
Algorithmic Applications of Baur-Strassen’s Theorem:
Shortest Cycles, Diameter and Matchings

Marek Cygan∗, Harold N. Gabow†, Piotr Sankowski‡§
∗IDSIA, University of Lugano, Switzerland. Email: marek@idsia.ch

†Department of Computer Science, University of Colorado at Boulder, USA. Email: hal@cs.colorado.edu
‡University of Warsaw and Department of Computer and System Science, Poland. Email: sank@mimuw.edu.pl

§Sapienza University of Rome, Italy.

Abstract—Consider a directed or undirected graph with
integral edge weights in [−W,W]. This paper introduces a
general framework for solving problems on such graphs using
matrix multiplication. The framework is based on the Baur-
Strassen Theorem and Strojohann’s determinant algorithm.

For directed and undirected graphs without negative cycles
we obtain simple Õ(Wnω) running time algorithms for finding
a shortest cycle, computing the diameter or radius, and
detecting a negative weight cycle. For each of these problems
we unify and extend the class of graphs for which Õ(Wnω)
time algorithms are known. In particular no such algorithms
were known for any of these problems in undirected graphs
with (potentially) negative weights.

We also present an Õ(Wnω) time algorithm for minimum
weight perfect matching. This resolves an open problem posed
by Sankowski in 2006, who presented such an algorithm for
bipartite graphs. Our algorithm uses a novel combinatorial
interpretation of the linear program dual for minimum perfect
matching.

We believe this framework will find applications for finding
larger spectra of related problems. As an example we give a
simple Õ(Wnω) time algorithm to find all the vertices that lie
on cycles of length at most t, for given t. This improves an
Õ(Wnωt) time algorithm of Yuster.

Keywords-shortest cycles; diameter; radius; minimum weight
perfect matchings; matrix multiplication

I. INTRODUCTION

The application of matrix multiplication to graph prob-

lems has been actively studied in recent years. Unweighted

graphs are well understood. For example, Õ(nω) time algo-

rithms for finding shortest cycles [2] have been known for 35

years1. But similar results for weighted graphs were obtained

only last year, by Roditty and Vassilevska-Williams [3].

Their algorithm works in Õ(Wnω) time, where W is the

largest magnitude of an edge weight. Two similar problems

on weighted graphs where there has been considerable effort,

but the full answer has not been achieved, are diameter and

perfect weighted matching. This paper introduces a general

The full version of this work can be found at [1]. The first author is
partially supported by the ERC grant NEWNET, reference 279352 and
Foundation for Polish Science. The third author is partially supported by
the ERC Starting Grant PAAl 259515.

1The Õ notation ignores factors of logn and logW . Õ(nω) is the time
needed for a straight-line program to multiply two n× n matrices.

framework that gives simple2 solutions to all three of these

problems and others. We obtain the following results. All

graphs are allowed to contain negative weights, with negative

cycles disallowed in all problems except matching.
Shortest Cycles: We give simple Õ(Wnω) time al-

gorithms for finding shortest cycles in undirected and di-

rected graphs. For directed graphs the algorithm reduces

the problem to computing one determinant of a polynomial

matrix. The undirected case requires handling 2-edge cycles

properly. Here we extend the algorithm of Sankowski [4] that

tests for a negative weight cycle. For directed graphs (and

undirected graphs with non-negative weights) our bounds

match those obtained in 2011 by Roditty and Vassilevska-

Williams [3], whereas for undirected graphs with negative

weights no Õ(Wnω) time algorithm was previously known.

For those graphs the problem is known to reduce to finding

n minimum weight perfect matchings [5]. Our shortest path

algorithms also detect existence of a negative weight cycle.
Diameter and Radius: We present simple Õ(Wnω)

time algorithms for computing the diameter and radius of

undirected and directed graphs. The algorithms combine de-

terminant computations with binary search. Since computing

all-pairs shortest paths suffices to find diameter and radius,

an Õ(Wnω) time algorithm follows from [6] for undirected

graphs with non-negative weights. Using random sampling

with [6], one can obtain the same running time for directed

graphs without negative cycles. However, to the best of our

knowledge, all previous solutions for undirected graphs with

negative weights reduced the problem to finding n minimum

weight perfect matchings.
Minimum Weight Perfect Matching: We present an

Õ(Wnω) time algorithm for finding a minimum weight

perfect matching. This resolves an open problem posed by

Sankowski in 2006 [7], who gave such an algorithm for

bipartite graphs. Huang and Kavitha [8] recently gave an

Õ(Wnω) time algorithm for maximum weight matching.

But minimum weight perfect matching (even in bipartite

graphs) requires more structured techniques. Our algorithm

2An objective sense in which our algorithms are simple is their use
of algebra: The power of our algebraic algorithms comes from black-box
routines, and the algorithms themselves use only elementary algebraic ideas.

2012 IEEE 53rd Annual Symposium on Foundations of Computer Science

0272-5428/12 $26.00 © 2012 IEEE

DOI 10.1109/FOCS.2012.72

531

uses a novel combinatorial interpretation of the linear pro-

gram dual problem, which may be of independent interest.

A. The Framework

Our framework is based on two seminal results. We use

Storjohann’s algorithm [9] that computes the determinant of

a degree d polynomial matrix in Õ(dnω) time. All the above

graph problems can be encoded as a determinant problem

on a polynomial matrix. But the determinant itself does not

provide enough information. Here we use the Baur-Strassen

Theorem [10], which shows how to compute all partial

derivatives of a function in the same asymptotic time as

the function itself. ([11] gives a simple constructive proof.)

This allows us to magnify the output of the algorithm from

1 number to n2 numbers. The algorithms obtained in this

way are very simple and work in three phases: compute the

determinant of an appropriately defined matrix; apply Baur-

Strassen to the result; decode the output. Even for minimum

weight matching our algorithm is simple, and computes the

dual solution in just a few lines of pseudocode.

We believe this framework will find applications to other

problems. Here we give one more illustration: an Õ(Wnω)
time algorithm finding every vertex that lies on a cycle

of weight ≤ t, for a given arbitrary t (for a directed

or undirected graph with negative edges allowed but no

negative cycles). This improves the time bound of [12]

(which does not allow negative edges).

The paper is organized as follows. Sections II–III give

the needed tools and main definitions. Section IV gives a

simple example of our framework: a shortest cycle algorithm

for undirected graphs with non-negative weights. Section V

gives the minimum weight perfect matching algorithm. Sec-

tion VI summarizes ideas used in the full version to find

shortest cycles, radius and diameter, detect negative cycles

and find the vertices on cycles of length ≤ t. Due to space

limitations, proofs of theorems marked with a spade symbol

(♠) are postponed to the full version of this paper.

