NOTICE CONCERNING
COPYRIGHT RESTRICTIONS

The copyright law of the United States [Title 17, United
States Code] governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
reproduction is not to be used for any purpose other than
private study, scholarship, or research. If a user makes a
request for, or later uses, a photocopy or reproduction for
purposes in excess of “fair use” that use may be liable for
copyright infringement.

The institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law. No further
reproduction and distribution of this copy is permitted by
transmission or any other means.

Mathematical Programming Study 8 (1978) 50-72.
North-Holland Publishing Company

A PRIMAL ALGORITHM FOR OPTIMUM MATCHING

W.H. CUNNINGHAM?*

Carleton University, Ottawa, Canada

A.B. MARSH, III
The Johns Hopkins University, Baltimore, MD U.S.A.

Received 7 December 1976
Revised manuscript received 12 May 1978

Dedicated to the memory of D. Ray Fulkerson

An algorithm for finding an optimum weight perfect matching in a graph is described. It
differs from Edmonds’ “‘blossom’ algorithm in that a perfect matching is at hand throughout
the algorithm, and a feasible solution to the dual problem is obtained only at termination. In
many other respects, including its efficiency, it is similar to the blossom algorithm. Some
advantages of this “primal” algorithm for certain post-optimality problems are described. The
algorithm is used to prove that, if the weights are integers, then the dual problem has an
optimal solution which is integer-valued. Finally, some graph-theoretic results on perfect
matchings are derived.

Key words: Optimum Matching, Primal Algorithm, Polyhedral Combinatorics, Integer
Programming, Post-Optimality, Graph Theory.

1. Introduction

Let G be a finite, undirected, loopless graph. We denote its vertex-set by
V(G) and its edge-set by E(G). A matching in G is a subset of edges, no two of
which are incident with a common vertex. A matching M is perfect if every
vertex is incident with exactly one member of M. Given real weights ¢; for
j € E(G), the optimum perfect matching problem is to maximize (Z (c;: j € M):
M a perfect matching).

Optimum matching problems, which consist of this problem and a number of
close relatives, constitute the only class of genuine integer programs for which
good solution algorithms are known'. These solution algorithms, usually called

* Research was done while this author was with the Department of Mathematical Sciences, Johns
Hopkins University, and was supported in part by National Science Foundation Grant MCS76-08803.

'In response to a referee’s query, the following explanation of this remark is provided. Every
other class of well-solved combinatorial problems is not “genuine” because either: (a) No explicit
formulation as an integer program using a reasonable amount of data is known (example: minimum
spanning tree problems); or (b) When such a formulation is known, the resulting linear program
already has integer-valued optimal solutions (example: network flow problems).

50

W.H. Cunningham, A.B. Marsh, III| Primal matching algorithm 51

“blossom™ algorithms, are due to Jack Edmonds; blossom methods for the
problem treated here are described in [6], [7], [8], while those for more general
matching problems occur in [9], [11], [12]. Aside from its intrinsic importance,
optimum matching has been applied in the solution of certain shortest path
problems and the Chinese postman problem [10], and in a heuristic algorithm for
the Euclidean traveling salesman problem [4].

In this paper we describe a new algorithm for optimum perfect matching,
which we call a primal algorithm. It is “primal’’ because it maintains a feasible
solution (that is, a perfect matching), and obtains a feasible solution to a certain
dual problem only at termination. In contrast, the blossom algorithm maintains a
feasible solution to the dual problem, and obtains a perfect matching only at
termination. The blossom algorithm for optimum perfect matching, specialized
to the instance in which G is a bipartite graph, is the well-known Hungarian
Method of Kuhn [15]. The primal algorithm, similarly specialized, is an algorithm
of Balinski and Gomory [2]. While the generalization from the method of [2] to
the present one is substantial, it is closely analogous to Edmonds’ generalization
of the Hungarian Method; many of the techniques used here were introduced in
[6] and [7]. ’

© Sections 2 through 6 contain the description, justification, and discussion of
the primal algorithm. The next three sections contain applications of the primal
algorithm. In Section 7, we demonstrate the usefulness of the algorithm as a
.post-optimality procedure. We consider the situation in which an optimum
-perfect matching problem has been solved, and then the weights have been
changed on a subset A of the edges. We show that, given a set U C V(G) such
that U “‘covers™ A, a variant of the primal algorithm has a computation bound
for re-optimizing which is the bound for solving “from scratch”, multiplied by
|UJ/|V(G). In another application, we show that, whenever the weights ¢; are all
' fintegers, there exists an integer-valued optimal dual solution, strengthening a
‘result of Edmonds and Johnson. In Section 9 we use the primal algorithm to
rove a purely graph-theoretic result on perfect matchings; this result is used to
erive some known lower bounds on the number of perfect matchings in certain
raphs. In the final section some computational results are reported. Except for
he use of some standard graph-theoretic terminology, the paper is self-
ontained; a familiarity with the blossom algorithm on the part of the reader
ould be useful but not essential.

. Preliminaries: Polyhedral combinatorics

In this section we describe conditions which provide a good characterization
f optimal perfect matchings. These are the same conditions which the blossom
lgorithm uses, but the primal algorithm uses them in a different way.

For S C V(G), 85(S) denotes the set of edges having exactly one end in S, and

il

52 W.H. Cunningham, A.B. Marsh, IIl| Primal matching algorithm

v6(S) denotes the set of edges having both ends in S. Whenever we can do so

without loss of clarity, we will drop the subscript from & and y. For v € V(G), |

we abbreviate §({v}) to 6(v). Where I is a finite set, J is a subset of I, and
p = (p;: j €1) is a real-valued vector, p(J) denotes = (p;: j € J).

The optimum weight perfect matching problem may be stated as an integer
linear program in the following way.

maximize ¢ -x =2, (¢x;: j € E(G)),

§)) subject to x(6(v))=1,v € V(G);
x;=0, jeE@G);
x; integer, j€ E(G).

Let Q={SC V(G):|S|=3, |S| odd}. For S € Q, let gs denote 3(|S|—1). For
any x feasible to (1), it is obvious that

(¢)) x(y(S)=gs, SEQ.

By dropping the integrality requirement from (1) and adding the linear con-
straints (2), we obtain a linear program whose feasible solutions include all
feasible solutions of (1). (In particular, if this linear program has an integer-
valued optimal solution, then that solution is optimal to (1).) The dual of this
linear program is

minimize (2 (yo:0 € V(G)+2, (gsYs: S € Q))

3 subjectto Ys=0, S€Q;

If x is feasible to (1) and (y, Y) is feasible to (3) and the following ‘‘comple-
mentary slackness’’ conditions are also satisfied, then it is easy to show that x is
optimal to (1) (and (y, Y) is optimal to (3)).

(4) If x>0, then D, (.. JES@W)+ 2 (Ys:jEY¥(S) =c;, jEE(G);

5) If Ys>0, then x(y(S))=gs, S € Q.

