible if at least one of the following hold:

(i) e ∈ EB for some B ∈ Ω.

(ii) e 6∈M and yz(e) = wi(e)− δi.

(iii) e ∈M and yz(e)− wi(e) is a nonnegative integer multiple of δi.

Let Eelig be the set of eligible edges and let Gelig = (V,Eelig)/Ω be the unweighted graph obtained by
discarding ineligible edges and contracting root blossoms.
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Criterion (i) for eligibility simply ensures that an augmenting path in Gelig extends to an augmenting
path of eligible edges in G. A key implication of Criteria (ii) and (iii) is that if P is an augmenting path in
Gelig, every edge in P becomes ineligible in (M/Ω) ⊕ P . This follows from the fact that unmatched edges
must have yz(e)−wi(e) < 0 whereas matched edges must have yz(e)−wi(e) ≥ 0. Regarding Criterion (iii),
note that Property 2 (granularity and near domination) implies that yz(e) − wi(e) is at least −δi and an
integer multiple of δi/2.

3.2 Analysis and Correctness

Lemma 5 states that the algorithm maintains Property 2 after each of the O(ε−1) Dual Adjustment steps in
each scale. Lemma 3 establishes the critical fact that all augmenting paths and paths from free vertices to
blossoms are eliminated from Gelig before each Dual Adjustment step.

Lemma 3. After the Augmentation and Blossom Shrinking steps Gelig contains no augmenting path, nor
is there a path from a free vertex to a blossom.

Proof. Suppose there is an augmenting path P in Gelig after augmenting along paths in Ψ. Since Ψ is
maximal, P must intersect some P ′ ∈ Ψ at a vertex v. However, after the Augmentation step every edge in
P ′ will become ineligible, so the matching edge (v, v′) ∈M is no longer in Gelig, contradicting the fact that
P consists of eligible edges. Since Ω′ is maximal there can be no blossom reachable from a free vertex in
Gelig after the Blossom Shrinking step.

Lemma 4 guarantees that all y-values updated in a Dual Adjustment step have the same parity as a
multiple of δi/2. In the proof of Lemma 5 this fact is used to argue that if both endpoints of an edge e have
their y-values decremented, then yz(e) is a multiple of δi.

Lemma 4. Let R ⊆ V (Gelig) be the set of vertices reachable from free vertices by eligible alternating paths,

at any point in scale i. Let R̂ ⊆ V (G) be the set of original vertices represented by those in R. Then the
y-values of R̂-vertices have the same parity, as a multiple of δi/2.

Proof. Assume, inductively, that before the Blossom Shrinking step, all vertices in a common blossom have
the same parity, as a multiple of δi/2. Consider an eligible path P = (B0, B1, . . . , Bk) in Gelig, where the
{Bj} are either vertices or blossoms in Ω and B0 is unmatched in Gelig. Let (u0, v1), (u1, v2), . . . , (uk−1, vk)
be the G-edges corresponding to P , where uj , vj ∈ Bj . By the inductive hypothesis, uj and vj have the
same parity, and whether (uj , vj+1) is matched or unmatched, Definition 1 stipulates that yz(uj , vj+1)/δi is
an integer, which implies y(uj) and y(vj+1) have the same parity as a multiple of δi/2. Thus, the y-values of
all vertices in B0∪ · · ·∪Bk have the same parity as a free vertex in B0, whose y-value is equal to every other
free vertex, by Property 2(5). Since new blossoms are formed by eligible edges, the inductive hypothesis is
preserved after the Blossom Shrinking step. It is also preserved after the Dual Adjustment step since the
y-values of vertices in a common blossom are incremented or decremented in lockstep. This concludes the
induction.

Lemma 5. The algorithm preserves Property 2.

Proof. Property 2(5) (free vertex duals) is obviously maintained as only free vertices have their y-values
decremented in each Dual Adjustment step. Property 2(2) (active blossoms) is also maintained since all the
new root blossoms discovered in the Blossom Shrinking step are contained in Vout and will have positive z-
values after adjustment. Furthermore, each root blossom whose z-value drops to zero is dissolved, after Dual
Adjustment. At the beginning of scale i all y- and z-values are integer multiples of δi/2 and δi, respectively,
satisfying Property 2(1) (granularity). This property is clearly maintained in each Dual Adjustment step. If
e 6∈M is placed in M during an Augmentation step or placed in

⋃
B∈ΩEB during a Blossom Shrinking step

then e is type i and yz(e) = wi(e)− δi < wi(e), which satisfies Property 2(4).
It remains to show that the algorithm maintains Property 2(3,4) (near domination and near tightness).

First consider the dual adjustments made at the end of scale i (the last line of pseudocode in Figure 2.)
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Initialization:

M ← ∅ no matched edges

Ω← ∅ no blossoms

δ0 ← ε′N ε′ = Θ(ε); w.l.o.g., ε′, N are powers of 2

y(u)← N

2
− δ0

2
, for all u ∈ V (G) satisfies Property 2(3)

Execute scales i = 0 . . . , L = logN and return the matching M .

Scale i:

– Repeat the following steps until y-values of free vertices reach N/2i+2 − δi/2, if i ∈ [0, L),
or until they reach zero, if i = L.

(1) Augmentation:
Find a maximal set Ψ of augmenting paths in Gelig and set M ← M ⊕ (

⋃
P∈Ψ P ).

Update Gelig.

(2) Blossom Shrinking:
Let Vout ⊆ V (Gelig) be the vertices (that is, root blossoms) reachable from free vertices
by even-length alternating paths; let Ω′ be a maximal set of (nested) blossoms on Vout.
(That is, if (u, v) ∈ E(Gelig)\M and u, v ∈ Vout, then u and v must be in a common
blossom.) Let Vin ⊆ V (Gelig)\Vout be those non-Vout-vertices reachable from free
vertices by odd-length alternating paths. Set z(B)← 0 for B ∈ Ω′ and set Ω← Ω ∪ Ω′.
Update Gelig.

(3) Dual Adjustment:
Let V̂in, V̂out ⊆ V be original vertices represented by vertices in Vin and Vout. The y-
and z-values for some vertices and root blossoms are adjusted:

y(u)← y(u)− δi/2, for all u ∈ V̂out.
y(u)← y(u) + δi/2, for all u ∈ V̂in.

z(B)← z(B) + δi, if B ∈ Ω is a root blossom with B ⊆ V̂out.
z(B)← z(B)− δi, if B ∈ Ω is a root blossom with B ⊆ V̂in.

(4) After dual adjustments some root blossoms may have zero z-values. Dissolve such
blossoms (remove them from Ω) as long as they exist. Note that non-root blossoms are
allowed to have zero z-values. Update Gelig by the new Ω.

– Prepare for the next scale, if i ∈ [0, L):

δi+1 ← δi/2

y(u)← y(u) + δi+1, for all u ∈ V (G).

Figure 2: A (1− ε)-approximate mwm algorithm
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Let e = (u, v) be an arbitrary edge and let yz and yz′ be the function before and after dual adjustment. It
follows that

yz′(e) = yz(e) + 2δi+1 y(u), y(v) incremented by δi+1

≥ wi(e)− δi + 2δi+1 near domination at scale i

≥ wi+1(e)− δi+1 wi(e) ≥ wi+1(e)− δi+1

That is, Property 2(3) is preserved. If e ∈ M ∪
⋃
B∈ΩEB is a type j edge, then at the end of scale i

Property 2(4) is also preserved since

yz′(e) = yz(e) + 2δi+1 ≤ wi(e) + 2(δj − δi) + 2δi+1 ≤ wi+1(e) + 2(δj − δi+1)

The first inequality follows from Property 2(4) at scale i and the second inequality from the fact that
wi(e) ≤ wi+1(e) and δi = 2δi+1.

