
RANDOMIZED Õ(M(|V |)) ALGORITHMS FOR PROBLEMS IN
MATCHING THEORY∗

JOSEPH CHERIYAN†

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 6, pp. 1635–1655, December 1997 004

Abstract. A randomized (Las Vegas) algorithm is given for finding the Gallai–Edmonds de-
composition of a graph. Let n denote the number of vertices, and let M(n) denote the number of
arithmetic operations for multiplying two n×n matrices. The sequential running time (i.e., number
of bit operations) is within a poly-logarithmic factor of M(n). The parallel complexity is O((logn)2)
parallel time using a number of processors within a poly-logarithmic factor of M(n). The same
complexity bounds suffice for solving several other problems:

(i) finding a minimum vertex cover in a bipartite graph,
(ii) finding a minimum X→Y vertex separator in a directed graph, where X and Y are specified

sets of vertices,
(iii) finding the allowed edges (i.e., edges that occur in some maximum matching) of a graph,

and
(iv) finding the canonical partition of the vertex set of an elementary graph.

The sequential algorithms for problems (i), (ii), and (iv) are Las Vegas, and the algorithm for
problem (iii) is Monte Carlo. The new complexity bounds are significantly better than the best
previous ones, e.g., using the best value of M(n) currently known, the new sequential running time
is O(n2.38) versus the previous best O(n2.5/(logn)) or more.

Key words. randomized algorithms, matching theory, Gallai–Edmonds decomposition, allowed
edges, canonical partition, bipartite minimum vertex covers, digraph minimum vertex separators

AMS subject classifications. 68R10, 05C85, 05C50, 05C40, 05C70, 90C27

PII. S0097539793256223

1. Introduction. A matching of an undirected, possibly nonbipartite, graph
G = (V,E) is a subset E′ of the edges such that no two of the edges in E′ have a
vertex in common. A perfect matching is one with cardinality |V |/2. Tutte [T 47]
gave a good characterization of graphs that have perfect matchings, i.e., he showed
that the perfect matching decision problem (deciding whether or not a given graph
has a perfect matching) is in NP ∩ co-NP. One of Tutte’s innovations was introducing

the skew symmetric adjacency matrix B̃ of the graph G, defined as follows: Associate
each edge ij of G with a distinct variable xij . Then B̃ = B̃(xij) is a |V | × |V | matrix
whose entries are given by

B̃ij =

xij if i > j and ij ∈ E,
−xij if i < j and ij ∈ E,
0 otherwise.

Tutte observed thatG has a perfect matching iff the determinant of B̃(xij), det(B̃(xij)),

is not identically zero; here, det(B̃(xij)) is a polynomial in the variables xij . Lovász
[Lo 79] used this observation to give an efficient randomized algorithm for the perfect
matching decision problem: Choose a prime number q = |V |O(1), and substitute each

∗Received by the editors September 6, 1993; accepted for publication (in revised form) October
30, 1995.

http://www.siam.org/journals/sicomp/26-6/25622.html
†Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario,

Canada N2L 3G1 (jcheriyan@watdragon.uwaterloo.ca). This research was supported by NSERC
grant OGP0138432 (NSERC code OGPIN 007), by a University of Waterloo faculty research grant,

and by the Lucille and David Packard Fellowship of Éva Tardos.

1635

1636 JOSEPH CHERIYAN

variable xij in B̃ by an independent random number drawn from {1, 2, . . . , q − 1}.
Compute the determinant of the resulting random matrix B over the field of integers
modulo q. With high probability (i.e., probability ≥ 1 − 1/Ω(|V |); see Lemma 2.1),

det(B) 6= 0 mod q iff det(B̃(xij)) is not identically zero iff G has a perfect matching.
This algorithm has two especially attractive features: it is simple, solving the decision
problem by executing one “matrix operation,” and it is efficient, running in sequential
time Õ(M(|V |)) = O(|V |2.38) and in parallel time O((log |V |)2) using Õ(M(|V |)) pro-
cessors. Here, M(n) denotes the number of arithmetic operations for multiplying two
n×n matrices and is currently known to be O(n2.376); see Coppersmith and Winograd
[CW 90]. Throughout, the bounds on the sequential running time or on the number
of parallel processors are stated for the arithmetic complexity model (uniform-cost
RAM or PRAM), but they apply also to the bit complexity model because, for each
arithmetic operation, comparison, or data transfer, each operand has O(log |V |) bits,
hence the number of bit operations is at most O((log |V |)2) times the number of
arithmetic operations; see the last paragraph of section 2.