Given y=(:vE€V(G)) and Y =(Ys:S€Q), for j€ E(G), let di(y,Y)
denote 2 (y,:j€8(w)) + Z(Ys:jEY(S)) — c¢. (Whenever possible we will
abbreviate d;(y, Y) to d;.) Since any x feasible to (1) is the incidence vector of a
perfect matching M of G, we can translate (4), (5) into (4), (5):

4 If jEM, thend; =0, forje&€ EG);
&) If Ys>0, then |[MNy(S)=gqs, forSeEQ.

:

|
{f‘

W.H. Cunningham, A.B. Marsh, 111/ Primal matching algorithm 53

Edmonds has proved that, if G has a perfect matching, then there exists a
perfect matching M and (y, Y) feasible to (3) satisfying (4'), (5). The proof is an
efficient algorithm, called the blossom algorithm, which maintains a matching M,
and (y, Y) feasible to (3) such that (4) and (5") are satisfied, and terminates when
M becomes perfect (or it is shown that no perfect matching exists). Thus the
blossom algorithm relaxes one of the optimality conditions, the equality con-
straint of (1), and works toward satisfying it. The algorithm we will describe
maintains a perfect matching M and (y, Y) satisfying (4), (5') and Y =0, but
initially does not require that d; = 0 for j € E(G). In consequence, the values of
the objective functions of (1) and (3) at each stage of the primal algorithm will be
equal. (This does not happen in the blossom algorithm until optimality is
reached.)

3. Preliminaries: Graph theory

Some of the graph-theoretic terminology used in this paper will not be defined
here because we believe its use to be standard. In what follows we introduce
some definitions and notation which are, perhaps, not so well-known. A path in
a graph G is a sequence P = vy, €y, vy, ... , €4, U, such that {vo, vy, ..., v, }, denoted
V(P), is a subset of V(G); {ey, e, ..., e,}, denoted E(P), is a subset of distinct
elements of E(G); for 1 =i =n, the ends of ¢ in G are v;_, and v;. The path is
said to be from v, to v, and to have length n. P is simple if |V(P)|=n+1. We
say that e; € E(P) is an even or odd edge of P according to whether i is even or
odd. The path P is a circuit if |V(P)|=n, vo=uv,, and n=1. A polygon is a
subgraph whose edges and vertices are the edges and vertices of a circuit; the
polygon is even or odd according to whether its vertex-set has even or odd
cardinality. A rooted tree of G is a tree T having a distinguished root vertex r.
An edge (or vertex) of T is even or odd according to whether it is an even or
odd edge (or vertex) of a path in T from r to a vertex of T.

Where G is a graph, let S be a subset of V(G). The graph G[S] obtained by
restricting G to S is the subgraph of G having V(G[S])= S and E(G[S]) = y(S).
The graph G X S obtained from G by shrinking S is defined by: V(G x S) =
(VIG)\S) U {S}, E(G x S) = E(G)\¥(S), and 85xs(v)=8(v) for each
v E V(G X S). A family & of subsets of V(G) is said to be nested if S;, S, €%
- and S\NS,#@ implies that S,C S, or S;CS,. Given a nested family &% of
- subsets of V(G) having maximal members S, S, ..., Si, the graph G X & is
defined to be (... ((G X S;) X S») ... X S). It is easy to see that the order in which
these (disjoint) sets are shrunk is irrelevant. Given a member S of a nested
. family &, the nested family #[S] obtained by restricting & to S is defined to be
{RE¥:RCS}. The maximal members of ¥ are called pseudo vertices of
G x &; the other vertices of G X &, that is, the elements of V(G x ¥)N V(G),
are called real vertices of G X &.

54 W.H. Cunningham, A.B. Marsh, III| Primal matching algorithm

The nested families ¥ which we will be using have the following property:

For each S&€ 9%,
(6) G[S]x &[S] is spanned by an odd polygon P(S).

A nested family & satisfying (6) is called a shrinking family. We always
assume that we actually have P(S) at hand for each S € &; that is, the graphs
P(S), for S € ¥, are part of the information we remember with &. The reason
that such families are appropriate to the study of perfect matchings is given by
the following resulit.

(7) Theorem. Let & be a shrinking family of G and let M be a perfect matching
of G X %. Then M is contained in a perfect matching M; of G.

Proof. The result is true if ¥ =9, so assume F# @ and let S be a maximal
member of ¥ Then ¥’ = $\{S} is a shrinking family of G. Moreover, M is a
matching of G X &’; let v be the vertex of G[S]x #[S] incident with the edge
¢ € M which is incident with S in G X &. Then the set of vertices of G X &' not
incident with a member of M is just V(G[S]1x ZLSD\{v}. But G[SIx F[S] is
spanned by the odd polygon P(S), so there is a (unique) matching M, of P(S)
such that v is the only vertex of P(S) not incident with an element of M>. When
M is replaced by M UM, and & by &, then (6) is still satisfied. Continuing the
process, we obtain a perfect matching M; of G, as required.

(8) It is implicit in the proof of (7), that the matching M, constructed there has
the properties that |M;Ny(S)=qs for each SE€Y, and M \MC
(E(P(S): SE).

Another result on nested families, which will be useful, is a bound on their
cardinality. The following is easy to prove by induction on |¥|; a proof is given
in [18]. It is clear that any shrinking family & satisfies the hypothesis of (9).

©) If ¥ is é nested family of subsets of V(G) such that |S|=3 for each SE ¥
and |S)| = |Sy| + 2 whenever S}, S;€ ¥ and S;D S;, then |¥|=3(V(G)| - D).

4. Some graph-theoretic subroutines

The primal algorithm will keep a perfect matching M’ of G implicitly, by
keeping a shrinking family ¥ of G and a perfect matching M of G X ¥. In this
section we introduce the main subroutines for changing & and M, and the main .
device used for finding these changes, the growth of alternating trees. We will
not concern ourselves in this section with the dual problem or the optimality
conditions introduced in Section 2; ultimately these will be combined with the
methods of this section.

W.H. Cunningham, A.B. Marsh, III| Primal matching algorithm 55

Let & be a shrinking family of G and let M be a perfect matchlng of GX% A
rooted tree T of G X & is an M-alternating tree if

(10) M NE(T) is a perfect matching of T;
an Every odd edge of T is in M.

It is an easy consequence of the definition that every even vertex of an
Me-alternating tree other than the root is incident with exactly two edges of the
- tree, and that the root is incident with just one edge of the tree. An M-alternating
tree having root r is illustrated in Fig. 1(a). (In Fig. 1, except for 1(b), the edges
of the matching are thick edges, the edges of the tree are the solid edges, the
even vertices of the tree are solid, and the odd vertices of the tree are square.)
The alternating trees used here are closely related to, but different from, those of
[6]. Given an M-alternating tree T, we define O(T) to be the subset of V(G)
consisting of real odd vertices of T and elements of odd pseudo vertices of T;
I(T) is defined similarly, with “odd” replaced by “even”.

Aside from the dual solution (y, Y), the main objects kept by the algorithm
will be a shrinking family & of G, a perfect matching M of G X &, and an
M-alternating tree T of G X &. The tree T will always have root r, and r will be
determined by ¥ and a distinguished vertex u € V(G) as follows: r = u if u is a
real vertex of G X ¥, and otherwise r is the pseudo vertex of G X & of which u
is an element. We now describe several basic subroutines for manipulating &, M,
and T. It is straightforward to verify that each of (12)-(15) produces &, M, T
having the required structure.

(12) Grow T using e. Given an edge e joining in G X & an odd vertex v of T to a
vertex w not in V(T), let f be the element of M incident with w. Let T’ be the
. tree in G X & whose edge-set is E(T) U{e, f}. Replace T by T".