Now consider a Dual Adjustment step. If neither u nor v is in V̂in ∪ V̂out or if u, v are in the same root
blossom in Ω, then yz(e) is unchanged, preserving Property 2. The remaining cases depend on whether (u, v)
is in M or not, whether (u, v) is eligible or not, and whether both u, v ∈ V̂in ∪ V̂out or not.

Case 1: e 6∈M, u, v ∈ V̂in∪ V̂out If e is ineligible then yz(e) > wi(e)− δi. However, by Lemma 4 (parity of
y-values) we know (yz(e)−wi(e))/δi is an integer, so yz(e) ≥ wi(e) before adjustment and yz(e) ≥ wi(e)−δi
afterward (which could occur if both u, v ∈ V̂out), thereby preserving Property 2(3). If e is eligible then at
least one of u, v is in V̂in, otherwise another blossom or augmenting path would have been formed, so yz(e)
cannot be reduced, which also preserves Property 2(3).

Case 2: e ∈ M, u, v ∈ V̂in ∪ V̂out Since u, v ∈ V̂in ∪ V̂out, Lemma 4 (parity of y-values) guarantees that
(yz(e)−wi(e))/δi is an integer. The only way e can be ineligible is if yz(e) = wi(e)−δi and u, v ∈ V̂in, hence
yz(e) = wi(e) after dual adjustment, which preserves Property 2(3,4). On the other hand, if e is eligible then
u ∈ V̂in and v ∈ V̂out. It cannot be that u, v ∈ V̂out, otherwise e would have been included in an augmenting
path or root blossom. In this case yz(e) is unchanged, preserving Property 2(3,4).

Case 3: e 6∈ M, v 6∈ V̂in ∪ V̂out If e is eligible then u ∈ V̂in and yz(e) will increase. If it is ineligible then
yz(e) ≥ wi(e) − δi/2 before adjustment and yz(e) ≥ wi(e) − δi afterward. In both cases Property 2(3) is
preserved.

Case 4: e ∈ M, v 6∈ V̂in ∪ V̂out It must be that e is ineligible, so u ∈ V̂in and yz(e) − wi(e) is either
negative or an odd multiple of δi/2. If e is type j then, by Property 2(1,4) (granularity and near tightness),
yz(e) ≤ wi(e) + 2(δj − δi) − δi/2 before adjustment and yz(e) ≤ wi(e) + 2(δj − δi) afterward, preserving
Property 2(4).

Recall that Lemma 2 stated that the final matching will be a (1−O(ε))-mwm if δL = O(ε), free vertices
have zero y-values, and yz(e)− w(e) = O(ε) · w(e). Lemmas 6 and 7 establish these bounds.

Lemma 6. Let i ≤ L be the scale index. Then

1. For i < L, all edges eligible at any time in scales 0 through i have weight at least N/2i+1 + δi.

2. For any i, if e ∈M then yz(e) ≤ (1 + 4ε′)w(e).

Proof. We prove the parts separately.

Part 1 The last search for augmenting paths in scale i begins when the y-values of free vertices are N/2i+2,
and strictly less than y-values of other vertices, by Property 2(5). An unmatched edge e = (u, v) can only
be eligible at this scale if yz(e) = wi(e)− δi ≤ w(e)− δi. Hence w(e) ≥ y(u) + y(v) + δi ≥ N/2i+1 + δi.
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Part 2 Let e be a type j edge in M during scale i. Property 2(4) states that yz(e) − wi(e) ≤ 2(δj − δi).
Since wi(e) ≤ w(e) it also follows that yz(e)−w(e) ≤ 2δj − 2δi < 2δj = ε′N/2j−1. By part 1, a type j edge
must have weight at least N/2j+1 + δj , hence yz(e)− w(e) < 4ε′ · w(e).

Lemma 7. After scale L = logN , M is a (1− 5ε′)-mwm.

Proof. The final scale ends when free vertices have zero y-values. Property 2(3) holds with respect to δL =
δ0/2

L = ε′N/2L = ε′ and Lemma 6 states that yz(e) ≤ (1 + 4ε′)w(e). By Lemma 2, w(M) ≥ (1 −
5ε′)w(M∗).

Theorem 1. A (1− ε)-mwm can be computed in time O(mε−1 logN).

Proof. Each Augmentation and Blossom Shrinking step takesO(m) time using a modified depth-first search [47,
§8]. (Finding a maximal set of augmenting paths is significantly simpler, conceptually, than finding a maxi-
mal set of minimum-length augmenting paths, as is done in [86, 113].) Each Dual Adjustment step clearly
takes linear time, as does the dual adjustment at the end of each scale. Scale i < L = logN begins with
free vertices’ y-values at N/2i+1 − δi and ends with them at N/2i+2 − δi. Since y-values are decremented
by δi/2 in each Dual Adjustment step there are exactly (N/2i+2)/(δi/2) = N/(2δ0) = ε′−1/2 such steps.
The final scale begins with free vertices’ y-values at N/2L+1 − δL and ends with them at zero, so there are
fewer than (N/2L+1)/(δL/2) = ε′−1 Dual Adjustment steps. Lemma 7 guarantees that the final matching is
a (1− ε)-mwm for ε′ ≤ ε/5. Hence, the total running time is O(mε−1 logN).

3.3 A Linear Time Algorithm

Our O(mε−1 logN)-time algorithm requires few modifications to run in linear time, independent of N . In
fact, the algorithm as it appears in Figure 2 requires no modifications at all: we only need to change the
definition of eligibility and, in each scale, refrain from scanning edges that cannot possibly be eligible or part
of augmenting paths or blossoms. In light of Lemma 6(1) it is helpful to index edges according to the first
scale in which they may be eligible.

Definition 2. Define µi = N/2i+1 + δi, for i < L, and µL = 0. Define scale(e) to be the i such that
w(e) ∈ [µi, µi−1).

Definition 3 redefines eligibility. The differences with Definition 1 are underlined.

Definition 3. At scale i, an edge e is eligible if at least one of the following hold:

1. e ∈ EB for some B ∈ Ω.

2. e 6∈M and yz(e) = wi(e)− δi.

3. e ∈ M and yz(e) − wi(e) is a nonnegative intelligent multiple of δi. Furthermore, scale(e) ≥ i− γ,

where γ
def
= log ε′−1.

Let Eelig be the set of eligible edges and let Gelig = (V,Eelig)/Ω be the unweighted graph obtained by
discarding ineligible edges and contracting root blossoms.

Lemma 8. Using Definition 3 of eligibility rather than Definition 1, Property 2(1,2,3,5) is maintained and
Property 2(4) (near tightness) holds in the following weaker form. Let e ∈M∪

⋃
B∈ΩEB be a type j edge with

scale(e) = i. Then yz(e) ≤ wk(e)+2(δj−δk) at any scale k ∈ [i, i+γ] and yz(e) ≤ wk(e)+3δi < (1+6ε′)w(e)
for k > i+ γ.