II. PRELIMINARIES

Linear Algebra Algorithms: Storjohann [9] has made

an important addition to the set of problems solvable in

O(nω) arithmetic operations: the determinant and the ra-

tional system solution for polynomial matrices.

Theorem II.1 (Storjohann ’03). Let K be an arbitrary field,
A ∈ K[y]n×n a polynomial matrix of degree d, and b ∈
K[y]n×1 a polynomial vector of the same degree. Then
• rational system solution A−1b (Algorithm 5 [9]),
• determinant det(A) (Algorithm 12 [9]),

can be computed in Õ(dnω) operations in K, with high
probability.

For our applications note that these algorithms can be

written as straight-line programs. The randomization does

not pose a problem as it is just used at the start to generate

a polynomial of degree d not dividing det(A). Our applica-

tions will work over a finite field (Corollary II.3) so there is

no risk of manipulating huge integers. Usage of the FFT to

multiply degree nd polynomials does not pose a problem.

Baur-Strassen Theorem: Another astonishing result is

the Baur-Strassen Theorem from 1983 [10], [11]. It was

used to show that matrix multiplication is no harder than

determinant computation (for straight-line programs). This is

unexpected since matrix multiplication returns n2 numbers

and determinant computation just one. However one can

increase the number of outputs by modifying the algorithm

appropriately. Let T (f1, . . . , fk) denote the time needed to

compute functions f1, . . . , fk, all at the same given point.

Theorem II.2 (Baur-Strassen ’83). For straight-line pro-
grams computing f(x1, . . . , xn),

T (f,
∂f

∂x1
, . . . ,

∂f

∂xn
) ≤ 5T (f).

Thus we can find all partial derivatives of f in the same

asymptotic time as f . [11] shows a RAM routine to compute

all n partials can be constructed in time O(T (f)) as well.

Schwartz-Zippel Lemma: We encode a graph problem

in a symbolic matrix whose determinant is (symbolically)

non-zero iff the problem has a solution. The Schwartz-Zippel

Lemma [13], [14] provides the non-zero test:

Corollary II.3. For any prime p, if a (non-zero) multivariate
polynomial of degree d over Zp is evaluated at a random
point, the probability of false zero is ≤ d/p.

We will choose primes p of size Θ(nc) for some constant

c. In a RAM machine with word size Θ(log n), arithmetic

modulo p can be realized in constant time.

We note that multivariate determinants have been used in

previous work such as Kirchhoff’s Matrix-Tree Theorem,

results of Tutte and Edmonds on perfect matchings, and

recently undirected Hamiltonicity detection [15].

III. DEFINITIONS: GRAPHS WITH INTEGRAL WEIGHTS

A weighted n-vertex graph is a tuple G = (V,E,w,W),
where the vertex set is V = {1, . . . , n}, E ⊆ V × V is

the edge set, and w : E → [−W,W] ascribes a weight to

each edge. We consider both undirected and directed graphs

(so E can consist of unordered pairs or ordered pairs). The

weight of edge set F ⊆ E is w(F) =
∑

e∈F w(e).
Consider a walk p = v1, v2, . . . , vk. p is a path if all the

vertices vi are distinct. A closed walk, i.e. vk = v1, with the

first k − 1 vertices distinct is a cycle, with the exception of

walks v1, v2, v1 in undirected graphs, which are not cycles.

The weight w(p) of p is the weight of the edge set of p.

The distance distG(v, w) from v to w in G is the minimum

weight of a path from v to w. A path from v to w with

minimum weight is a shortest path.

The shortest cycle problem calls for the shortest (i.e.,

minimum weight) cycle in a given weighted graph (which

532

contains no negative cycles). The standard approach of

reducing an undirected graph G to a directed graph B by

bidirecting the edges does not work: B contains length 2

cycles coming from the same undirected edge. Such cycles

can be spurious shortest cycles, or even negative cycles.

The diameter problem asks for vertices v, w ∈ V maxi-

mizing distG(v, w). Here the reduction of undirected graphs

to directed works when the edge weights are non-negative.

A matching in an undirected graph is a set of edges

having at most one edge incident to each vertex. A perfect
matching has exactly one edge incident to each vertex. A

minimum weight perfect matching is a perfect matching M
in a weighted graph minimizing w(M). Many other notions

of ”optimum weighted matching” reduce to minimum weight

perfect matching: A maximum weight perfect matching is

a minimum weight perfect matching for weights w′(e) :=
−w(e). A minimum weight cardinality k matching (i.e.,

exactly k edges are to be matched) is a minimum weight

perfect matching on the graph with n−2k artificial vertices,

each joined to every original vertex by a zero-weight edge. A

maximum weight matching (i.e., we want to maximize the

total weight of the matched edges) is a maximum weight

perfect matching on the graph that has one artificial vertex

if n is odd, plus new zero-weight edges that make the graph

complete. There is a reduction going in the other direction:

we set edge weights to w′(e) := nW + w(e). However for

time bounds linear in W this reduction is not of interest.

IV. SHORTEST CYCLES IN UNDIRECTED GRAPHS

This section illustrates our framework by showing how to

find a shortest cycle in an undirected graph with no negative

edges in Õ(Wnω) time. This bound was first proved in [3]

using different techniques.

A symbolic polynomial p̃[y] is a multivariate polynomial

over a set of variables y ∪ X , over an arbitrary field K.

K̃[y] = K[y ∪X] denotes the set of symbolic polynomials,

and K̃ denotes the set of multivariate polynomials K[X].
For a symbolic polynomial p̃ define:

• deg∗y(p̃) – the smallest degree of y in p̃,

• termd
y(p̃) – the coefficient of yd in p̃,

• term∗y(p̃) – termd
y(p̃) for d = deg∗y(p̃).

If p̃ is the 0 polynomial, deg∗y(p̃) := ∞. Call σ : X → K
an evaluation function. Define p̃[y]|σ to be a one variable

polynomial in y with all variables x ∈ X substituted by

σ(x). Our algorithms will use K := Zp, i.e., we work over

a finite field of order p for some prime number p.

A symbolic polynomial matrix Ã[y] ∈ K̃[y]n×n is an

n× n matrix whose entries are symbolic polynomials from

K̃[y]. We shall use a straight-line program that evaluates

det(Ã[y]) (Ã[y] ∈ K̃[y]n×n) using Storjohann’s algorithm.