(Procedure (12) is illustrated in Fig. 1; beginning with T of Fig. 1(a) and using
e; to grow T, we obtain T of Fig. 1(c).)

(13) Shrink using e. Given an edge e joining in G X ¥ two odd vertices v, w of
T, let P be the (odd) polygon whose edge-set is E(P)) U{e}, where P, is the path
in T from v to w. Let

S=(VP)NV(G)UI{R: R E V(P)NFY);

let =% U{S}. Let T' be the tree in G x ¥ whose edge-set is E(T)N
E(GXx%); let M'=M NE(G X %'). Replace &¥ by ¥, M by M, and T by T'.

(Procedure (13) is illustrated in Fig. 1; beginning with T of Fig. 1(a) and
carrying out “Shrink using e,”, we obtain T’ of Fig. 1(d). In labeling the new

pseudo vertex S U{p, q}, we are implicitly assuming that p, q are real vertices of
Gx %)

(a) (b (©)

su{p,a}
r e4 r
) (@ F)

Fig. 1.

(14) Expand even pseudo vertex S. Given an even vertex S of T such that
S €Y, let f be the edge of M incident with S in G X ¥ and let ¢ be the other
edge of T, if any, incident with S. Let &' = $\{S}. Let v be the end of ¢ in
G x & which is in V(P(S)), if e exists; otherwise let v be the member of ¥’
containing u or, if none, let v = u. Let w be the end of f in G X &' which is in
V(P(S)). Let P, be the even-length path from v to w in P(S), and let P, be the
odd-length path from v to w in P(S). Let M’ denote M together with the odd
edges of P; and the even edges of P,. Let T’ be the tree in G X &’ such that
E(T"Y= E(T)UE(P)). Replace ¥ by ¥ M by M’,and T by T'. If S = r, replace
r by v.

(Procedure (14) is illustrated in Fig. 1; beginning with T of Fig. 1(a) and using
P(S) shown in Fig. 1(b), we obtain T' of Fig. 1(e). Here es, f; are the e, f of (14),
and v, w have the same meaning as in (14). In Fig. 1(e) some relevant non-tree
edges have also been drawn. The special case in which S =r has not been
illustrated; the reader is encouraged to investigate this case for himself.)

(15) Augment using e. Given an edge e joining in G X & an odd vertex v of T to
r, let f be the element of M incident with r and let P be the path in T from r to
v. Let M’ be the matching obtained by deleting from M the odd edges of P and

W.H. Cunningham, A.B. Marsh, III| Primal matching algorithm 57

adding e and the even edges of P. Let T’ be the tree in G X such that
E(T") = (E(T) U{e})\{f}. Replace M by M’ and T by T".

(Procedure (15) is illustrated in Fig. 1; beginning with T of Fig. 1(a), “Aug-
ment using e, has been carried out, resulting in the changes in T and M shown
in Fig. 1(f).)

(16) Extend M to perfect matching M, of G. This subroutine is the procedure
which is implicit in the proof of (7).

5. The primal algorithm

In this section we relate the optimality conditions described in Section 2 to the
graph-theoretic routines of the last section. This leads to the statement of the
primal algorithm. The algorithm maintains real vector y =(s: v € V(G)), non-
negative real vector Y = (Ys: S € Q), shrinking family &, and perfect matching
M of G X &. In addition, we require

(17) If jEM or jE E(P(S)) for some S € ¥,
then d; = 0;
(18) If S&, then Ys=0.

It follows from (17) together with (7) and (8) that (4) is satisfied implicitly.
Similarly, it follows from (18) together with (7) and (8) that (5") is satisfied
implicitly. The algorithm works toward the optimality criterion d; =0, j € E(G);
once an edge j attains this “dual feasibility” property, d; never again becomes
negative. The general strategy is to choose a vertex u € V(G) and work toward
obtaining d; =0 for all j € 8(u). We do this by growing an M-alternating tree T
(the root r of T is determined by u and & as previously indicated). In order to
facilitate maintaining (17) after changes in & or M, we require that d; =0 for
j€ E(T). The main components of the algorithm which have not yet been
described are changes in (y, Y): the “dual change” of (24), and the “mini dual
change” contained in (25)-(27). The dual change step enables further application
of the steps (21), (22), or (23) and can also help directly to attain d;=0 for
j € 8(u). The bound a on the “amount” € of the dual change (24) reflects the fact
that no d; =0 is allowed to become negative; the bound B ensures that the
- amount € does not exceed the maximum amount for which the dual change will
_ be beneficial in achieving d; =0 for j € 8(u). Notice that the objective value in
(3) is not altered by a dual change, but is raised by a mini dual change. The
algorithm has been constructed so that a mini dual change will be done only if it
- will result in d; = 0 for all j € 8(u); this is the reason for the calculation of o in
. (20). In taking maxima and minima of sets of non-negative real numbers, we

58 W.H. Cunningham, A.B. Marsh, IIT| Primal matching algorithm

Terminate Start
Yes 11 42
Extend M < dj >0 for a 37
No
Augment and do Choose u
mini dual change Initialize T
Yes Y
Can Augment?
dj> 0 for No /
jes e=8 Can Grow T? Yes Grow T /
£ = 0O
1
No
1 Ch e = 9% Yes .
Dua ang > Can shrink? Shrink
€ =
3 +’No
No Yes 3
Can Expand? > Expan

Fig. 2.

observe the convention that the maximum of an empty set of numbers is zero,
and the minimum of an empty set of numbers is infinity. A flow chart of the
primal algorithm is shown in Fig. 2.

Primal algorithm for optimum perfect matching

(We assume that we have initially y, Y, &, and M as described above.)

(19) If d; =0 for all j € E(G), go to (28). Otherwise choose u € V(G) such that,
for some j € 8(v), d; <0. Let r be the maximal member of & containing u, if one
exists; otherwise let r = u. Let T be the tree in G X & having root r whose only
edge is the element of M incident with r.

(20) Let o; = max(—d;: d; <0,j € 8(u), and, in G X &, j joins r to a vertex not in
V(T)); let o, =max(—d;: d; <0, jE8(u), and in GX ¥, j joins r to an even
vertex of T); let o3 =max(G2 (Ys:j € y(S))—d;: d; <0, j €E8u) Ny(r); let o =
max(oy, o2, o3). If there exists e € §(u) such that, in G X &, e joins r to an odd
vertex v of T and —d. = o, go to (25). Otherwise, go to (21).

W.H. Cunningham, A.B. Marsh, II1] Primal matching algorithm 59

- (21) If there exists e € E(G X &) such that d, =0 and, in GX ¥, e joins an odd
vertex of T to a vertex not in V(T), grow T using e and go to (20). Otherwise,
go to (22).

(22) If there exists e € E(G X &) such that d. = 0 and, in G X &, e joins two odd
vertices of T, shrink using e and go to (20). Otherwise, go to (23).

(23) If there exists S € & such that S is an even vertex of T and Ys = 0, expand
S and go to (20). Otherwise, go to (24).