Proof. In scales i through i + γ Property 2(4) is maintained as the two definitions of eligibility are the
same. At the beginning of scale t = i + γ + 1, e is no longer eligible and the y-values of free vertices are
N/2t+1 − δt/2. From this moment on, the y-values of free vertices are incremented by a total of

∑
l≥t+1 δl

(the dual adjustments following scales t through L−1) and decremented a total of N/2t+1−δt/2+
∑
l≥t+1 δl
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(in the Dual Adjustment steps following searches for augmenting paths and blossoms). Each adjustment to
y-values by some quantity ∆ may cause yz(e) to increase by 2∆. This clearly occurs in the dual adjustments
following each scale as y(u) and y(v) are incremented by ∆. Following a search for blossoms it may be that
u, v ∈ V̂in, which would also cause y(u) and y(v) to each be incremented by ∆. Note that y(u), y(v) cannot
be decremented in scales t through L; if either were in V̂out after a search for blossoms then e would have
been eligible, a contradiction. Hence Property 2(3) (near domination) is maintained for e. Putting this all
together, it follows that at any scale k ≥ t = i+ γ + 1 = i+ log ε′−1 + 1,

yz(e) ≤ wk(e) + 2(δj − δk) + 2 ·

N/2t+1 − δt/2 + 2 ·
∑
l≥t+1

δl


< wk(e) + 2δi + 2

(
δi+2 + 3

2δt
)

j ≥ i, defn. of t

= wk(e) + (2 + 1/2 + 3ε′/2)δi defn. of δt = ε′δi/2

< wk(e) + 3δi ε′ < 1/3

< (1 + 6ε′)w(e) w(e) ≥ wk(e) > N/2i+1 = (2ε′)−1 · δi

which proves the claim. Note that the inequality yz(e) < wk(e) + 3δi also holds in scales k ∈ [i, i+ γ]. If e
is type j ≥ i then yz(e) ≤ wk(e) + 2(δj − δk) < wk(e) + 2δi. This fact will be used in Lemma 9.

The algorithm will deliberately ignore unmatched edges that may still be eligible according to Definition 3.
This will be justified on the grounds that such edges must be adjacent to matched ineligible edges, and
therefore cannot be contained in an eligible augmenting path. Lemma 9 will be used to argue that scale-i
edges can be safely ignored after scale i+ γ + 2.

Lemma 9. Let e1 = (u, v) be an edge with scale(e1) = i and let e0 = (u′, u) and e2 = (v, v′) be the M -
edges incident to u and v at some time after scale i. Then at least one of e0 and e2 exists, say e0, and
scale(e0) ≤ i+ 2.

Proof. Following the last Dual Adjustment step in scale i the y-values of free vertices are N/2i+2 − δi/2. It
cannot be that both u and v are free at this time, otherwise yz(e1) = y(u) +y(v) = N/2i+1− δi = µi−2δi <
wi(e1)− δi, violating Property 2(3) (near domination). Hence, either u or v is matched for the remainder of
the computation. If e1 is matched the claim is trivial, so, assuming the claim is false, whenever e0, e2 exist
we have scale(e0), scale(e2) ≥ i+ 3. That is, w(e0), w(e2) < µi+2 = N/2i+3 + δi+2.

It cannot be that e1 is in a blossom without e0 or e2 also being in the blossom. For any l ∈ {0, 1, 2} let
Bl ⊆ Ω be the blossoms containing el at a given time. The laminarity of blossoms ensures that either B1 ⊆ B0

or B1 ⊆ B2. Suppose it is the former, that is, e0 exists and e2 may or may not exist. Then, if the current
scale is k ≥ i+ 3, by Property 2(3) (near domination) yz(e1) = y(u) +y(v) +

∑
B∈B1

z(B) ≥ wk(e1)− δk. By
Lemma 8 y(u) +

∑
B∈B1

z(B) < yz(e0) ≤ wk(e0) + 3δi+3 and, if e2 exists, y(v) < yz(e2) ≤ wk(e2) + 3δi+3.
These inequalities follow from the definition of yz, the containment B1 ⊆ B0 and the fact that e0 and e2 can
only be at scale i+ 3 or higher. Without loss of generality we can assume y(u) +

∑
B∈B1

z(B) ≥ y(v). (If e2

exists and y(v) > y(u) +
∑
B∈B1

z(B) then e2 takes the role of e0 below.) Putting these inequalities together
we have

wk(e1) ≤ y(u) + y(v) +
∑
B∈B1

z(B) + δk near domination

≤ 2

(
y(u) +

∑
B∈B1

z(B)

)
+ δk y(u) +

∑
B∈B1

z(B) ≥ y(v)

≤ 2 (yz(e0)) + δk B1 ⊆ B0

< 2(wk(e0) + 3δi+3) + δk Lemma 8

< 2w(e0) + 7δi+3 k ≥ i+ 3, ε′ < 1/3
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and therefore

w(e0) > 1
2 (wk(e1)− δi) 7δi+3 < δi

≥ N/2i+2 scale(e1) = i, wk(e1) ≥ µi = N/2i+1 + δi

> N/2i+3 + δi+2 = µi+2

This contradicts the fact that scale(e0) ≥ i+ 3, since, by definition, such edges have w(e0) < µi+2.

Theorem 2. A (1− ε)-mwm can be computed in time O(mε−1 log ε−1).

Proof. We execute the algorithm from Figure 2 where Gelig refers to the eligible subgraph as defined in
Definition 3. We need to prove several claims: (i) the algorithm does, in fact return a (1 − ε)-mwm for
suitably chosen ε′ = Θ(ε), (ii) the number of scales in which an edge could conceivably participate in an
augmenting path or blossom is log ε−1 +O(1), and (iii) it is possible in linear time to compute the scales in
which each edge must participate. Part (i) follows from Lemmas 2 and 8. Since yz(e) ≤ (1 + 6ε′)w(e) for
any e ∈M and δL = ε′, Lemma 2 implies that M is a (1− ε)-mwm when ε′ ≤ ε/7.

Turning to part (ii), consider an edge e with scale(e) = i. By Lemma 6(1) e can be ignored in scales 0
through i−1. If e = (u, v) ∈M then, according to Definition 3, e will be ineligible in scales i+γ+1 through
logN . After scale i + γ no augmenting path or blossom can contain e, so we can commit it to the final
matching and remove from consideration all edges incident to u or v. Now suppose that e 6∈ M at the end
of scale i+ γ + 2. Lemma 9 states that either u or v is incident to a matched edge e0 with scale(e0) ≤ i+ 2,
which by the argument above, will be committed to the final matching, thereby removing e from further
consideration. Thus, to faithfully execute the algorithm we only need to consider e in scales scale(e) through
scale(e) + γ + 2, that is, γ + 3 = log ε′−1 + 3 ≤ log ε−1 + 6 scales in total.

We have narrowed our problem to that of computing scale(e) for all e. This is tantamount to computing
the most significant bit (MSB(x) = blog2 xc) in the binary representation of w(e). Once the MSB is known,
scale(e) can be just one of two possible values. MSBs can be computed in a number of ways using standard
instructions. It is trivial to extract MSB(x) after converting x to floating point representation. Fredman
and Willard [37] gave an O(1) time algorithm using unit time multiplication. However, we do not need to
rely on floating point conversion or multiplication. In Section 2 we showed that without loss of generality
logN ≤ 2 log n. Using a negligible O(nβ) space and preprocessing time we can tabulate the answers on
β · log n-bit integers, where β ≤ 1, then compute MSBs with 2β−1 = O(1) table lookups.

4 Exact Maximum Weight Matching

At a high level our exact mwm algorithm is similar to our (1 − ε)-mwm algorithm. It consists of logN + 1
scales, where, in the ith scale, the magnitude of dual adjustments and the violation of domination/tightness
is bounded in terms of δi, which decreases geometrically with i. However, beyond this similarity the two
algorithms are quite different. Our exact mwm algorithm only works on bipartite graphs; we assume for
simplicity that the graph consists of exactly n left vertices and n right vertices.