Here the goal is to evaluate the determinant to a polynomial

in one variable y. This program is easily constructed: Start

with the original straight-line program that evaluates det(A)
(A ∈ K[y]n×n) using Storjohann’s algorithm. Prepend

assignment statements of the form aijk ← ãijk, where aijk
is the variable in the original program for the coefficient

of yk in the entry Aij , and the corresponding coefficient

in Ã[y] is ãijk ∈ K̃. In our applications each of these new

assignment statements uses O(1) time, so the extra time can

be ignored.

Consider a weighted undirected graph G = (V,E,w,W).

Let
−→
G be the bidirected version of G (i.e., each edge of G is

oriented in both directions in
−→
G). The (bidirected) symbolic

adjacency matrix Ã(G) of G is defined by

Ã(G)i,j =

{
xi,jy

w(ij) if (i, j) ∈ E(
−→
G),

0 otherwise,

where xi,j are unique variables corresponding to the edges

of
−→
G (so xi,j and xj,i are different variables). Hence, X is

the set of all variables xi,j .

A nonempty set of vertex disjoint cycles in
−→
G is a cycle

packing. It corresponds to a set of cycles in G and edges of

G (which have become directed cycles of length 2). Let C
be a minimum weight cycle packing. If no edge has weight

0, C is either an orientation of a shortest cycle of G, or a

directed cycle of length 2. If there are edges of weight 0, C
is a set of directed cycles of weight 0, possibly including a

shortest cycle of G. The following lemma checks if there is

a cycle packing of weight d that is not composed solely of

cycles of length 2.

Lemma IV.1. Let G be an undirected weighted graph with
no negative edges, and d ∈ [0, nW]. Some uv ∈ E has[
xu,v

∂
∂xu,v

− xv,u
∂

∂xv,u

]
termd

y

[
det(Ã(G) + I)− 1

]

= 0

iff some cycle packing of weight d contains a component
that is an oriented cycle through uv in G. Moreover, for
p ≥ 2, all non-zero terms in the above expression are non-
zero over the finite field Zp.

Proof: By definition

det
(
Ã(G) + I

)
=

∑
p∈Γn

σ(p)

n∏
k=1

(
Ã(G) + I

)
k,pk

,

where Γn is the set of n-element permutations, and σ(p) is

the sign of the permutation p. p defines a set of directed

edges Cp = {(i, pi) : 1 ≤ i ≤ n}. The cycles of Cp are the

cycles of p. Cp includes self-loops for all i such that i = pi.
p corresponds to a non-zero term in the determinant iff Cp
contains only oriented edges from E or self-loops. Hence,

after throwing away self-loops p can be identified with a

cycle packing in G, or ∅. The term corresponding to a set

of self-loops is equal to 1. Hence, det(Ã(G)+I)−1 contains

only terms that correspond to cycle packings. Moreover the

degree of y in the term for p is the total weight of the cycles

in Cp, where self-loops have weight zero.

Next we show that a cycle packing C in G contributes to

the expression of the lemma iff it contains exactly one of the

variables xu,v and xv,u, and hence contains a simple cycle

533

Algorithm 1 Checks whether the shortest cycle in undirected

graph G has weight ≤ c.

1: Let ∂xf be the routine given by the Baur-Strassen

theorem to compute the matrix of partial derivatives
∂

∂xu,v
termc

y

[
(
∑nW

i=0 y
i)
(
det(Ã(G) + I)− 1

)]
.

2: Generate a random substitution σ : X → Zp for a prime

p of order Θ(n4).
3: Compute the matrix δ = ∂xf |σ .

4: Compute the matrix δ′ with δ′u,v =
[xu,vδu,v − xv,uδv,u]

∣∣
σ

.

5: Return true if δ′ has a non-zero entry.

passing through uv. Moreover we show that in such a case

the contribution of C is a product of variables corresponding

to C and hence the contribution of C is not cancelled out by

a different cycle packing. If C does not contain xu,v or xv,u,

clearly it has zero contribution. This leaves two possibilities:

Case 1. C contains a cycle u, v, u: Since[
xu,v

∂
∂xu,v

− xv,u
∂

∂xv,u

]
xu,vxv,u = xu,vxv,u− xv,uxu,v =

0, C’s term makes no contribution.

Case 2. C contains a simple cycle C containing uv:
The corresponding term contains exactly one of xu,v and

xv,u say xu,v . We have
[
xu,v

∂
∂xu,v

− xv,u
∂

∂xv,u

]
xu,v =

xu,v . Hence, the derivative for this term is nonzero and is

equal to the sign of permutation multiplied by the product

of the variables of the oriented edges of C.

Call an edge allowed iff it belongs to some shortest

cycle. The above proof characterizes these edges:

For any d ∈ [0, nW] define the set {uv ∈ E :[
xu,v

∂
∂xu,v

− xv,u
∂

∂xv,u

]
termd

y

[
det(Ã(G) + I)− 1

]

=

0}. Taking d as the smallest value where this set is

nonempty gives the set of allowed edges.

We cannot find this smallest d efficiently. But we can effi-

ciently test if it is ≤ c for any c we choose. The idea is to use

polynomial multiplication to combine all the terms of degree

≤ c: Take any c ∈ [0, nW]. There exists d ≤ c such that[
xu,v

∂
∂xu,v

− xv,u
∂

∂xv,u

]
termd

y

[
det(Ã(G) + I)− 1

]

= 0

iff
[
xu,v

∂
∂xu,v

− xv,u
∂

∂xv,u

]
termc

y

[
(det(Ã(G) + I)− 1)·

(
∑nW

i=0 y
i)
]

= 0. (It is easy to see that multiplying by∑nW

i=0 y
i causes no cancellation.) This leads to Algorithm 1.

Using binary search with this algorithm we obtain:

Theorem IV.2. Let G = (V,E,w,W) be a weighted
undirected graph without negative weight edges. The weight
of the shortest simple cycle in G can be computed in
Õ(Wnω) time, with high probability.

It is a simple matter to find a shortest cycle, given its

weight c∗ found as above: Let δ′ be the matrix computed

by Algorithm 1 for c = c∗. Take any edge uv such that

δ′uv
= 0. Use Dijkstra’s algorithm to find a shortest path

pv,u from v to u in G \ {uv}. The cycle formed by uv and

pv,u is shortest.

V. MINIMUM WEIGHT PERFECT MATCHING

This section presents an algorithm that, given an undi-

rected graph with integral edge weights in [0,W], finds

a minimum weight perfect matching in Õ(Wnω) time,

assuming such matchings exist.

The algorithm works in three phases:

1) The first phase uses algebra to reduce the problem

to connected graphs, where each edge belongs to

some minimum weight perfect matching (Algorithm

2). Moreover for each vertex v, we are given the

value w(M(v)) – the minimum weight of a matching

with exactly 2 unmatched vertices, one of which is

v (Algorithm 3). This phase uses Õ(Wnω) time and

succeeds with high probability.