- (24) Let oy =min(d;: d; = 0; in G X &, j joins an odd vertex of T to a vertex not
in V(T)); let az—mll'l(zd di=0; in Gx &, j joins two odd vertices of T); let
a3 =min(Ys: SEY, S an even vertex of T); let a = min(a;, as, a;). Let Bl
max(—d;: d; <0, jE8(u); in GX P, j joins r to a vertex not in V(T)); 1
B> = max(— 2d d; <0,jE€8(u);in G X &, j joins r to an even vertex of T);if there
exists jE8u)Ny(r) with d; <0, let B:=Y, and otherwise let B:=10; let

‘ B =max(Bi, B2, B3). Let € = min(e, B). Let y,=y,+¢€ for each UEI(T) let

yi =y, —€ for each v € O(T); for every other v € V(G), let y,=1y,. Let Y=
Ys —2e for every S € & such that S is an even vertex of T;let Ys= Y+ 2¢ for
every S€ % such that S is an odd vertex of T; for every other S € Q, let
Y5=7Ys Replace (y,Y) by (y,Y"). If di=0 for all j€8&u), go to (19).
Otherwise, if € = a;, go to (21); if € = a», go to (22); if € = a3, go to (23); if e = B,
go to (20).

(25) If r = u, replace y, by y, — d., augment using e, and go to (19).

(26) If r# u and Y, = -2d,, replace Y, by Y, + 2d, replace y, by y, — d, for each
v € r, augment using e, and go to (19). Otherwise go to (27).

(27) If r# u and Y, <-2d,, replace Y, by 0, replace Yo by y, +3Y, for each v € r,
expand r, and go to (25).

(28) Extend M to a perfect matching M, of G. Terminate; M, is an optimal
perfect matching, and (y, Y) is an optimal solution to 3.

6. Discussion of the algorithm

(29) Correctness and bound. 1t is straightforward to check that each step of the
algorithm which modifies any of &, (y,Y), M, or T preserves the properties
required of them. Given that this is so, we can see that, if the algorithm
terminates, it finds an optimal perfect matching. We now show that the algorithm
is finite. It is easy to see that, once j € E(G) satisfies d; =0, d; never becomes

60 W.H. Cunningham, A.B. Marsh, IIT/ Primal matching algorithm

negative. Since the value of u is not changed until we have d; = 0 for all j € §(u
the algorithm goes through (19) at most [V(G)| times. (If we have a relativel
small set U C V(G) such that E(G)=y(U)U8(U), we can obtain a smalle
bound by letting u run through U. However, it is not advisable to attempt to find
a minimum cardinality such U this is well-known to be a difficult problem.)

Now consider a stage of the algorithm during which u does not change. Let 4 :
denote {S € #: S is not contained in a pseudo vertex of G X & which is an odd -
vertex of T}. Either a tree-growth step or a shrinking step increases [O(T)|
without increasing |#|; an expanding step decreases |#| without decreasing
|O(T)|. Thus each iteration of one of these increases |O(T)| - |#| by at least one.
Now . is a nested family of subsets of V(G)N\O(T), so by (9), since 1=:

|O(T)|=|V(G)|- 1, we have 0=|#|=3(V(G)[—2). Thus |O(T)|—|¥| has a

maximum value of |V(G)|—1 and a minimum value of 2-3|V(G)|. Since,
between occurrences of (20), a tree-growth, shrinking, or expanding step is
performed, there can be at most 3|V(G)| — 3 occurrences of (20), during a stage
in which u does not change. Also, an occurrence of (24) enables a tree-growth,
shrinking, expanding, or augmenting step. Thus, during the entire algorithm,
there are at most %]V(G)l2 occurrences of (20), (21), (22), (23), or (24); also, there
are at most |V(G)| occurrences of (25)-(27). An ample bound for the work
involved in an application of (20), (21), (22), (23), or (24) is O(|E(G)|); an ample
bound for the work involved in an application of (25)-(27) is O(|V(G)| - |[E(G))).
Since the amount of work involved in (19) and (28) is dominated by the amount
of work in the rest of the algorithm, a computation bound for the primal
algorithm of O(|V(G)* - |E(G))|) is established.

(30) Implementations. The further details of implementing the algorithm are not
discussed here. It is not difficult to give an implementation which achieves a
computation bound of O(V(G)? - |E(G)|), as claimed. Further improvement is
possible; a bound of O(/V(G)P) can be achieved, but considerable care is
required.

Almost everything that can be said about implementational details for this:
algorithm applies equally to the blossom algorithm. Detailed discussions of an
implementation of the blossom algorithm can be found in Lawler [16].

(31) Initial solutions. If we are given a perfect matching M of G, we can begin
the algorithm by setting ¥ =9, Y =0, and choosing y so that d; =0 for j € M. If
no perfect matching of G is known initially, we can form a graph G’ from G by
adding a set A of ‘“artificial”’ edges, such that for some matching M of G
(perhaps empty), M UA is a perfect matching of G’. If the primal algorithm
solves the optimum perfect matching problem on G’ beginning with M UA,

where the elements of A are given sufficiently small weights, it will terminate
with either an optimal perfect matching of G, or a perfect matching containing at ,

W.H. Cunningham, A.B. Marsh, II1/ Primal matching algorithm 61

least one element of A; in the latter case G has no perfect matching. (It can be
shown that any number less than

IV(G)| - (min(¢;: j € E(G)) — max(0, max(¢;: j € E(G))))

is sufficiently small for this purpose.)

A particular instance of the above procedure occurs when we wish only to find
some perfect matching in G, so that each ¢; =1 for j € E(G), and ¢; =0 for
j € A. The primal algorithm can be used here to find a maximum cardinality
matching of G. It is natural to ask whether the resulting algorithm is equivalent
to the blossom algorithm for maximum cardinality matching, described in [6]. In
general, the answer is no, for in this case the primal algorithm can perform
augmentations which extend the cardinality of the (non-artificial) matching by
more than one. However, if the initial (non-artificial) matching is maximal, this
cannot happen, and the resulting algorithm can be seen to be equivalent to the
maximum cardinality version of the blossom algorithm. We encourage the reader
to verify these claims.

(32) A variant. The augmentation and mini dual change can be carried out
whenever r =u and e € §(u) joining, in GX ¥, r to an odd vertex of T and
having d. <0, is discovered. This could result in as many as |8(u)| such steps
during the growth of a single tree; however, in practice the number could be
expected to be much smaller, and the number of tree-growing, shrinking,
expanding, and dual-change steps might well be decreased. This variant of the
primal algorithm has the same worst-case bound as the algorithm itself; tests
have indicated that it offers no computational advantage. A similar variant for
the bipartite case was introduced in [2] and an inferior bound was obtained; the
reason is that, in [2], T is discarded rather than modified after an augmentation.

(33) The simplex algorithm. The alternating trees used in the primal algorithm
are structurally the same as the basis trees encountered when a special form of
the network simplex method [3], [5] is applied to the optimum perfect matching
problem for bipartite graphs. (An obvious difference is that in the simplex
method the trees are always spanning trees.) The augmentation step, in this case,
is a special kind of ‘“non-degenerate pivot” in the simplex method; a general
non-degenerate pivot yields a more general sort of augmentation, engendered by
an edge e with d, <0 joining an even vertex v of T to an odd vertex w of T,
with the following important priviso: v must be a vertex of the path in T from w
. to the root. A *““degenerate pivot”, engendered by an edge ¢ joining even and odd
nodes but not satisfying the proviso, changes T and y without changing M. A
property of these more general simplex pivots, which distinguishes them from
the augmentation step of the primal algorithm, is that they can cause an edge j
satisfying d; = 0 to lose this property.