We redefine δ0 = 2blog(N/
√
n)c and let δi = δ0/2

i and wi(e) = δibw(e)/δic be the granularity and weight
function of the ith scale, where i ∈ [0, L] and L = dlogNe.12 The algorithm maintains a matching M and
duals y satisfying Property 3. (As the graph is bipartite there is no need for blossoms or their duals z.)
Whereas Property 2 allows domination to be violated by δi but enforces tightness of matched edges (of type
i), Property 3 enforces domination but lets tightness be violated by up to 3δi.

Property 3. Let i ∈ [0, L] be the scale, M be the current matching, and y : V → R≥0 be the vertex duals,
where y(e) = y(u) + y(v) for edge e = (u, v).

1. Granularity: y(u) is a nonnegative multiple of δi.

12Note that if N ≤
√
n we do not require a different weight function at each scale since wi = w for all i ≥ 0.

17



2. Domination: y(e) ≥ wi(e) for all e ∈ E.

3. Near Tightness: Let e ∈ M be a matched edge. In scale 0, y(e) ≤ w0(e) + δ0. Throughout scale i we
have y(e) ≤ wi(e) + 3δi and at the end of scale i we have y(e) ≤ wi(e) + δi.

4. Free Vertex Duals: In scale i = 0, right free vertices have zero y-values and left free vertices have equal
and minimal y-values among left vertices. At the end of scale 0 and throughout scales 1, . . . , L, all free
vertices have zero y-values.

Lemma 10. Let M be the matching at the end of scale i and M∗ be the mwm. Then w(M) ≥ w(M∗)−2nδi,
and when i = L, w(M) ≥ w(M∗)− nδL ≥ w(M∗)−

√
n.

Proof. By Property 3 we have

w(M) ≥ wi(M) ≥
∑
e∈M

y(e)− nδi near tightness

=
∑
u∈V

y(u)− nδi free vertex duals

≥ wi(M∗)− nδi domination, non-negativity of y

≥ w(M∗)− 2nδi defn. of wi, |M∗| ≤ n

Note that the last inequality is weak whenever δi ≤ 1, since in this case w = wi. Specifically, when i = L we
have δL = 2blog(N/

√
n)c−dlogNe ≤ 1/

√
n, implying w(M) ≥ w(M∗)− nδL ≥ w(M∗)−

√
n.

As in our (1− ε)-mwm algorithm we restrict our attention to augmentations on eligible edges. However,
our definition of eligibility depends on the context. For integers 0 ≤ a ≤ b, the eligibility graph G[a, b] at
scale i consists of all edges e such that

— e 6∈M and y(e) = wi(e), or

— e ∈M and wi(e) + aδi ≤ y(e) ≤ wi(e) + bδi.

The algorithm consists of three phases, each with a distinct goal. Phase I, Phase III, and each scale of
Phase II will require O(m

√
n) time, for a total of O(m

√
n logN) time.

Phase I The phase operates only at scale 0. It is a simplified execution of the Gabow-Tarjan [46] algo-
rithm, stopping not when M is perfect but when y-values of free vertices are zero. In this phase an
augmentation is an augmenting path in G[1, 1] whose endpoints are free.

Phase II The phase operates at scales i = 1, . . . , L. At the beginning of the scale M ⊆ G[0, 3]. The goal is
to eliminate M -edges that violate near-tightness by 2δi or 3δi, that is, the scale ends when M ⊆ G[0, 1].
In this phase an augmentation is either an augmenting cycle in G[1, 3] or an augmenting path in G[1, 3]
whose endpoints have zero y-values. Note that the ends of augmenting paths can be either free vertices
or matched edges.

Phase III The phase operates only at scale L. The last scale of Phase II leaves M ⊆ G[0, 1]. In this phase
an augmentation is either an augmenting cycle or an augmenting path whose ends have zero y-values,
that, in addition, contains at least one non-tight edge. That is, the augmenting path/cycle must exist
in G[0, 1] but not G[0, 0], which implies that augmenting along such a path increases the weight of the
matching. By Lemma 10, at the end of Phase II w(M) ≥ w(M∗)−

√
n. We guarantee that w(M) is a

nondecreasing function of time, so, by the integrality of edge weights, w(M) can be improved at most√
n times in Phase III.

18



The following notation will be used liberally. Let X ⊆ V (G) be a vertex set, H be a subgraph of G, and
M be an arbitrary matching. Define Vodd(X,H) (and Veven(X,H)) to be the set of vertices reachable from
X in H by an odd-length (and even-length) alternating path starting with an unmatched edge. The directed

graph ~H is obtained by orienting e ∈ E(H) from left to right if e 6∈M and from right to left if e ∈M . In our
algorithm H is always chosen to be G[a, b] for some parameters a, b. Note that Vodd(X,H), Veven(X,H), and
~H are defined with respect to a matching known from context. It is clear that Vodd(X,H) and Veven(X,H)
can be computed in linear time, for example, with depth first search (DFS).

4.1 Phase I

In Phase I we operate on G[1, 1]. We begin with an empty matching M = ∅ and let y(v) = 0 for right
vertices and y(v) = δ0bN/δ0c for left vertices. This clearly satisfies Property 3(2) (domination) since w0(e) =
δ0bw(e)/δ0c and the maximum edge weight is N . The Phase I algorithm oscillates between augmenting along
a maximal set of eligible augmenting paths and performing dual adjustments. Note that if we augment along
an eligible augmenting path, all edges of the path become ineligible. See Algorithm 1 for the details.

ALGORITHM 1: Phase I
Initialization:
M ← ∅

y(v)←

{
δ0bN/δ0c if v is a left vertex

0 if v is a right vertex
repeat

Augmentation:
Find a maximal set Ψ of augmenting paths in G[1, 1] and set M ←M ⊕

⋃
P∈Ψ P .

Dual Adjustment:
Let F be the set of left free vertices

y(v)←


y(v)− δ0 if v ∈ Veven(F,G[1, 1])

y(v) + δ0 if v ∈ Vodd(F,G[1, 1])

y(v) otherwise
until y-values of left free vertices are zero or all left vertices are matched

After an augmentation step, there cannot be any augmenting paths in G[1, 1], which implies no free
vertex is in Vodd(F,G[1, 1]). Property 3(4) is maintained for left free vertices since their y-values are reduced
in lockstep in every dual adjustment step. It is also preserved for right free vertices since they are not in
Vodd(F,G[1, 1]) and therefore never have their y-values adjusted. Property 3(2) (domination) is maintained
since no eligible edge can have one endpoint in Veven(F,G[1, 1]) without the other being in Vodd(F,G[1, 1]).
Property 3(3) (near tightness) is maintained since for any e ∈M , y(e) is unchanged if e is eligible, and, if e
is ineligible (that is, y(e) = w0(e)), y(e) may only be incremented by δ0.

The number of augmentation/dual adjustment steps is bounded by the number of dual adjustments, that
is, (δ0bN/δ0c)/δ0 ≤ N/2blog(N/

√
n)c < 2

√
n. Thus, Phase I takes O(m

√
n) time.

4.2 Phase II

At the beginning of scale i ∈ [1, L] in Phase II we set y(u) ← y(u) + δi for each left vertex u and leave the
y-values of right vertices unchanged. Since wi(e) ≤ wi−1(e) + δi, this preserves Property 3(2) (domination).
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Property 3(3) (near tightness) is also maintained.

y(e)← y(e) + δi

≤ wi−1(e) + δi−1 + δi by Property 3(3) at the end of scale i− 1

≤ wi(e) + 3δi since δi−1 = 2δi and wi−1(e) ≤ wi(e)

However, Property 3(4) may be violated since the y-values of left free vertices are δi, not zero. Hence, we
will run one iteration of Phase I’s augmentation and dual adjustment steps on G[1, 3]. These steps preserve
domination and near tightness and bring left free vertices’ y-values down to zero, restoring Property 3(4).
This procedure takes O(m) time but is executed just once for each of the logN scales.