2) The second phase defines a new weight w′(uv) :=
w(uv) + w(M(u)) + w(M(v)) for each edge uv. It

performs a simple graph search algorithm on these

new edges to obtain a laminar family of blossoms,

which is the support of some optimum dual solution

(Algorithm 4). Each blossom induces a factor critical

graph. This phase is deterministic and uses Õ(n2)
time.

3) The last phase uses a maximum cardinality match-

ing algorithm (for unweighted graphs), guided by

the structure of the blossoms, to obtain a minimum

weight perfect matching (Lemma V.11). This phase

uses Õ(nω) time and succeeds with high probability.

To elaborate on the second phase (which in our opinion

is the most interesting), let A be the set of distinct values

of the weight function w′. Section V-B proves |A| = O(n).
For α ∈ A we define a ’threshold graph’ Gα = (V,E′),
which is an unweighted undirected graph with E′ = {uv ∈
E : w′(uv) ≤ α}. The nontrivial connected components of

all the graphs Gα constitute the blossoms of an optimum

dual solution! (A connected component is nontrivial if it

has more than 1 and less than n vertices.) Our proof of this

result hinges on showing there exists a special dual solution

(called balanced critical dual solution) in which it is easy to

find the blossoms (Lemma V.19).

Figure 1 depicts a sample graph and illustrates the steps

for obtaining the laminar family of blossoms.

In the rest of this section we show how to obtain the set of

allowed edges, i.e., edges belonging to at least one minimum

weight perfect matching and values w(M(u)) (Section V-A).

Next, in Section V-B we present the standard LP formulation

of the problem. We recall and extend properties of a dual

solution, in order to prove the correctness of our simple

method of obtaining blossoms of an optimum dual solution.

Finally, in Section V-C, we gather all the theorems and

formally prove correctness and bound the running time of

our algorithm.

534

x

a0

a1 a2

1

y

b0 b1

b2

1

z

c0

c1

c2

1

2 2

11 9

x

a0

a1 a2

y

b0 b1

b2

z

c0

c1

c2

a0 a1 a2 b0 b1 b2 c0 c1 c2

x y z

Figure 1. The matching algorithm: The far left shows an example graph. Edges without a label weigh 0. The minimum weight of a perfect matching is
3. w(M(v)) is 2 for v ∈ {b2, c1, x, y, z} and 1 otherwise. The middle figure shows the allowed edges (edge c1z was removed) and new edge weights
w′(uv) = w(uv) + w(M(u)) + w(M(v)); edges with w′(e) = 2 are drawn zigzag, w′(e) = 3 are dashed, and w′(e) = 4 are straight. The far right
shows the laminar family induced by the blossoms found using the threshold graphs of Algorithm 4.

We would like to note, that the simplicity of our algo-

rithm for contracting the set of blossoms from the values

w(M(u)) is due to the fact that the hardness is hidden in the

proof of the purely combinatorial existential lemmas from

Section V-B and in the algorithm for finding unweighted

maximum matching problem.

A. Algebraic Tools

Let us define a symbolic adjacency matrix of the weighted

undirected graph G = (V,E,w,W) to be the n× n matrix

Ã(G) such that

Ã(G)i,j =

⎧⎨
⎩

xi,jy
w(ij) if ij ∈ E and i < j,

−xj,iy
w(ij) if ij ∈ E and i > j,

0 otherwise,

where xi,j are unique variables corresponding to the edges

ij ∈ E of G. Karp, Upfal and Wigderson [16] proved that

the smallest degree of y in det(Ã(G)) is twice the weight of

a minimum weight perfect matching in G. By using this line

of reasoning together with results of Storjohann and Baur-

Strassen, we show how to obtain the set of edges which

appear in at least one minimum weight perfect matching.

Lemma V.1 (♠). An edge ij ∈ E belongs to some minimum
weight perfect matching iff

∂

∂xi,j
term∗y

[
det(Ã(G))

]

= 0 .

Corollary V.2. For a weighted undirected graph G =
(V,E,w,W) one can compute the set of edges which
belong to at least one minimum weight perfect matching
in Õ(Wnω) running time, with high probability.

Definition V.3 (M(uv), M(u)). For a pair of vertices u, v ∈
V let M(uv) be a minimum weight perfect matching in

G\{u, v}, i.e., G with vertices u and v removed. Similarly,

Algorithm 2 Computes the set of allowed edges in the graph

G.
1: Generate a random substitution σ : X → Zp for a prime

p of order Θ(n2).

2: Compute d = deg∗y
[
det(Ã(G)|σ)

]
using Storjohann’s

theorem.

3: Let ∂xf be the routine given by the Baur-Strassen’s

theorem to compute the matrix of partial derivatives
∂

∂xi,j
termd

y

[
det(Ã(G))

]
.

4: Generate a random substitution σ : X → Zp for a prime

p of order Θ(n4).
5: Compute the matrix δ = ∂xf |σ .

6: Mark each edge ij, where i < j, as allowed if δi,j
= 0.

for a vertex u let M(u) be a minimum weight almost-perfect

matching in the graph G \ {u}.
Note that M(u) always exists, since we assume the given

graph G has a perfect matching. In contrast M(uv) needn’t

exist. In that case M(uv) is ∞.

Lemma V.4 (♠). Let G = (V,E,w,W) be a weighted
undirected graph. Then deg∗y(adj(Ã(G))i,j) = w(M) +
w(M(ij)).

If M or M(ij) does not exist, the expression of the lemma

equals ∞. The lemma and the following extension also hold

in any field Zp.

Corollary V.5. The vector of values w(M) + w(M(i)),
i ∈ V equals deg∗y

(
adj(Ã(G))b

)
for b a vector of n

indeterminates b = (b1, b2, . . . , bn).

Proof: Lemma V.4 shows w(M) + w(M(i)) =

minj deg
∗
y

(
adj(Ã(G))i,j

)
. (Note that entries adj(Ã(G))i,j

535

corresponding to the 0 polynomial cause no prob-

lem.) The ith component of the vector adj(Ã(G))b is∑
j adj(Ã(G))i,jbj , and because of the indeterminates

bj no terms cancel when the sum is formed. Thus

deg∗y
(
adj(Ã(G))b

)
= w(M) + w(M(i)).

This leads to the following algorithm to compute

w(M(u)) for all u ∈ V (G). Let B = {b1, . . . , bn}.

Algorithm 3 Computes the values w(M(i)) for all vertices

i in the graph G.