62 W.H. Cunningham, A.B. Marsh, III/ Primal matching algorithm
7. Post-optimality

It seems unlikely that the primal algorithm offers any computational advantage
over the blossom algorithm in the solution of optimum perfect matching prob-
lems “from scratch’. In this section we show, on the other hand, that the primal
algorithm is computationally attractive in certain post-optimality situations.
Given initial solutions that are ‘““good” in a certain sense, we can significantly
improve the worst-case performance of the primal algorithm. We wish to
emphasize that ‘“‘good initial solutions” does not mean merely an optimal or
near-optimal perfect matching; we have no evidence to indicate, for example,
that proving a matching to be optimal is easier than finding an optimal matching.

Suppose that the optimum perfect matching problem on G with weight vector
¢ has been solved, yielding y, Y, &, and M. Suppose further that it is desired to .
solve a similar problem on G, but with weight vector ¢’ = (c}: j € E(G)). For the
old solution to be of some value in solving the new problem, we must assume
that ¢’ is “near” to ¢; the sense of nearness which we will assume is that we
have U C V(G) which is small in cardinality compared to V(G), and such that, if
¢j# ¢}, then j € (U)Uy(U). We will describe a method, based on the primal
algorithm, for solving the new problem which requires the growth of at most |U]|
trees.

Perhaps the easiest way to explain the method is to change ¢ to ¢’, a few
components at a time. We choose u € U and solve the problem obtained by
replacing c; by ¢} for each j € §(u) by growing at most one tree. After doing this |
for each u € U we will have solved the problem of interest. Therefore, we .
assume that U ={u} for some u € V(G).

The solution to this simpler problem can be broken into two phases. Phase 2
handles the case in which u is a real vertex of G X &. Then, where f is the :
element of M N&(u) and v is its other end in G, we replace y, by ¢;—y,. Then Y, |
¥, M and the new y are acceptable input to the primal algorithm for the new !
problem; since (where d} is defined as expected) {j: d;< 0} C 8(u), at most one
tree will need to be grown to complete the solution to the new problem. (It |
should be pointed out that, in this special case in which u is a real vertex of
G X ¥, the blossom algorithm gives a similarly simple solution to this post-
optimality problem.) '

Phase 1 handles the case in which u is an element of a pseudo vertex r of
G x &. We will obtain alternative final solutions y’, Y', ¥, M’ for the problem .
with weight vector c, such that u is a real vertex of G X &', thus enabling the
application of Phase 2. The algorithm to do this is a “stripped-down” version of
the primal algorithm.

Post-optimality, Phase 1

(34) Let r be the maximal member of & containing u. Let T be the tree in G X ¥
having root r whose only edge is the element of M incident with r in G X &.

W.H. Cunningham, A.B. Marsh, III| Primal matching algorithm 63
(35) If u is a real vertex of G X &, stop. Otherwise, go to (36).

(36) If there exists e € E(G X ¥) such that d, =0 and, in G X &, e joins an odd
vertex of T to a vertex not in V(T), grow T using e and go to (36). Otherwise,
go to (37).

(37) If there exists e € E(G X &¥) such that d, =0 and, in G X &, e joins two odd
vertices of T, shrink using e and go to (36). Otherwise, go to (38).

(38) If there exists S € ¥ such that S is an even vertex of T and Ys = 0, expand
S and go to (35). Otherwise go to (39).

(39) Calculate a;, az, as, and a as in (24). Let € = a and define y’, Y’ as in (24).
Replace (y, Y) by (v, Y"). If € = a3, go to (36); if € = a3, go to (37); if € = a3, gO
to (38).

It is easy to see that the above algorithm will terminate with y, Y, %, M
satisfying the optimality conditions and such that u is a real vertex of G X &.
The computation bound is the same as the bound for a single stage (single value
of u) of the primal algorithm; the proof is similar to the proof for the primal
algorithm. We can now begin phase 2 of the post-optimality procedure; namely,
we replace ¢ by ¢, adjust y, as indicated above, and apply the primal algorithm.
The tree T with which phase 1 of the procedure terminated is a valid tree with
which to begin phase 2; this justifies the claim that only one tree need be grown.
In general, at most |U| trees will be grown, and we obtain a bound for the
post-optimality procedure of the order of |U|:|V(G)|- |E(G)|. (The techniques
which enable the replacement of |E(G)| by |V(G)| in the bound for the primal
algorithm would provide a similar improvement in this bound.)

8. Integer-valued optimal dual solutions

Two fundamental results in the theory of optimum matching are the following
theorems of Edmonds.

(40) Theorem. If G has a perfect matching, then
max(c(M): M a perfect matching)

= min(y(V(G))+ >, (gsYs: SEQ): Ys=0 for S € Q;

2 jESWN+(Ys:jEy(S)=¢; for j € E(G)).

64 W.H. Cunningham, A.B. Marsh, 11| Primal matching algorithm

(41) Theorem. The convex hull of incidence vectors of perfect matchings (the
“matching polytope™) is

{x =(x;:j€ E(G)): x; =0 for j € E(G);
x(6(v))=1for v € V(G);
x(y(S)) = gs for S € Q}.

Theorem (40) was first proved in [7] using the blossom algorithm; the primal
algorithm also vields a proof. Theorem (41) is a consequence of (40), in view of
the standard linear programming result that any extreme point of a (convex)
polyhedron uniquely maximizes some linear function over the polyhedron.
(Recently, Pulleyblank and Edmonds [20] have strengthened (41) by characteriz-
ing those inequalities which are essential to the definition of the matching
polytope.) On the other hand, in view of the linear programming duality theorem,
(40) is a consequence of (41). Thus, for example, a number of recent direct
(non-algorithmic) proofs of (41) ([1], [14], [22]), some of them elegant, provide
proofs of (40). However, the algorithmic proofs of (40) have the advantage of
yielding results rather stronger than (40) itself. The following result is an
example; Theorem M of [7] goes even farther in this direction.

(42) Theorem. There exists an optimal (y,Y) in (40) satisfying (43) and (44)
below.

(43) There exists a shrinking family & of G such that Y5 >0 implies S € &;

(44) If a number d divides ¢; for each j € E(G), then d divides Ys for each
S € Q and d divides 2y, for each v € V(G).

The first part of (42) is an immediate consequence of either the blossom
algorithm or the primal algorithm; it was proved in {7]. The second part of (42)
was stated in [9] (there is a proof in [18]). It is not difficult to see that the
condition (44) can be replaced in Theorem (42) by (45) below.

(45) If c is integer-valued, then Y is integer-valued and 2y is integer-valued.
We extend the result (42) with the following theorem.

(46) Theorem. There exists an optimal (y, Y) in (40) satisfying (43) and such
that, if ¢ is integer-valued, then (y, Y) is integer-valued.

We begin the proof of (46) by verifying (42) using the primal algorithm. The
proof of the following result is analogous to the method of proof of (42) given in
{18].

W.H. Cunningham, A.B. Marsh, I11| Primal matching algorithm 65

(47) Proposition. If c is integer-valued, and the primal algorithm is begun with
(y,Y) such that Y and 2y are integer-valued, then this property is preserved
throughout the algorithm.