The problem of finding a perfect matching of a graph G in time polynomial
in |V (G)| remained open until Edmonds [E 65] gave the first algorithm. Edmonds’
algorithm solves the following more general problem: For every graphG, the algorithm
finds a matching of maximum cardinality in time |V (G)|O(1). One consequence of the
algorithm is a theorem that was discovered independently by Gallai [Ga 64], which is
the so-called Gallai–Edmonds theorem. According to this theorem, for every graph
G the vertex set can be partitioned into three sets A(G), C(G), D(G) in a unique
way such that certain properties hold (see Theorem 3.1). The partition gives much
useful information, e.g., the cardinality of a maximum matching, the vertices that
are incident to every maximum matching, etc. Several algorithms for constructing
the partition are known. Edmonds’ matching algorithm implicitly constructs the
partition. Lovász (see [Kf 86, section 2]) developed a randomized algorithm for finding

the Gallai–Edmonds decomposition that runs in time Õ(|V |M(|V |)); though there are
faster algorithms for finding the decomposition, the algorithm of [Kf 86] is interesting
for its simplicity.

This paper (see Figure 1) presents a simple and efficient randomized algorithm
for finding the Gallai–Edmonds decomposition. Lemma 3.3 shows that, with high
probability, the partition A(G) ∪ C(G), D(G) for a given graph G can be found by
computing a basis for the null space of a random skew symmetric adjacency ma-
trix B, i.e., executing one “matrix operation” on B yields this partition. Obtaining
the partition A(G), C(G), D(G) from A(G) ∪ C(G), D(G) is trivial. The sequential

running time is Õ(M(|V |)) and the parallel time is O((log |V |)2) using Õ(M(|V |))
processors. Our algorithm is closely related to Lovász’s algorithm (in [Kf 86]) for the
Gallai–Edmonds decomposition; also, the algorithm uses a technique due to Eberly
[E 91]. The algorithm, its proof, and running time analysis are all quite simple. Due
to the information provided by the Gallai–Edmonds decomposition, our algorithm can
be used to find a minimum cardinality vertex cover of a bipartite graph within the
same complexity bounds. The minimum cardinality bipartite vertex cover problem is
equivalent to the problem of finding a minimum vertex separator for two given vertex
sets X and Y in a directed graph (see Proposition 2.4); hence the directed graph
problem can be solved within the same complexity bounds.

An edge of a graph G is called allowed if it occurs in at least one maximum cardi-
nality matching. Consider the problem of finding the allowed edges. If G has a perfect
matching, then the Gallai–Edmonds decomposition gives no information about the al-

RANDOMIZED ALGORITHMS FOR MATCHING PROBLEMS 1637

lowed edges because the partition A(G), C(G), D(G) is trivial with A(G) = ∅ = D(G).
Rabin and Vazirani [RV 89], in an elegant study of the random skew symmetric adja-
cency matrix B, observed that, if det(B) 6= 0 and the (i, j) minor of B (i.e., the deter-
minant of the submatrix obtained from B by removing row i and column j) is nonzero,
then the edge ij (if present) must be allowed. Moreover, all of the (i, j) minors of B
can be computed simultaneously by computing the inverse B−1; the (j, i) entry of B−1

equals (−1)i+j/ det(B) times the (i, j) minor of B. Combining Rabin and Vazirani’s
method with our algorithm for the Gallai–Edmonds decomposition gives a random-
ized algorithm for finding the allowed edges of arbitrary graphs (see section 3.3); the

sequential running time is Õ(M(|V |)) and the parallel time is O((log |V |)2) using

Õ(M(|V |)) processors. We also give a randomized algorithm, with the same com-
plexity bounds for finding the canonical partition of an elementary graph, where a

1

2

3 4

5
6

7 8

9 1011

12 13

14

D

A

C

graph G (|V | = 14, |E| = 19)