1: Generate a random substitution σ : X ∪ B → Zp for a

prime p of order Θ(n3).
2: Compute w(M) = deg∗y(det(Ã(G)|σ))/2 and v =

det(Ã(G)|σ)(Ã−1(G)b)|σ using Storjohann’s theorem,

where b = (b1, . . . , bn).
3: For each i ∈ V set w(M(i)) = deg∗y(vi)− w(M).

To see this algorithm is correct Statement 2 computes

v =
(
adj(Ã(G))b

)|σ . So Corollary V.5 shows the algorithm

is correct if there are no false zeroes. A rational expression

(like those in (Ã−1(G)b)|σ) is zero if and only if its

numerator is zero and its denominator is nonzero. So we can

apply the Schwartz-Zippel Lemma to show the final products

have no false zeroes (in their lowest order term). So each

deg∗y(vi) is computed correctly with high probability.

Regarding efficiency consider the n multiplications of

degree nW polynomials done to form v in Statement 2.

We only use the lowest degree term of each product (State-

ment 3). That term comes from the lowest degree term in

det(Ã(G)|σ and the lowest degree term in the numerator

and the denominator of (Ã−1(G)b)|σ . So we can find the

smallest degree of y that corresponds to deg∗y(vi) using O(1)
additions and subtractions, without multiplying polynomials.

We conclude:

Corollary V.6. Algorithm 3 computes the values w(M(u)),
for all u ∈ V (G), in Õ(Wnω) time, with high probability.

B. Properties of the Dual

We move on to the linear programming formulation of

the minimum weight perfect matching problem given by

Edmonds [17]. An odd set has odd cardinality; Ω denotes

the collection of odd subsets of V of cardinality ≥ 3.

min
∑
e∈E

w(e)xe

x(δ(v)) = 1, for all v ∈ V

x(δ(U)) ≥ 1, for all U ∈ Ω (1)

xe ≥ 0, for e ∈ E

The variables xe indicate when an edge is included in

the solution. Here, δ(U) denotes all edges uv ∈ E having

|{u, v} ∩ U | = 1. We write δ(u) for δ({u}) and x(F) for∑
e∈F xe.

The dual problem has variables πv for each vertex v and

πU for each odd set U :

max
∑
v∈V

πv +
∑
U∈Ω

πU

πu + πv +
∑
U∈Ω

uv∈δ(U)

πU ≤ w(uv) for all uv ∈ E (2)

πU ≥ 0 for all U ∈ Ω
We say that an edge e = uv is tight with respect to a

dual π if equality holds in (2). A laminar family is a set

system where each pair of sets is either disjoint or one set

contains the other. Moreover, a graph is factor critical if after

removing each vertex the graph has a perfect matching. We

use existence of the following dual:

Lemma V.7 (Edmonds ’65 [17]). There exists an optimal
dual solution π : V ∪ Ω→ R, such that:

1) the set system {U ∈ Ω : πU > 0} forms a laminar
family,

2) for each U ∈ Ω with πU > 0, the graph G[U] with
each set of {S ∈ Ω : S ⊂ U, πS > 0} contracted is
factor critical.

Definition V.8 (critical dual, blossom). An optimum dual

solution satisfying the conditions from Lemma V.7 is a

critical dual solution. A set U ∈ Ω such that πU > 0 is

a blossom w.r.t. π.

Blossoms of critical dual solutions have the following

useful property (note the lemma below is weight-oblivious

and the only input given to the algorithm is an undirected

unweighted graph, the family of blossoms, and v).

Lemma V.9. Consider any critical dual solution and let
U ∈ Ω be an arbitrary blossom. For any vertex v ∈ U
there exists a perfect matching M(U, v) in G[U \{v}], such
that for each blossom U0 ⊆ U , |M(U, v) ∩ δ(U0)| is 0 if
v ∈ U0 and 1 if v
∈ U0. Furthermore, given the family of all
blossoms and v, one can find such a matching in Õ(|U |ω)
running time, with high probability.

Proof: Let B be the set of blossoms of π properly

contained in U (B might be empty); moreover let Bmax be

the set of inclusionwise maximal sets in B. Let G′ be the

graph G[U]/Bmax and let v′ be a vertex of G′ corresponding

to v. (Here we use the contraction operator – if S is a family

of disjoint vertex sets, G/S denotes the graph G with each

set of S contracted to a single vertex.)

Initially let M(U, v) ⊆ E be a perfect matching in G′\v′.
It exists since G′ is factor critical. For each blossom U0 ∈
Bmax, recursively find a perfect matching M0 in the graph

G[U0 \x], where x is the single vertex of the intersection of

U0 and V (M(U, v))∪{v}. Add the edges of M0 to M(U, v).
By construction the final matching M(U, v) satisfies

conditions from the lemma. For the time bound note that

536

the laminarity of B implies the total number of vertices

in all graphs constructed by the above procedure is O(n).
The algorithms of [18]–[20] find a perfect matching on

an arbitrary graph of n vertices in time Õ(nω), with high

probability. Hence our recursive procedure runs in total time

Õ(|U |ω).
Complementary slackness gives the following observa-

tion, which together with Lemma V.9 suffice to prove

Lemma V.11.

Observation V.10. For any optimum dual solution:
(a) a set U ∈ Ω with πU > 0 has exactly one edge of

δ(U) in any minimum weight perfect matching;
(b) an edge belonging to any minimum weight perfect

matching is tight.

Lemma V.11 (♠). Given a weighted undirected graph G =
(V,E,w,W) where each edge is allowed, and the set of
blossoms B of some critical dual solution, one can find a
minimum weight perfect matching in Õ(nω) time, with high
probability.

A critical dual solution gives rise to a weighted tree in a

natural way:

Definition V.12 (dual tree). Let π : Ω ∪ V → R be a

critical dual solution, with B the set of its blossoms. The

dual tree T (π) is a rooted tree on nodes {V } ∪ B ∪ V ,

where V is the root, vertices of V are leaves, blossoms of

B are internal nodes and the parent-child relation in T (π)
is naturally defined inclusionwise. The weight of the edge

from a node t ∈ B∪V to its parent is πt. The height of the

tree H(T (π)) is the weight of a longest path from the root

to some leaf.

In this definition note that the last edge of a path defining

H(T (π)) may have negative length. For a tree T with

weighted edges and two nodes u, v, distT (u, v) denotes the

weight of the path between u and v. The following simple

lemma provides a basic tool.

Lemma V.13. If π is a critical dual solution for a weighted
graph G = (V,E,w,W), any allowed edge uv satisfies
w(uv) = distT (π)(u, v).