Proof. It is enough to show that a dual change or a mini dual change cannot
destroy the property of Y and 2y being integer-valued. With regard to the dual
change operation (24), it suffices to show that 2e will be an integer. We observe
that, where T is an alternating tree constructed by the algorithm and v, w are
elements of I(T)UO(T), we have y, =y, (mod 1). It follows that 2a, and 28,
will be integers. It is easy to-see that 2a;, 2as, 28:1, and 28; will also be integers,
and thus that 2e will be an integer. Thus a dual change step will not destroy the
integrality of Y and 2y. It is similarly easy to see that a mini dual change will not
affect this property. The proof is complete.

Before describing an algorithmic proof of (46), we observe that a method
similar to the proof of (42) will not suffice to prove (46), for it is possible for a
dual change to destroy the property that y is integer-valued. (This could occur
when € = a; or a; in (24).) We give a description of the algorithm for finding an
integer-valued optimal dual solution which is somewhat less formal than pre-
vious descriptions; the reader who has successfully reached this point in the
paper should have no trouble understanding the method. We begin with
y, Y, ¥, M at termination of the primal algorithm. We assume that the initial dual
solution has been chosen so that (47) will ensure that Y and 2y are integer-
valued. If y is integer-valued, we are done. Otherwise, we choose u € V(G) such
that y, =3 (mod 1). We define r and T as in (20). We then perform steps (21),
(22), (23) of the primal algorithm repeatedly, until no more such steps can be
carried out. At this point, for every v € I(T) UO(T), we have y, =3 (mod 1). We
now put € =3 and replace (y, Y) by (¥, Y"), as in (24). This step maintains an
integer-valued Y, keeps y, integral if it was before, and makes y, an integer for
each v € I(T) UO(T). If there remains some u € V(G) with y, =3 (mod 1), the
process is repeated.

The above algorithm is clearly finite, and so (46) is proved. In fact, the present
algorithm has a computation bound which is better than the computation bound
for the primal algorithm by a factor of |V(G)|. A vertex v enters O(T) only if
y. =4%(mod 1), and does not leave O(T) until y, becomes an integer. Since the
steps (21) and (22) increase |O(T)| and step (23) does not decrease |O(T),
therefore steps (21) and (22) are performed at most | V(G)| times. A set S which
is added to & by (22) will never be a subset of I(T) for any T; this is because S
will remain a subset of O(T) until y, becomes an integer for each v € S, at which
point S will never become part of another tree T. Thus each S which is
expanded by (23) must be a member of the & with which the present algorithm is
initiated. It follows that (23) will be performed at most %(IV(G)|— 1) times.
Therefore, we have a bound of O(|V(G))|) for the number of times (21), (22), (23)
are performed in the present algorithm; the analogous bound in the primal
algorithm is O(|V(G)P).

66 W.H. Cunningham, A.B. Marsh, III| Primal matching algorithm

We wish to obtain similar results for optimum not-necessarily-perfect match-
ing. Here, in analogy to (40), Edmonds has proved the following.

(48) Theorem. The following holds,

max(c¢(M): M a matching) =

= min(y(V(G))+Z (gsYs: S€ Q) y, =0 for v € V(G);
Ys=0for Se€Q;

2 (i €8()+ 2 (Ys:jEy(S) = for j € E(G)).

We will prove the following analogue of (46), extending a result of [7] and [9]
which is analogous to (42).

(49) Theorem. There exists an optimal (y,Y) in (48) satisfying (43) and such
that, if c is integer-valued, then (y, Y) is integer-valued.

Proof. Let U be a set of vertices of G such that there is an optimal matching M,
of G with 8(u)NM, =9 if and only if u € U. Form a graph G’ by adding to G a
vertex u’ and an edge e(u) joining u’ to u for each u € U. Put ¢, = 0 for each
u € U. Then G’ has an optimal matching which is perfect, namely, M,=
M, U{e(u): u € U}. If we begin the primal algorithm with M, and with (y, Y)
such that Y and 2y are integer-valued, we can obtain a corresponding optimal
dual solution for which Y and 2y are integer-valued. We wish also to have y = 0.
Choose u such that y, <0, and define » and T as in (20). We perform steps (21),
(22), (23) of the primal algorithm repeatedly, until no more such steps can be
carried out. We then calculate a as in (24), put € = min(a, —y,), and replace
(y, Y) by (y',Y’) as in (24). We continue this procedure until y, = 0. We claim
that there is no v € V(G) such that y, becomes negative during the procedure. If
this is not true, then v must be an element of O(T). We assume that there is an
edge e with ¢, = 0 joining u to v in G. (Since M, has maximum weight among all
matchings of G’, perfect or not, adding such an edge e with weight 0 will not
change the fact that M, is an optimal perfect matching.) But then d. =y, +y, <
0; this implies that an augmentation could be done, obtaining a perfect matching
of G’ having larger weight than M,. This cannot be true, so there cannot exist
such a vertex v. It follows that we have a finite algorithm which will find an
optimal dual solution (y, Y) to the perfect matching problem on G’ such that
y = 0. Also, by reasoning similar to that in the proof of (47), Y and 2y are
integer-valued.

If we now apply the algorithm of the proof of (46) to obtain an integer-valued
dual solution to the perfect matching problem on G’, non-negativity will also be

W.H. Cunningham, A.B. Marsh, III] Primal matching algorithm 67

maintained; the reason is that a y, is lowered in that algorithm only if y, =
f(mod 1) and in that case y, is lowered by 3. Now, that integer-valued, non-
negative dual solution (y, Y) for G’ can be restricted to G without changing the
value of the dual objective function. This is because an edge e(u) cannot be in
v(S), where S €% and & is a shrinking family of G’. Thus, since c.,) =0, it
must be that y, =0 for each u € U. The proof is complete.

We wish to point out some connections between the results of this section and
work on optimum b-matching. Given a vector b = (b,: v € V(G)) of positive
integers, a b-matching is a non-negative integer-valued vector x = (x;: j € E(G))
such that x(8(v))=< b, for v € V(G); a perfect b-matching satisfies each of the
latter inequalities with equality. We have been dealing with that instance of
b-matching in which each b, is 1. Where Q is generalized to be {S C V(G): |S|=
3, b(S) odd} and gs for S € Q becomes 3(b(S)— 1), the results (40), (41), (48)
extend to general b-matching (see [9], [12], [18]). But while (42) and its analog for
not-necessarily-perfect matchings are also special cases .of results on b-match-
ing, this is not true of our stronger results, (46) and (49). A well-known
counterexample is provided by a polygon having 3 vertices, with each b, = 2 and
each ¢; = 1. In this example, the only optimal dual solution have y, = i for each v.

Recently, Hoffman and Oppenheim [14] have considered adding to the con-
straints defining the b-matching polytope, constraints of the form x(y(S)) =
1b(S), where b(S) is even. These constraints are redundant to the definition of
the polytope, but they allow more freedom in the choice of optimal dual
solutions. It follows from the main result of [14] that, when c is integer-valued,
there exists an integer-valued optimal dual solution, allowing the use of dual
variables corresponding to these redundant constraints. (The reader can check
that this result is not contradicted by the counterexample of the previous
paragraph.) This result can also be derived directly from the b-matching analo-
gue of (42), as has been pointed out to us by R. Giles and W. Pulleyblank. It is
not difficult to show that, if at least one b, is 1, then the ‘“‘extra’ dual variables
can be eliminated without losing the integrality property. Thus, part of (49) can
be deduced from previously known results. Subsequent work related to the
subject of this section can be found in [19] and [21].