Next, we will repeatedly perform Phase II Augmentation and Phase II Dual Adjustment steps (see
Sections 4.3 and 4.4) on G[1, 3] until M ∩G[2, 3] = ∅, that is y(e) ≤ wi(e) + δi for all e ∈ M . At this point
scale i ends and scale i+ 1 begins.

4.3 Phase II Augmentation

The goal of an augmentation step in Phase II is simply to eliminate all augmenting paths and cycles from
G[1, 3]. We do this in two steps, first eliminating augmenting cycles then paths. Notice that in contrast to
Phase I, augmenting paths may start or end with matched edges.

In the first stage of augmentation we will find a maximal set of vertex-disjoint augmenting cycles C using
DFS. Observe that directed cycles in ~G[1, 3] correspond to augmenting cycles in G[1, 3]; this simplifies the
DFS algorithm since we do not need to distinguish matched and unmatched edges. At all times the DFS
stack S forms an alternating path. If there is a back edge from the top of the stack to another vertex on this
stack, that is, S = (. . . , v, . . . , u) and (u, v) ∈ E(~G[1, 3]), this back edge closes an augmenting cycle, which
can be added to C. A vertex is marked when it is popped off the DFS stack, either because the vertex joins
an augmenting cycle in C or if it is found not to be contained in any augmenting cycle. Algorithm 2 gives
the details for Cycle-Search.

Lemma 11. The algorithm Cycle-Search finds a maximal set of vertex-disjoint augmenting cycles C. More-
over, if we augment along every cycle in C, then the graph G[1, 3] contains no more augmenting cycles.

Proof. Supposing C is not maximal, let C = (v0, v1, . . . vk−1, v0) be any cycle vertex-disjoint from all cycles
in C, where v0 is the first vertex of C pushed onto the stack. Let t be the largest index such that vt is pushed
onto the stack before v0 is popped off. It follows that vt+1 mod k is unmarked and therefore appears in Vvt .
If t = k− 1 then v0 ∈ Vvk−1

and the search will discover an augmenting cycle containing vt; if t < k− 1 then
the search will push vt+1 onto the stack, contradicting the maximality of t.

If there exists an eligible cycle C after augmentation, then this cycle must share a vertex v with some
cycle C ′ ∈ C due to the maximality of C. However, since C ′ contains v’s mate (both before and after
augmentation), C and C ′ must intersect at an edge, which contradicts the fact that all edges in C ′ become
ineligible after augmentation.

In the second stage of augmentation we will eliminate all the augmenting paths in G[1, 3]. This is done by
finding a maximal set of vertex-disjoint maximal augmenting paths, which are those not properly contained
in another augmenting path. (Recall that in Phase II, augmenting paths can end at matched edges so long
as the endpoints of the path have zero y-values. Any augmenting path with free endpoints is necessarily
maximal, but one ending in matched edges may not be maximal.) See Figure 3 for an illustration.

Consider the graph ~G[1, 3]. It must be a directed acyclic graph, since, by Lemma 11, G[1, 3] does not
contain augmenting cycles. Call a vertex with zero y-value a starting vertex if it is left and free or right
and matched, and an ending vertex if it is left and matched or right and free. Let A and B be the set of
starting and ending vertices. It follows that any augmenting path in G[1, 3] corresponds to a directed path

from an A-vertex to a B-vertex in ~G[1, 3]. With this observation in hand we can find a maximal set P of
maximal augmenting paths using DFS. We initiate the search on each A-vertex u in topological order. When
an augmenting path to a B-vertex, say v, is first discovered we cannot commit (u, . . . , v) to P immediately.
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ALGORITHM 2: Cycle-Search: returns a maximal set of eligible augmenting cycles

All vertices are initially unmarked
C ← ∅ {set of augmenting cycles discovered so far}
S ← () {DFS stack}
while there are still unmarked vertices do

if S is empty then
Push any unmarked u0 ∈ V onto S.

end if
u = the top of S
Vu = {v | (u, v) ∈ E(~G[1, 3]) and v is unmarked}
if Vu is empty then

Mark u and pop u off S
else

Choose any v ∈ Vu
if v appears in S, that is, if S = (. . . , v, . . . , u) then
C ← C ∪ {(v, . . . , u, v)} {add augmenting cycle to C}
Mark v, . . . , u and pop (v, . . . , u) off S

else
Push v on S

end if
end if

end while
return C

Rather, we continue to look for an even longer augmenting path, and keep (u, . . . , v) only after all outgoing
edges from v have been exhausted. Algorithm 3 gives the Path-Search procedure.

Lemma 12. After augmenting along every path in P, the graph G[1, 3] contains no augmenting paths.

Proof. Suppose that there exists an augmenting path Q after the augmentation. Then, by the maximality
of P, there must be some augmenting path in P sharing vertices with Q. There can be two cases.

Case 1 There exists a P ∈ P and a v ∈ P ∩ Q that is not an endpoint of P . Since P contains v and its
mate before and after augmentation, P and Q must share an edge, which is impossible since all edges
in P become ineligible after augmentation.

Case 2 Let P be the first path added to P that intersects Q. Since we are not in Case 1, P and Q intersect
at a common endpoint, say x. (Note that the only way this is possible is if x is matched before
augmentation and free afterward. If x were a free endpoint of P before augmentation it would be
incident to a matched ineligible edge after augmentation and could therefore not be an endpoint of Q.)
Let xP and xQ be the other endpoints of P and Q. If xP = xQ then G[1, 3] contained an augmenting
cycle, contradicting Lemma 11. If xP ∈ A is a starting vertex, consider the moment when the stack
contained only xP . At this time PQ is an augmenting path of unmarked vertices, so Path-Search would
not place the non-maximal augmentation P in P. On the other hand, if x is a starting vertex, it must
be a right matched vertex that becomes free after augmentation, which implies that xQ must also be
a starting vertex. Since our search explores A-vertices in topological order, the search from xQ would
have preceded the search from x. Thus, the first augmentation of P intersecting Q must contain xQ,
contradicting the fact that P does not contain xQ.
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Figure 3: An illustration of starting vertices and maximal augmenting paths in G[1, 3]. The plain edges
denote unmatched edges; the shaded edges are matched. The haloed vertices have zero y-values. The
set of starting vertices is {u1, v1, v2}. The path P = (v2, u3, v3, u4, v4) is an augmenting path but not a
maximal augmenting path, since it can be extended to a longer one. For example, (u1, v2, u3, v3, u4, v4) and
(v1, u2, v2, u3, v3, u4, v4) are augmenting paths containing P .

4.4 Phase II Dual Adjustment

Recall that scale i ends when M ⊆ G[0, 1]. Let B = M ∩G[2, 3] be the bad edges and let f : E → {0, 1, 2}
measure the badness, defined as follows.

f(e) =

{
y(e)−wi(e)−δi

δi
for e ∈ B

0 for e 6∈ B

Let f(M) =
∑
e∈B f(e) be the total badness of M . The goal of dual adjustment is to eliminate B, or

equivalently, to reduce f(M) to 0. We will show how to reduce f(M) by roughly
√
f(M) in linear time.

A B′ ⊆ B is called a chain if there is an alternating path in G[1, 3] containing B′ and an anti-chain if
no alternating path in G[1, 3] contains two edges e1, e2 ∈ B′. Lemma 13 basically follows from Dilworth’s
lemma [22].

Lemma 13. For any t > 1, there exists B′ ⊆ B such that either B′ is a chain with f(B′) ≥ dte or B′ is an
anti-chain with |B′| ≥ df(M)/2te. Moreover, such a B′ can be found in linear time.