Proof: Since uv is tight (Observation V.10(b)),

w(uv) = πu + πv +
∑

U∈Ω, uv∈δ(U) πU . The right-hand

side gives distT (π)(u, v) for two reasons: The edges of T (π)
incident to leaves are weighted with the singleton values of

π. A blossom B of π contains exactly one endpoint of the

edge uv if and only if the path between u and v in T (π)
contains the edge between B and its parent.

The next steps of our development (Lemmas V.16–V.18)

can be derived using an appropriate version of Edmonds’

weighted matching algorithm (e.g., [21]). Here we will use

a structural approach, based on the following properties of

allowed edges given by Lovász and Plummer.

Lemma V.14 ([22], Lemma 5.2.1 and Theorem 5.2.2). Let
G = (V,E) be an undirected connected graph where each
edge belongs to some perfect matching. Define a binary
relation R ⊆ V × V by (u, v) ∈ R if and only if G \ {u, v}
has no perfect matching. Then

• R is an equivalence relation;
• each equivalence class of R is an independent set;
• for each equivalence class S of R, the graph G \ S

has exactly |S| connected components, each of which
is factor critical.

We will use a special type of critical dual solution that

we call ”balanced”.

Definition V.15 (balanced critical dual). Let π : Ω∪V →
R be a critical dual solution, and let G′ be the graph G with

each blossom of π contracted. π is a balanced critical dual
solution if there are two distinct vertices u, v ∈ V such that

distT (π)(u, V) = distT (π)(v, V) = H(T (π)) and further,

G′ \ {u′, v′} has a perfect matching for u′, v′ the (distinct)

vertices of G′ corresponding to u, v, respectively.

Before proving that balanced critical dual solutions exist,

we give a lemma showing why they are useful. In particular

they show how the M(v) values relate to T (π). Let M(G)
be a minimum weight perfect matching in G.

Lemma V.16. Let G = (V,E,w,W) be an undirected
connected graph with every edge in some minimum weight
perfect matching. Let π be a balanced critical dual solution
for G. For any vertex z ∈ V , a minimum weight almost
perfect matching in G \ z weighs w(M(G)) −H(T (π)) −
distT (π)(z, V).

Proof: Any almost perfect matching in G \ z weighs

at least w(M(G)) − H(T (π)) − distT (π)(z, V). In proof

let M1 be an arbitrary perfect matching in G \ {x, z}
for any x ∈ V . For any blossom U of π such that

x, z
∈ U , |M1 ∩ δ(U)| ≥ 1. Together with (2) this gives

w(M1) ≥
∑

w∈V−x,z πw +
∑

x,z /∈U πU . The right-hand

side equals w(M(G)) − πx − πz −
∑
{x,z}∩U �=∅ πU , by

strong duality. Since every πU is nonnegative this quantity

is at least w(M(G))−distT (π)(z, V)−distT (π)(x, V). The

definition of H(T (π)) shows the last quantity is at least

w(M(G))− distT (π)(z, V)−H(T (π)) as desired.

We complete the proof by constructing an almost perfect

matching in G \ z of weight w(M(G)) − H(T (π)) −
distT (π)(z, V). Take G′, u, v, u′, v′ as in Definition V.15.

Moreover let z′ be the vertex of G′ corresponding to z.

G′ is connected, with every edge in a perfect matching, so

it satisfies the hypothesis of Lemma V.14. Definition V.15

shows that u′
Rv′. So z′ is not equivalent to at least of u
and v. W.l.o.g. assume that u′
Rz′. Thus G′ \ {u′, z′} has a

perfect matching M0.

Next, consider each inclusionwise maximal blossom U of

π one by one. Let x ∈ U be the unique vertex of U in the

537

set V (M0) ∪ {u, z}. Add to M0 the edges of the matching

M(U, x) guaranteed by Lemma V.9.

Clearly M0 is a perfect matching in G \ {u, z}. For each

blossom U of π, |M0 ∩ δ(U)| is 1 if u, z
∈ U , and 0 if u
or z belongs to U . Blossoms of the latter type are those in

the path from u to V or z to V in T (π). These two paths

have disjoint edge sets, since u′
= z′. We get w(M0) =
w(M(G)) − distT (π)(u, V) − distT (π)(z, V), since every

edge of M0 is allowed, i.e., tight. Since distT (π)(u, V) =
H(T (π)) this is the desired weight.

We prove that balanced critical duals exist in two steps.

The first step shows a simpler property for critical duals

actually makes them balanced. The second step shows duals

with this property exist.

Lemma V.17. Let G = (V,E,w,W) be an undirected
connected graph with every edge in some minimum weight
perfect matching. A critical dual π0 is balanced if it has
minimum height (i.e., H(T (π0)) is no larger than the height
of any other critical dual).

Proof: Assume for the purpose of contradiction that π0
is not a balanced critical dual. For any vertex v ∈ V let hv

denote its height in π0, hv = distT (π0)(v, V). Let u be the

vertex of G with the greatest height hu. Let G′ be the graph

G with inclusionwise maximal blossoms of π0 contracted.

Let R be the equivalence relation of Lemma V.14 for G′, and

S1, . . . , Sk its equivalence classes. Let u belong to vertex u′

of G′ and let u′ ∈ S1.

We will define a dual function π1. An element of S1 is

either a maximal blossom of π0 or a vertex of V not in any

blossom; let si, 1 ≤ i ≤ |S1|, be the ith of these blossoms

and vertices. Lemma V.14 shows G′ \S1 has |S1| connected

components; let Bi, 1 ≤ i ≤ |S1|, be the set of vertices of

G contracted onto the i-th connected component of G′ \S1.

Define π1 : Ω ∪ V → R to be identical to π0 except

π1(x) =

{
π0(x)− ε x = si, 1 ≤ i ≤ |S1|
π0(x) + ε x = Bi, 1 ≤ i ≤ |S1|.

(Note that if Bi consists of more than one vertex in G′ then

we are creating a new blossom.) Let ε be any positive real

no larger than the smallest value of π0(si) for a blossom si.
This ensures π1 is nonnegative on blossoms.

Let us verify that π1 is a critical dual. First, observe that

each edge of G remains tight in π1: Nothing changes for

an edge that has both ends in the same set of S1 or some

Bi. The remaining possibility is an edge between S1 and

some Bi (no edge joins 2 Bi sets or 2 sets of S1, the latter

by independence of S1). For such edges we have added and

subtracted ε in the left-hand side of 2, so it remains tight.

Next observe that the blossoms of π1 form a laminar family.

Lemma V.14 shows the sets Bi induce factor critical graphs.