9. Some results on perfect matchings

In this section we apply the methods of the last section to study perfect
matchings from a graph-theoretic, rather than optimizational, point of view. This
subject has received considerable attention recently, from Lovész [17] and
others.

Given a graph G and a subset S of V(G), we use G—S to denote
G[V(G)\S]. We say that G is k-connected, for k a positive integer, if |V(G)| =

68 W.H. Cunningham, A.B. Marsh, IIT] Primal matching algorithm

k+1and G — S is connected for every S C V(G) with |S| <k. We say that G is
hypomatchable if G —{v} has a perfect matching for every v € V(G), and that G
is bicritical if G —{u, v} has a perfect matching whenever u, v € V(G) and u# v.
A prime example of a hypomatchable graph (in fact, by a result of [20], the only
example) is a graph G having a shrinking family & such that |V(G x ¥)| = 1. We
state an old result (50) of Hall [13] and a result (51) derivable from the proof of
(46). These will be applied to prove theorems of Zaks and Lovész on the number
of perfect metchings in a k-connected graph.

(50) Theorem. If G is a bipartite graph having bipartition {U, W} such that G
has a perfect matching and each u € U is adjacent to at least k elements of W,
then G has at least k! perfect matchings.

(51) Theorem. Let G be a graph having a perfect matching and let u € V(G).
Then there exists a set I C V(G) such that
(51a) uel,;

(51b) the components C;, C,, ..., C, of G — I are hypomatchable;
(51c) | = n.

Proof. Take ¢; =1 for each j € E(G). Begin the procedure of the proof of (46)
with any perfect matching M and the optimal dual solution given by Ys = 0 for
SE€Qand y, =iforve V(G), and let the first choice of u in the algorithm be
the u of (51). At termination of the algorithm we will have an integer-valued
optimal dual solution (y, Y) and a shrinking family & of G. Since each V=
}(mod 1) initially, there is a spanning forest F of G X ¥ whose components are
alternating trees T, T, ..., T constructed by the algorithm. The vertices v €
V(G) such that y. = 1 will be precisely the elements of UI(T}):i =1<m); the
remaining vertices v € V(G), the elements of U (O(T)): 1=i=m), will have
y» = 0. The sets S € ¥ which have Y5 >0 will be precisely the pseudo vertices of
G X & which are odd vertices of some T;; each of these will have Ys = 1. No
two odd vertices of the same T; or of two different T; can be joined by an edge
in G x ¥, for such an edge e would violate d. =0. Thus if we choose I to be
Ua(): 1=i=m), the components C; of G—1I will be graphs G[S] for S a
pseudo vertex of G X & which is an odd vertex of some T, and G[{v}] for v a
real vertex of G X & which is an odd vertex of some T. For this choice of I,
each of the requirements (51a), (51b), (51c) is easily seen to be satisfied. This
completes the proof. .
Theorem (51), which has been derived using the primal algorithm, bears a
resemblance to an important result, called the Edmonds—Gallai theorem in [171,
which was derived using the blossom algorithm in [6]. However, the Edmonds—
Gallai theorem is much superior, in that it identifies uniquely certain structure

W.H. Cunningham, A.B. Marsh, III/ Primal matching algorithm 69

related to the maximum cardinality matchings of G. Nevertheless, in the case in
which G has a perfect matching, the Edmonds—Gallai theorem gives no ad-
ditional information, while (51) does say something further.

We will use (51) to prove the following two results on the number of perfect
matchings in k-connected graphs. The first theorem is due to Lovasz [17], and
the second to Zaks [23]. We point out that the idea of our proof of (52), namely,
appealing to the result (50) for bipartite graphs, is the same as in [17]; however,
we have used the primal algorithm to make the reduction, while Lovasz applies a
structural theory of graphs having perfect matchings, which is described in [17].

(52) Theorem. Let G be a k-connected graph having a perfect matching. If G is
not bicritical, then G has at least k! perfect matchings.

Proof. Suppose that, for some choice of u in (51), we obtain n > 1. For any G,
let N (i) be the set of vertices in I adjacent to at least one element of V(C)).
Then G — N (i) is not connected, so |[N(i)] = k. It follows that the bipartite graph
G’, obtained from G by shrinking each V(C;) and deleting the elements of y(I),
satisfies the hypothesis of (50). Thus G’ has at least k! perfect matchings. Since
each C; is hypomatchable, each such perfect matching is extendable to a perfect
matching of G, so G has at least k! perfect matchings. On the other hand, if
n =1 in (51) for every choice of u, it follows that G — {u} is hypomatchable for
each u € V(G), and thus that G is bicritical. The proof is complete.

(53) Theorem. If G is k-connected and has a perfect matching, then G has at
least k(k —2)(k —4) --- perfect matchings.

Proof. If G is not bicritical, the result follows from (52). Otherwise, suppose that
k=3, G is bicritical, and every (k — 2)-connected graph has at least m =
(k —2)(k — 4) --- perfect matchings. For any edge e joining vertices u and v, e is
an element of at least m perfect matchings of G, since G is bicritical and
G —{u, v} is (k —2)-connected. Since each perfect matching contains %|V(G)]
edges, G has at least ([E(G)| - m)/3|V(G)| perfect matchings. It follows from the
k-connectivity of G that 2|E(G)|=|V(G)|- k. Thus G has at least m - k perfect
matchings. To complete the proof, we need only show that (53) holds for k = 1
and 2. The case k =1 is trivial. For k = 2, we may assume from (52) that every
edge is in a perfect matching. By 2-connectivity, a vertex must have at least 2
edges incident with it and these cannot be in the same perfect matching, so there
are at least two perfect matchings. The proof is complete.

10. Computational results

In this section we report computational experience for a computer im-
plementation of the primal algorithm and a new implementation of the blossom

70 W.H. Cunningham, A.B. Marsh, III| Primal matching algorithm

algorithm, and compare these results with those obtained using earlier codes. We
also provide empirical evidence of the value of the post-optimality procedure
introduced in Section 7.

BLOSSOM I is the Fortran code described in [11]; it solves extremely general
matching problems, involving arbitrary integers b,, arbitrary positive integer
capacities (upper bounds) on variables x;, and both directed and undirected
edges.

BLOSSOM 1II is the PL/1 code described in [18]; it solves optimum b-
matching problems, as defined at the end of Section 8.

BLOSSOM III and PRIMAL are our Fortran implementations of the blossom
and primal algorithms for the problems treated in this paper. (The second author,
Burton Marsh, did the computer programming.) Table 1 reports IBM 370/158
solution times for each of these codes. The problems were randomly generated
simple graphs with integer weights; in each case the codes were given the same
problems to solve.

The clear superiority of BLOSSOM III over PRIMAL confirms our con-
jecture, and can be explained as follows. The blossom algorithm will grow
precisely 3| V(G)| trees (provided a perfect matching exists), whereas the primal
algorithm can grow as many as }|V(G)|—1 trees. (Our statistics indicate that it
often grows approximately 3| V(G)| trees.) More importantly, because the primal
algorithm maintains a perfect matching, it performs many more tree-growing,
shrinking and expanding steps than does the blossom algorithm.