Proof. Let S be the set of vertices with zero in-degree in the acyclic graph ~G[1, 3]. In linear time we compute
distances from S using −f as the length function. Let d(v) be the distance to v. Suppose there is a v with
d(v) ≤ −dte and let P be a shortest path to v. It follows that B′ = P ∩B is a chain with f(B′) ≥ dte. If this
is not the case then, for every (u, v) ∈ B (where v is a left vertex), d(v) ∈ [−(dte−1),−1]. Since f(e) ≤ 2 for
e ∈ B, we must have at least d|B|/(dte−1)e > df(M)/2te such v with a common distance, say −k. It follows
that B′ = {(u, v) ∈ B | v is a left vertex and d(v) = −k} is an anti-chain, for if (u1, v1), (u2, v2) ∈ B′ were
on an alternating path in G[1, 3], the distance to v2 would be strictly smaller than the distance to v1.

Below we show that if B′ is a chain we can decrease the total badness by f(B′) in linear time. On the
other hand, if B′ is an anti-chain, then we can decrease the total badness by |B′|/2, also in linear time.

4.4.1 Phase II Dual Adjustment: Antichain Case

When performing dual adjustments we must be careful to maintain Property 3, which states that y(u) must
always be nonnegative, and must be zero if u is free. This motivates the definition of a dual adjustable vertex.

Definition 4. A vertex u is said to be dual adjustable if every vertex in Vodd(u,G[1, 3]) is matched and
every vertex v ∈ Veven(u,G[1, 3]) has y(v) > 0.
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ALGORITHM 3: Path-Search: returns a maximal set of maximal eligible augmenting paths

All vertices are initially unmarked
A← {u | y(u) = 0 and u is left and free or right and matched} {starting vertices}
B ← {u | y(u) = 0 and u is right and free or left and matched} {ending vertices}
P ← ∅ {set of augmenting cycles discovered so far}
S ← () {DFS stack}
while there are still unmarked A-vertices do

if S is empty then
Push the first (topologically) unmarked u0 ∈ A onto S.

end if
u = the top of S
Vu = {v | (u, v) ∈ E(~G[1, 3]) and v is unmarked}
if Vu is empty then

if u ∈ B then
P ← P ∪ {S} {S forms a maximal augmenting path}
Mark all vertices in S and set S ← () {Pop all vertices off the stack}

else
Mark u and pop u off S

end if
else

Push an arbitrary v ∈ Vu onto S
end if

end while
return P

Lemma 14. For every e = (u, v) ∈ B, either u is adjustable or v is adjustable or both. Furthermore, all
adjustable vertices can be found in O(m) time.

Proof. First, suppose that for some e = (u, v) ∈ B, both u and v are not adjustable. There must exist
vertices w and x having zero y-values where (w, . . . , u, v, . . . , x) is an augmenting path in G[1, 3]. However,
this contradicts Lemma 12, which states that there are no augmentations in G[1, 3] after an augmentation
step. Let Ṽ = {v | v is free or (v, v′) ∈M and y(v′) = 0}. By definition a vertex is not dual adjustable if
and only if it lies in Vodd(Ṽ , G[1, 3]), which can be computed in linear time.

Let B′ ⊆ B be an anti-chain. The procedure Antichain-Adjust(B′) selects a set of dual adjustable vertices
X incident to B′ and on a common side (left or right), then does a dual adjustment starting at X. Since,
by Lemma 14, for any (u, v) ∈ B′ either u is adjustable or v is adjustable or both, we can guarantee that
|X| ≥ |B′|/2. See Figure 4 for an example.

Lemma 15. The dual adjustment starting at X will not break Property 3(1,2,4). Furthermore, it makes
Property 3(3) tighter by decreasing f(M) by |X|.

Proof. SinceX consists of adjustable vertices, every vertex v ∈ Veven(X,G[1, 3]) must have y(v) > 0, implying
y(v) will be non-negative after being decremented by δi. Thus, Property 3(1) is maintained. Furthermore,
Vodd(X,G[1, 3]) cannot contain a free vertex, which implies that Property 3(4) is preserved. Since all vertices
in X are on the same left/right side, y(e) can change by at most δi. Property 3(2) (domination) is maintained
since no tight edge (with y(e) = wi(e)) can can have one endpoint in Veven(X,G[1, 3]) without the other being
in Vodd(X,G[1, 3]). The algorithm does not increase f(M) since, for any e ∈M ∩G[1, 3], if one endpoint of e
appears in Vodd(X,G[1, 3]), the other must appear in Veven(X,G[1, 3]). Furthermore, the algorithm decreases
f(M) by at least |X| ≥ |B′|/2 since f(u, v) is decremented for each (u, v) ∈ B′ with v ∈ X. To see this,

note that y(v) is decremented by δi and, since ~G[1, 3] is acyclic and B′ is an antichain, u cannot appear in
Vodd(X,G[1, 3]) and therefore cannot have its y-value adjusted.
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ALGORITHM 4: Antichain-Adjust(B′)

Find adjustable vertices:
Ṽ ← {v | v is free or (v, v′) ∈M and y(v′) = 0}.
Mark vertices in V \ Vodd(Ṽ , G[1, 3]) as adjustable.
XL ← {u | (u, v) ∈ B′ and u is a left adjustable vertex},
XR ← {u | (u, v) ∈ B′ and u is a right adjustable vertex}.
If |XR| ≥ |XL|, then let X ← XR; otherwise let X ← XL.

Perform dual adjustments, starting at X:

y(v)←


y(v)− δi if v ∈ Veven(X,G[1, 3])

y(v) + δi if v ∈ Vodd(X,G[1, 3])

y(v) otherwise

(a) (b)

Figure 4: (a) The haloed vertices have zero y-values. The circled matched edges form an antichain B′. The
shaded vertices in V (B′) are dual adjustable. (b) The black vertices are in X and vertices marked with ‘e’
and ‘o’ are in Veven(X,G[1, 3]) and Vodd(X,G[1, 3]), respectively.

Therefore, by doing the dual adjustment starting at X, we can decrease f(M) by at least |B′|/2.

4.4.2 Phase II Dual Adjustment: Chain Case

In the chain case we are given a chain B′ ⊆ B and a minimal alternating path P containing B′, that is, it
starts and ends with B′-edges. Setting M ← M ⊕ P immediately reduces f(M) by f(B′) since B′-edges
are replaced by tight edges, which contribute nothing to f(M). However, the endpoints of P , say u and v,
are now free while possibly having positive y-values, which violates Property 3(4). Our goal is to restore
Property 3, either by finding augmenting paths that rematch u and v or by reducing their y-values to zero.
In this section an augmenting path is one in the eligibility graph G[0, 3] (not G[1, 3]) that either connects u
and v or connects an x ∈ {u, v} to a vertex with zero y-value. A notable degenerate case is when y(x) = 0,
in which case the empty path is an augmenting path from x to x. We begin by performing dual adjustments
(as in a Hungarian search) until an augmenting path Pu in G[0, 3] containing u emerges. We do not augment
along Pu immediately but perform a second search for an augmenting path Pv containing v. If Pu and Pv
do not intersect we let Q = Pu ∪ Pv. On the other hand, if Pu and Pv do intersect then there must be an
augmenting path Puv between u and v in G[0, 3]; we let Q = Puv. In either case we augment along Q, setting
M ←M ⊕Q. Figure 5 illustrates the case where Q = Puv.