Finally π1 is an optimum dual, since its objective as π0. Thus

π1 is a critical dual.

−ε−ε−ε −ε−ε−ε −ε−ε−ε −ε−ε−ε

+ε +ε

S1

+ε
+ε

Figure 2. Graph G′ and the modification of the duals.

Taking ε small enough makes π1 a critical dual with

smaller height than π0, the desired contradiction. To see

this take any vertex v ∈ V , and let v′ be the vertex of

G′ that v is contracted onto. If v′ ∈ S1, the height of

v decreases as long as ε is positive. Suppose v′ /∈ S1.

Lemma V.14 shows π0 would be balanced if hv = hu. Thus

hv < hu. Choose ε small enough so that every such v has

distT (π1)(v) = distT (π0)(v) + ε ≤ hu − ε. Thus π1 has

smaller height than π0.

Lemma V.18. Let G = (V,E,w,W) be an undirected
connected graph with every edge in some minimum weight
perfect matching. There is a critical dual π0 that has the
smallest height H(T (π0)).

Proof: Lemma V.7 shows a critical dual π exists. There

are a finite number of laminar families on V , i.e., a finite

number of trees T (π). So it suffices to show that there is

a smallest height among all critical duals π with the same

tree T = T (π).
We begin by showing that for every blossom U , there is

a unique value for πx, where x is any vertex of U or any

blossom properly contained in U . We argue inductively, so

assume this holds for every blossom properly contained in

U . For any edge uv we break the left-hand side of (2) into

the contributions from u and from v, by defining

πu,v = πu +
∑

U∈Ω, u={u,v}∩U
πU

and symmetrically for πv,u. So the left-hand side of (2) is

πu,v + πv,u.

Take any edge uv joining two vertices u, v ∈ U . uv is

on an odd cycle C contained in U . (U is factor critical,

so let Mu (Mv) be a perfect matching on U − u (U − v)

respectively. The symmetric difference Mu ⊕Mv contains

an even-length path from u to v.) Each edge of C is tight.

So for every edge xy in C, the values of πx,y and πy,x are

uniquely determined. If πx,y does not have any contributions

from blossoms properly contained in U then πx = πx,y

has been uniquely determined. If πx,y has a contribution

538

πW from a blossom W that is a maximal blossom properly

contained in U then πW has been uniquely determined. This

follows since the other π values contributing to πx,y have

been determined by induction. (Note that πW has also been

uniquely determined from the other edge of C ∩ δ(W).)
If neither of these conditions apply to πx,y then all its π-

values have been determined by induction. Since any vertex

u ∈ U is on an edge uv in U , this completes the inductive

argument.

Next consider any edge uv not contained in a blossom

of T . The previous argument shows exactly one term in

the quantity πu,v is still undetermined. If uv is in an odd

cycle C the previous argument shows that term is uniquely

determined. Contract all such odd cycles as well as all

blossoms of T . We get a bipartite graph G′. It contains at

least one edge. Let S be a spanning tree of G′. Choose a

value p0 for the unknown term p at the root of S, that comes

from a valid critical dual for T . Suppose we increase p. If

this increases H(T), every value of p larger than p0 gives

larger height. Suppose this decreases H(T). All the other

unknown π-values are uniquely determined from tightness of

the edges of S. Also every edge of G′ not in S remains tight

by bipartiteness. There is a maximum value p such that every

value p > p either makes the π-values invalid (because some

πU , U ∈ Ω becomes negative) or increases the height (since

p contributes to the height of the root vertex). Similarly there

is a minimum value p for p. We conclude there is a unique

smallest height for a critical dual for T – it occurs when p
is equal to either p or p.

As already mentioned, the last two lemmas show any

undirected connected graph G = (V,E,w,W) with all

edges allowed has a balanced critical dual. We can now reach

our final goal.

Lemma V.19. Let G = (V,E,w,W) be a weighted undi-
rected connected graph where every edge is allowed. Given
all values w(M(v)) for v ∈ V , the blossoms of a balanced
critical dual solution can be found in Õ(n2) time.

Proof: Let π be a balanced critical dual solution. By

Lemma V.16 for each leaf node v ∈ V of T (π), w(M(v)) =
w(M(G)) − H(T (π)) − distT (π)(z, V). Define new edge

weights w′ : E → Z as w′(uv) = w(M(u)) + w(M(v)) +
w(uv). Consider any uv ∈ E. Since uv is tight, w(uv) =
distT (π)(u, v). Define a quantity c that is independent of uv,

c = 2(w(M(G))−H(T (π))). Then

w′(uv) = w(uv) + w(M(u)) + w(M(v))

= distT (π)(u, v) + 2w(M(G))− 2H(T (π))

−distT (π)(u, V)− distT (π)(v, V)

= c− 2distT (π)(lca(u, v), V) . (3)

Let B = lca(u, v). So B is the inclusionwise minimal

blossom of π containing both u and v, or if no such blossom

exists, B is the root V of the tree T (π). For any edge uv

Algorithm 4 Given all the values w(M(u)), finds the

blossoms of a balanced critical dual in the graph G where

all edges are allowed.

1: For each edge uv set w′(uv) = w(uv) + w(M(u)) +
w(M(v)).

2: Let A be the set of all different values w′(uv). Let B =
∅.

3: for each α ∈ A, in increasing order, do
4: Let C be the set of connected components of the

graph (V, {uv : uv ∈ E,w′(uv) ≤ α}).
5: Add the nontrivial components of C to B.

6: end for
7: return B.

let Buv ⊆ V be the the set of vertices reachable from u or

v by a path of edges e satisfying w′(e) ≤ w′(uv).

Claim. For any edge uv, Buv = B.

Proof of Claim. Let F ⊆ E be the set of edges of a spanning

tree of G[B] (G[B] is connected since either B = V or G[B]
is factor critical). Since any edge ab ∈ F is contained in B,

the node lca(a, b) descends from lca(u, v) in T (π). Thus the

path from lca(a, b) to lca(u, v) in T has nonnegative weight.

This implies w′(ab) ≤ w′(uv) by (3). Thus B ⊆ Buv .

For the opposite inclusion, consider any edge ab with

a ∈ B and w′(ab) ≤ w′(uv). Since every blossom has a

strictly positive π-value, (3) implies b ∈ B. Now an easy

induction shows any path from u or v, with every edge

e having w′(e) ≤ w′(uv), has every vertex in B. Thus

Buv ⊆ B. ♦

Any blossom B of π has an edge uv with B the

minimal blossom containing u and v (by laminarity and

connectedness of B). So the claim of the lemma amounts

to constructing all the sets Buv . This is done in Õ(n2) time

by Algorithm 4.