The superiority of BLOSSOM III over the other two blossom codes is, of
course, partly attributable to the fact that it solves less general problems. We
also point out a characteristic of the other two codes which has a marked
influence on the computational results; namely, they are extremely sensitive to
changes in the range of the weights. Lines 5 through 7 of Table 1 illustrate this
sensitivity (for BLOSSOM II), and demonstrate the robustness of BLOSSOM

Table 1 ‘
Computational comparison of matching codes

Number Weight Average 370/158 CPU seconds
of graphs |V(G)| IE(G))| range BI BII BIII P
10 10 25 1-100 00.70 000.55 000.27 00.38
5 50 125 1-100 13.2 8.25 1.35 4.14
5 50 1225 1-100 58.15 22.87 3.75 7.49
2 100 500 1-100 70.08 35.14 5.12 18.69
2 100 2500 1-10 - 23.63 7.77 23.31
2 100 2500 1-100 — 44.7 9.69 23.46
2 100 2500 1-1000 — 173.19 9.30 29.39
2 100 4950 1-100 — 84.58 19.29 43.96
1 500 5000 1-100 — 331.6 125.49 —°

“BLOSSOM I does not accept problems having |E(G)| > 1500.
b |V(G) implementation exceeded storage allocated.

W.H. Cunningham, A.B. Marsh, III| Primal matching algorithm 71

IIT and PRIMAL in this regard. Also, the relatively good performance of
BLOSSOM 1II on the 500-vertex problem is explained by the fact that the
weight-range is small relative to |E(G))|.

Two innovations in BLOSSOM III and PRIMAL are worth mentioning here.
First, unlike the other two blossom codes, which use a triply-linked represen-
tation for trees, BLOSSOM III and PRIMAL use only a single predecessor
label. This simpler data structure is sufficient, at least for the less general
matching problems treated here, and is, of course, much cheaper to maintain.
Second, an idea of Lawler [16] has been used to achieve order of |V(G)|
implementations in both of the new codes. However, our experience indicates
that these implementations are actually slower than corresponding order of
|[V(G)I* - |E(G)| implementations for small problems (|V(G)| = 50) and are only
about 25% faster for large problems (|V(G)| = 500, |E(G)| = 5000). Moreover, the
|V(G)]’ implementations require considerably more storage (theoretically, order
of |V(G), as opposed to order of |V(G)|+|E(G)|), and this can be a serious
practical problem.

In order to test the value of the primal algorithm in post-optimality situations,
we generated a new problem from a previously-solved one by generating new
weights for the edges incident with a set U C V(G). We then solved this new
problem by the method suggested in Section 7. The time required for BLOSSOM
III to solve the original problem was taken as a reasonable estimate of the time
required to solve the new problem “from scratch”. This time is compared with
times for various sizes of U in Table 2. (The weight-range for all of these
problems was 1-100. The times are in CDC 7600 CPU seconds.) These restuilts
provide strong evidence that the primal algorithm is to be preferred when |U| is
not too large.

Table 2
Post-optimality results

Number BLOSSOM 111 PRIMAL
of graphs V(G| |EG)| average time |U| average time

10 30 435 0.088 1 0.017
. 3 0.035

10 0.102

1 0.140

5 100 1650 0.637 10 0.648
33 2.044

1 0.291

2 300 1495 5.566 30 1.039

100 2.707

72 W.H. Cunningham, A.B. Marsh, II1] Primal matching algorithm
Acknowledgment

We gratefully acknowledge the strong influence of Professor Jack Edmonds
on this work, not only through his research, but also through his teaching and
encouragement. We also thank Professor M.L. Balinski, who brought the paper
[2] to our attention.

References

[1] M.L. Balinski, “Establishing the matching polytope”, Journal of Combinatorial Theory B 13
(1972) 1-13.

[21 M.L. Balinski and R.E. Gomory, “A primal method for the assignment and transportation
problems”, Management Science 10 (1964) 578-593.

[3] R.S. Barr, F. Glover and D. Klingman, “The alternating basis algorithm for assignment
problems”, Mathematical Programming 13 (1977) 1-13.

[4] N. Christofides, “Worst-case analysis of a new heuristic for the traveling salesman problem”,
GSIA, Carnegie-Mellon University (1976).

[5]1 W.H. Cunningham, “A network simplex method”, Mathematical Programming 11 (1976)
105-116.

[6] J. Edmonds, “‘Paths, trees, and flowers”, Canadian Journal of Mathematics 17 (1965) 449-467.

[71 J. Edmonds, ‘“Maximum matching and a polyhedron with (0, 1) vertices”, Journal of Research of
the National Bureau of Standards 69B (1965) 125-130.

[8] J. Edmonds; “An introduction to matching”, Lecture notes, Univ. of Michigan Summer
Engineering Conf. (1967).

[9] J. Edmonds and E.L. Johnson, ‘“Matching: a well-solved class of integer linear programs”, in:
R.K. Guy et al., eds., Combinatorial structures and their applications (Gordon and Breach, New
York, 1970).

[10] J. Edmonds and E.L. Johnson, ‘“Matching, Euler tours, and the Chinese postman’’, Mathemati-
cal Programming 5 (1973) 88-124..

[11] J. Edmonds, E.L. Johnson and S.C. Lockhart, “Blossom I, A computer code for the matching
problem”, to appear.

[12] J. Edmonds and W.R. Pulleyblank, Optimum matching (Johns Hopkins Press) to appear.

[13] M. Hall, “Distinct representatives of subsets”, Bulletin of the American Mathematical Society
54 (1948) 922-926.

[14] A.J. Hoffman and R. Oppenheim, “Local unimodularity in the matching polytope”, Annals of
Discrete Mathematics 2 (1978) 201-209.

[15] H.W. Kuhn, “The Hungarian method for the assignment problem”, Naval Research Logistics
Quarterly 2 (1955) 83-97.

[16] E.L. Lawler, Combinatorial optimization (Holt Rinehart-Winston, New York, 1976).

[17] L. Lovasz, “On the structure of factorizable graphs”;, Acta Mathematica Academiae Scien-
tiarum Hungaricae 23 (1972) 179-195.

[18] W.R. Pulleyblank, Faces of matching polyhedra, Thesis, University of Waterloo (1973).

[19] W.R. Pulleyblank, “Dual integrality in b-matching problems”, CORE Discussion Paper, Lou-
vain (1977).

[20] W.R. Pulleyblank and J. Edmonds, “Facets of l-matching polyhedra”, in: C. Berge and D.
Ray-Chaudhuri, eds., Hypergraph seminar, Lecture Notes in Mathematics, No. 411 (Springer,
Berlin, 1974).

[21] A. Schrijver and P.D. Seymour, “A proof of total dual integrality of matching polyhedra”,
Mathematical Centre, Amsterdam (1977).

[22] P. Seymour, “On the 1-factors of regular graphs”, to appear.

[23] J. Zaks, “On the 1-factors of n-connected graphs”, in: R.K. Guy et al., eds., Combinatorial
structures and their applications (Gordon and Breach, New York, 1970).