The search from x ∈ {u, v} works as follows. If there exists an augmenting path Px in G[0, 3] starting at
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x, then return Px. (This will be the empty path if y(x) = 0.) Otherwise update y-values as follows:

y(z)←


y(z)− δi if z ∈ Veven(x,G[0, 3])

y(z) + δi if z ∈ Vodd(x,G[0, 3])

y(z) otherwise

and continue to perform these dual adjustments until an augmenting path starting from x emerges. As
in standard Hungarian search, this process is reducible to single source shortest paths on a non-negatively
weighted directed graph. The graph is either ~G or its transpose, depending on the left/right side of x. The
weight function ŵ is zero on M -edges and equal to the gap between y-value and weight on non-M edges:
ŵ(e) = y(e)− wi(e). By Property 3(2) (domination), ŵ is non-negative. The value h(z) is the sum of dual
adjustments until an augmenting path emerges from x to z. If z is free and on the opposite side of x then
this is simply the distance from x to z. However, if z is on the same side as x (and therefore matched),
we need another y(v)/δi dual adjustment steps to reduce its y-value to zero. The pseudocode for Search(x)
appears below.

ALGORITHM 5: Search(x)

Initialize the weighted graph:

Ĝ←

{
~G if x is a left vertex
~GT if x is a right vertex (reverse the orientation)

ŵ(e)←

{
y(e)− wi(e) if e /∈M
0 if e ∈M

Compute distances. For each z ∈ V :
d(z)← distance from x to z in Ĝ with respect to ŵ, or ∞ if z is unreachable from x.

h(z)←


d(z) if z is free and not on the same side as x

d(z) + y(z) if z is on the same side as x

∞ otherwise

zmin ← arg minz∈V {h(z)}
∆← h(zmin)
Perform dual adjustments. For each z ∈ V :

y(z)←

{
y(z)−max{0,∆− d(z)} if z is on the same side as x

y(z) +max{0,∆− d(z)} if z is not on the same side as x

Px ← a shortest path from x to zmin. (Note: ŵ(Px) = 0 after dual adjustments above.)
return Px

Each execution of Search(x) clearly takes linear time, except for the computation of the distance function
d. We use Dijkstra’s algorithm [21], implementing the priority queue as an array of buckets [20]. Since
ŵ(e)/δi is an integer and we are only interested in distances at most ∆ (see the pseudocode of Search),
a (∆/δi)-length array suffices. Lemma 16 implies that ∆ = O(nδi), which gives a total running time of
O(m+ n).

Lemma 16. Augmenting along P then Q does not decrease the weight of the matching, that is, w((M ⊕
P ) ⊕ Q) ≥ w(M). Furthermore, ∆u + ∆v ≤ 3nδi, where ∆x is the sum of dual adjustments performed by
Search(x).

Proof. Call M1 = M ⊕ P and M2 = M1 ⊕ Q the matchings after augmenting along P and then Q and let
w̃ be the weight function w̃(e) = y(e)− wi(e). (Notice that w̃ differs from ŵ on the matched edges.) For a
quantity q denote its value before Search(u) and Search(v) by qold and after both searches by qnew. After
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(a) (b)

(c) (d)

Figure 5: An example illustrating procedures for the chain case. Edges are shown with their new weight ŵ.
The haloed vertices are free vertices with zero y-values. (a) After augmenting along P , u and v become free
while having positive y-values. (b) search(u) adjusts duals by ∆u = 4δi and finds an augmenting path Pu.
(c) search(v) adjusts duals by ∆v = 4δi and finds Pv. (d) Augmentation along Q. This is the case where
there exists an augmenting path Q between u and v in G[0, 3], which happens to be Pv in the example.

the two searches, we must have:

wi(Q \M1) =
∑

e∈Q\M1

ynew(e) tightness on unmatched edges

= ynew(u) + ynew(v) +
∑

e∈M1∩Q
ynew(e) (6)

= ynew(u) + ynew(v) + wi(M1 ∩Q) + w̃new(M1 ∩Q) defn. of w̃new

Line (6) follows since, aside from u and v, V (Q \M1) and V (M1 ∩ Q) differ only on vertices with zero
y-values. (These are the other endpoints of Pu and Pv when Q = Pu ∪ Pv.) Therefore,

wi(M2) = wi(M1) + wi(Q \M1)− wi(M1 ∩Q)

= wi(M1) + ynew(u) + ynew(v) + w̃new(M1 ∩Q) (7)

A similar proof shows that before the two searches, we have

wi(M) = wi(M1) + yold(u) + yold(v)− w̃old(M ∩ P ) (8)

The total amount of dual adjustment in both searches is at most the distance from u to v, so ∆u + ∆v ≤
w̃old(M ∩ P ) ≤ 3nδi. Moreover:

wi(M2) ≥ wi(M1) + ynew(u) + ynew(v) by (7) and w̃new(M1 ∩Q) ≥ 0

= wi(M1) + yold(u) + yold(v)−∆u −∆v

≥ wi(M1) + yold(u) + yold(v)− w̃old(M ∩ P )

= wi(M) by (8)
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Lemma 17. At most O(
√
n) rounds of augmentation and dual adjustment are required to reduce f(M) to

0.

Proof. We apply Lemma 13 with t =
√
b/2, where b = f(M). It follows that in linear time we can either

obtain an anti-chain B′ of size at least d
√
be and reduce f(M) by d

√
b/2e, or obtain a chain B′ such that

f(B′) ≥ d
√
b/2e and reduce f(M) by f(B′). In either case we can reduce f(M) by d

√
b/2e. The number

of rounds is at most T (b), where T (0) = 0 and T (b) = T (b − d
√
b/2e) + 1 for b > 0. A proof by induction

shows that T (b) ≤ 4
√
b, which is at most 4

√
2n since |M | ≤ n and f(e) ≤ 2 for e ∈M .

Phase II concludes at the end of scale L = dlogNe, when M ∩G[2, 3] = ∅. That is, when Phase III begins
y(e) = w(e) or w(e) + δL for each e ∈M . (Note that wL = w since δL < 1.)

4.5 Phase III

Like a single scale of Phase II, Phase III alternately executes augmentation and dual adjustment steps.
Certain complications arise since the goal of Phase III is to eliminate all non-tight M -edges whereas the
goal of Phase II was to eliminate edges in M ∩ G[2, 3]. In order to understand the ramifications of this
slight shift, we should review the interplay between augmentation and dual adjustment in Phase II. Note
that Phase II augmentation steps improved the weight of M , but this was an incidental benefit. The real
purpose of augmentation was to eliminate any augmentations in G[1, 3] (thereby making ~G[1, 3] acyclic),
which then let us reduce f(M) by

√
f(M)/2 with a chain/antichain dual adjustment. The efficiency of

the augmentation step stemmed from the fact that matched and unmatched edges had different eligibility
criteria. Thus, augmenting along a maximal set of augmentations in G[1, 3] destroyed all augmentations in
G[1, 3], that is, tight M -edges could and should be ignored.

In Phase III we cannot afford to exclude tight M -edges from the eligibility graph. This raises two
concerns. First, augmenting along a maximal set of augmenting paths/cycles in G[0, 1] does not destroy all
augmentations in G[0, 1]. (Tight M -edges remain eligible after augmentation and may therefore be contained
in another augmentation.) Second, G[0, 1] may contain cycles of tight edges, that is, augmentations that
do not improve the weight of M , so eliminating all weight-augmenting paths/cycles does not guarantee that
~G[0, 1] is acyclic. These concerns motivate us to redefine augmentation. In Phase III an eligible augmentation
is either an alternating cycle or alternating path whose endpoints have zero y-values, that, in addition, is
contained in G[0, 1] but not G[0, 0]. That is, it cannot consist solely of tight edges.

4.5.1 Phase III Augmentation

In a Phase III Augmentation step we repeatedly augment along eligible augmentations in G[0, 1] until no
such eligible augmentation exists. Lemma 18 lets us upper bound the aggregate time for all Phase III
Augmentation steps.