C. The Final Algorithm

Theorem V.20. Let G = (V,E,w,W) be a weighted
undirected graph containing a perfect matching. A minimum
weight perfect matching in G can be computed Õ(Wnω)
time, with high probability.

Proof: First, using Corollary V.2, we can remove all

the edges of G which are not allowed. Clearly, we can

consider each connected component of G separately, hence

w.l.o.g. we assume that G is connected. Next, compute all

the values w(M(u)) for each u ∈ V using Corollary V.6.

Having all the values w(M(u)) by Lemma V.19 we can find

the set of blossoms B of a balanced critical dual solution

and consequently by Lemma V.11 we can find a minimum

weight perfect matching in G.

539

The full version of this paper shows how the matching

algorithm can be made Las Vegas. In some applications the

second smallest perfect matching is of interest and its weight

is easily found. As discussed in the proof of Lemma V.4,

the terms in the determinant of det(Ã(G)) correspond to

even-cycle covers in the graph G. Each such cycle can be

decomposed into two perfect matchings. Consequently the

degree in y of a second smallest monomial of det(Ã(G)) is

equal to the weight of a minimum weight perfect matching

plus the weight of a second smallest perfect matching.

VI. FURTHER APPLICATIONS

Several other ideas are used in the applications covered

in the full version [1]. As in Corollary V.5, terms of the

adjoint matrix are often useful, but it is difficult to compute

the entire adjoint. Sometimes we use the n × n symbolic

matrix Z̃ given by Z̃i,j = zi,j , where the zi,j are n2 new

indeterminates. For any n × n matrix Ã not involving any

zi,j , and σz the evaluation that assigns 0 to each zi,j ,

∂

∂zj,i
det(Ã+ Z̃)|σz

= adj(Ã)i,j .

For shortest path problems on undirected graphs with

negative weights we use a construction which we believe

is essentially due to Edmonds [5]: Letting E− be the set of

negative edges, define the graph G̈ by

V̈ = {v1, v2 : v ∈ V } ∪ {e1, e2 : e ∈ E−},
Ë = {u1v2, u2v1, u1v1, u2v2 : uv ∈ E \ E−}

∪ {u1e1, u2e1, e1e2, v1e2, v2e2 : e = uv ∈ E−, u < v}
∪ {v1v2 : v ∈ V }

ẅ(uivj) =

⎧⎨
⎩

w(uv) if uv ∈ E \ E−,
w(e) if ui = e1 and vj
= e2 and e ∈ E−,

0 otherwise.

G̈ has O(n) vertices and O(n+m) edges (since |E−| < n
when G has no negative cycles). A shortest path from u to v
in G corresponds to a minimum weight perfect matching on

G̈ \ {u2, v2}. For diameter and radius we use Z̃ on G̈. For

shortest cycles we eliminate spurious cycles like (u1, v1),
(v2, u2) using antisymmetric derivatives (Section IV).

REFERENCES

[1] M. Cygan, H. N. Gabow, and P. Sankowski, “Algorithmic
applications of baur-strassen’s theorem: Shortest cycles, di-
ameter and matchings,” CoRR, vol. abs/1204.1616, 2012.

[2] A. Itai and M. Rodeh, “Finding a minimum circuit in a graph,”
in Proc. of STOC’77, 1977, pp. 1–10.

[3] L. Roditty and V. V. Williams, “Minimum weight cycles and
triangles: Equivalences and algorithms,” in Proc. of FOCS’11,
2011, pp. 180–189.

[4] P. Sankowski, “Shortest paths in matrix multiplication time,”
in Proc. of ESA’05, 2005, pp. 770–778.

[5] J. Edmonds, “An introduction to matching. Mimeographed
notes, Engineering Summer Conference, U. Michigan, Ann
Arbor, MI,” 1967.

[6] A. Shoshan and U. Zwick, “All pairs shortest paths in
undirected graphs with integer weights,” in Proc. of FOCS’99,
1999, pp. 605–614.

[7] P. Sankowski, “Maximum weight bipartite matching in matrix
multiplication time,” Theoretical Computer Science, vol. 410,
no. 44, pp. 4480–4488, 2009.

[8] C.-C. Huang and T. Kavitha, “Efficient algorithms for max-
imum weight matchings in general graphs with small edge
weights,” in Proc. of SODA’12, 2012, pp. 1400–1412.

[9] A. Storjohann, “High-order lifting and integrality certifica-
tion,” Journal of Symbolic Computation, vol. 36, no. 3-4, pp.
613–648, 2003.

[10] W. Baur and V. Strassen, “The complexity of partial deriva-
tives,” Theoretical Computer Science, vol. 22, no. 3, pp. 317–
330, 1983.

[11] J. Morgenstern, “How to compute fast a function and all
its derivatives: a variation on the theorem of Baur-strassen,”
SIGACT News, vol. 16, no. 4, pp. 60–62, 1985.

[12] R. Yuster, “A shortest cycle for each vertex of a graph,”
Information Processing Letters, vol. 111, no. 21-22, pp. 1057–
1061, 2011.

[13] R. Zippel, “Probabilistic algorithms for sparse polynomials,”
in Proc. of EUROSAM’79, 1979, pp. 216–226.

[14] J. T. Schwartz, “Fast probabilistic algorithms for verification
of polynomial identities,” Journal of the ACM, vol. 27, pp.
701–717, 1980.

[15] A. Björklund, “Determinant sums for undirected hamiltonic-
ity,” in Prof. of FOCS’10, 2010, pp. 173–182.

[16] R. M. Karp, E. Upfal, and A. Wigderson, “Constructing a
perfect matching is in random NC,” Combinatorica, vol. 6,
no. 1, pp. 35–48, 1986.

[17] J. Edmonds, “Maximum matching and a polyhedron with 0,1-
vertices,” Journal of Research National Bureau of Standards-
B.,, vol. 69B, pp. 125–130, 1965.

[18] M. Mucha and P. Sankowski, “Maximum matchings via
Gaussian elimination,” in Proc. of FOCS’04, 2004, pp. 248–
255.

[19] P. Sankowski, “Processor efficient parallel matching,” in Proc.
of SPAA’05, 2005, pp. 165–170.

[20] N. J. A. Harvey, “Algebraic structures and algorithms for
matching and matroid problems,” in Proc. of FOCS’06, 2006,
pp. 531–542.

[21] A. Schrijver, Combinatorial Optimization - Polyhedra and
Efficiency. Springer-Verlag, 2003.

[22] L. Lovász and M. D. Plummer, Matching Theory. Akadémiai
Kiadó, 1986.

540