Lemma 18. An eligible augmentation P in G[0, 1] can be found in O(m) time, if one exists, and w(M⊕P ) >
w(M). Consequently, there can be at most

√
n augmentations in Phase III.

Proof. To find an augmentation we begin by computing the strongly connected components of ~G[0, 1] in
linear time. If the endpoints of an e ∈M ∩G[1, 1] are in the same strongly connected component then that
edge is contained in an augmenting cycle. If there are no augmenting cycles, use the linear time algorithm
described in Lemma 14 to determine whether v is dual adjustable for all v ∈ V . If both endpoints of some
e ∈M ∩G[1, 1] are not dual adjustable, then there must be an augmenting path containing e.

Let P be an augmenting path or cycle. We must have
∑
v∈V (P∩M) y(v) =

∑
v∈V (P\M) y(v), since the sums

differ only on vertices with zero y-values. Thus w(P∩M) <
∑
v∈V (P∩M) y(v) =

∑
v∈V (P\M) y(v) = w(P \M),

where the first inequality follows from the fact that P ∩M contains a non-tight edge and the last equality
from the tightness of unmatched edges. Since all weights are integers, the weight of the matching is increased
by at least one.
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Recall that δL = 2blogN/
√
nc−dlogNe ≤ 1/

√
n. By Lemma 10, we have w(M) ≥ w(M∗)− nδL ≥ w(M∗)−√

n at the end of Phase II, where M∗ is the mwm. As in Phase II, Phase III dual adjustments will not
reduce the weight of M . (See Lemma 16.) Since each augmentation increases the weight of M there can be
at most

√
n augmentations in Phase III.

Lemma 18 implies that the time for ` Phase III Augmentation steps is O(`m + m
√
n): linear time per

step plus linear time per augmentation discovered.

4.5.2 Phase III Dual Adjustment

Since the goal of Phase III is to eliminate edges in M ∩G[1, 1] (as opposed to M ∩G[2, 3]) we must redefine
the badness of an edge accordingly. Let B = M ∩ G[1, 1] be the bad edges and let f : E → {0, 1} measure
badness, where f(e) = (y(e) − w(e))/δL if e ∈ B and zero if e 6∈ B. We define B′ ⊆ B to be a chain or

antichain exactly as in Phase II. The difference is that ~G[0, 1] is not necessarily acyclic so finding a chain or
antichain requires one extra step.

Lemma 19. For any t > 1, there exists a B′ ⊆ B such that B′ is a chain with f(B′) ≥ dte or B′ is an
antichain with |B′| = f(B′) ≥ df(M)/te. Moreover, B′ can be found in linear time.

Proof. Let ~G∗ be the graph obtained from ~G[0, 1] by contracting all strongly connected components in
~G[0, 0]. Since G[0, 1] contains no eligible augmenting cycles after a Phase III Augmentation step, all B-edges

straddle different strongly connected components and therefore remain in ~G∗. By definition ~G∗ is acyclic.
The argument from Lemma 13 shows that ~G∗ contains a chain B′ with f(B′) ≥ dte or an antichain with
|B′| = df(M)/te, and that such a B′ can be found in linear time.13

We can apply the chain and antichain elimination procedures from Phase II without compromising
correctness since Lemmas 14, 15, 16, and 17 remain valid if we substitute G[0, 1] for G[1, 3]. Let t =

√
b/2,

where b = f(M) is the current total badness. Lemmas 14 and 19 imply that we can reduce f(M) by
dte ≥

√
b/2 in the chain case or db/2te ≥

√
b/2 in the antichain case. The number of augmentation and dual

adjustment steps in Phase III is then T (b) where T (b) = T (b − d
√
b/2e) + 1 and T (0) = 0. By induction

T (b) ≤ 2
√

2b, which is at most 2
√

2n since f(M) ≤ n. Thus, the total time spent on dual adjustment in
Phase III is still O(m

√
n).

4.6 Maximum Weight Perfect Matching

Recall from Section 1 that the maximum weight perfect matching problem (mwpm) is reducible to mwm.
One simply adds nN to the weight of every edge; a mwm in the new graph is necessarily a mwpm in the
original. Thus, our mwm algorithm solves the mwpm problem in O(m

√
n log(nN)) time, where the number

of scales is log((n+1)N). However, we can circumvent this roundabout reduction and solve mwpm directly, in
log(
√
nN) scales, that is, a factor 2 improvement for small N � n. We substitute Property 4 for Property 3.

Property 4. Redefine δ0 = 2blogNc, L = dlog(
√
nN)e. In each scale i ∈ [0, L], we maintain a perfect

matching M satisfying the following properties.

1. Granularity: y(u) is a multiple of δi for all u ∈ V .

2. Domination: y(e) ≥ wi(e) for all e ∈ E.

3. Near Tightness: For any e ∈ M , y(e) ≤ wi(e) + 3δi throughout scale i and y(e) ≤ wi(e) + δi at the
end of scale i.

13The bound on |B′| is df(M)/te rather than df(M)/2te since the range of f is {0, 1} rather than {0, 1, 2}.
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In Phase I we find any perfect matching M in O(m
√
n) time [65, 23, 74] and initialize y-values to satisfy

Property 4.

y(u)←

{
δ0 if u is a left vertex

0 if u is a right vertex

Since y(e) ≤ wi(e) + δ0 for e ∈M , Property 4 lets us end scale 0.
As before, Phase II operates at scales i ∈ [1, L] and Phase III operates at scale L with the following

simplifications:

1. To begin scale i we simply increment y(u) by δi for each left vertex u. There is no need for an initial
augmentation/dual adjustment (as in Section 4.2) since there are no free vertices.

2. As there are no free vertices, an augmentation is always an augmenting cycle. In the Phase II and
Phase III augmentation steps we use only Cycle-Search, not Path-Search.

3. We do not prohibit negative y-values. Thus, in the antichain case of dual adjustment, both endpoints
of a B′-edge are dual-adjustable and we can reduce f(M) by |B′| rather than just |B′|/2.

4. In the chain case of dual adjustment, setting M ← M ⊕ P temporarily frees P ’s endpoints, say u
and v. We execute Search(u) but force zmin = v, that is Search returns a u-to-v path Pu. Setting
M ←M ⊕Pu restores the perfection of M . There is no need for Search(u) to calculate h-values. These
were introduced to maintain Property 3(1), namely that y-values are non-negative.

5. We change the parameter that determines whether we apply a chain or antichain dual adjustment.
Choose t =

√
b/2, where b = f(M). Either we can obtain an anti-chain B′ of size at least d

√
b/2e

and decrease f(M) by d
√
b/2e, or we can obtain a chain B′ such that f(B′) ≥ d

√
b/2e and decrease

f(B) by f(B′). Thus, the number of rounds is at most T (b) = T (b− d
√
b/2e) + 1 ≤ 2

√
2b. In a Phase

II scale b ≤ 2n, so 4
√
n augmentation/dual adjustment steps are needed. In Phase III b ≤ n so 2

√
2n

steps are needed.

6. Note that since δL = 2blogNc−dlog(
√
nN)e ≤ 1/

√
n, at the end of Phase II we have w(M) ≥ w(M∗) −

nδL ≥ w(M∗)−
√
n, by Lemma 10. Thus, the matching can be augmented at most

√
n times in Phase

III and the total time spent in augmentation steps is O(m
√
n).

The main difference between our mwm and mwpm algorithms is in Phase I. In the mwm algorithm we
can afford to use a smaller value for δ0 since Phase I ends when free vertices have zero y-values, whereas
Phase I of the mwpm algorithm ends only when we have a perfect matching.
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