� for i = 1 : size(adj),
for j = 1 : size(adj),

B(i, j) = adj(i, j) ∗ (i− j);
end

end
� rank(B)
ans = 12
% compute basis for null space of B
� N = null(B)
ans =

0.1508 0.5161

0.1877 0.2578

−0.3753− 0.5156

0.1877 0.2578

0.2983− 0.5170

−0.8228 0.2599

0.0000 0.0000

0.0000 0.0000

0.0000 0.0000

0.0000 0.0000

0.0000 0.0000

0.0000 0.0000

0.0000 0.0000

0.0000 0.0000

Fig. 1. Finding the Gallai–Edmonds decomposition of an example graph G, using Lemma 3.3.
The MATLAB code forms a pseudorandom skew symmetric adjacency matrix B from the adjacency
matrix adj of G by substituting (i − j) for each nonzero adjij . With high probability, a vertex j
is noncritical iff row j of the basis N of the null space of B is nonzero. The resulting partition,
A = {v7, v8}, C = {v9, . . . , v14}, D = {v1, . . . , v6}, is shown. Note that each connected component
of D has odd cardinality and each connected component of C has even cardinality. Since rank(B) =
12 = |V | − (]components(D) − |A|), we have ν(G) = 6. It follows that this partition gives the
Gallai–Edmonds decomposition.

1638 JOSEPH CHERIYAN

graph is called elementary if it has a perfect matching and its allowed edges form a
connected spanning subgraph (see section 3.4).

Both Lovász’s algorithm for the perfect matching decision problem and our al-
gorithm for the Gallai–Edmonds decomposition are Monte Carlo; however, using re-
sults from matching theory, we show how to make both algorithms Las Vegas while
achieving the same sequential and parallel complexity bounds. While analyzing our
randomized algorithms, we assume that the random bits drawn by the execution have
no effect on the sequential or parallel complexity; this assumption may not be appro-
priate in other contexts. More precisely, for the execution of a randomized algorithm
on a fixed input, let us take the sequential running time (or parallel running time,
or number of parallel processors) to be the maximum sequential running time (or
maximum parallel running time, or maximum number of parallel processors) over all
possible choices of the random bits. A randomized algorithm is said to be Monte
Carlo if, for a fixed input, an execution may give incorrect results with small prob-
ability. For a randomized algorithm and a problem instance of size n, an event is
said to occur with small probability if the probability is ≤ 1/Ω(n). A randomized
algorithm is said to be Las Vegas if, for a fixed input, an execution either returns an
output guaranteed to be correct or reports failure, the latter with small probability.
A Las Vegas algorithm may be trivially converted into a Monte Carlo algorithm with-
out changing the complexity. To convert a Monte Carlo algorithm into a Las Vegas
algorithm, we need a subroutine for verifying whether the output of the Monte Carlo
algorithm is correct. If the complexity of the verifying subroutine is bounded by that
of the Monte Carlo algorithm, then the Las Vegas and Monte Carlo algorithms have
the same order of complexity. This raises a difficulty for our randomized algorithms:
We need to verify the correctness of results for problems in matching theory within a
complexity bound that is significantly less than that of the best algorithms known for
finding a maximum cardinality matching (see the next paragraph). Fortunately, the
partition of V (G) computed by our randomized algorithm for the Gallai–Edmonds

decomposition can be verified in sequential time Õ(|E| + |V |) (or in parallel time

O((log |V |)2) using Õ(|E| + |V |) parallel processors). Consequently, our algorithms
for the Gallai–Edmonds decomposition, a minimum vertex cover of a bipartite graph,
and a minimum vertex separator of a directed graph all can be made Las Vegas with-
out affecting the complexity. If the graph is bipartite, then our algorithm for finding
the allowed edges can be made Las Vegas without affecting the complexity, but for
nonbipartite graphs, we do not have a sufficiently efficient subroutine for verifying the
allowed edges. Given an elementary graph, there is a sequential Õ(|E|+ |V |)-time al-
gorithm for verifying whether the partition computed by our Monte Carlo algorithm
is a canonical partition (see [L 95]), so our sequential algorithm for the canonical
partition can be made Las Vegas without affecting the complexity.

We briefly discuss the best sequential and parallel complexities known for comput-
ing a maximum cardinality (or a perfect) matching. The fastest known sequential algo-
rithms for finding a maximum matching are due to Micali and Vazirani [MV 80], Blum
[B 90], and Gabow and Tarjan [GT 91] (also see [V 94]) and run in time O(|E|√|V |)
(for dense graphs this is O(|V |2.5) time). These algorithms are deterministic, how-
ever, and are significantly slower than Lovász’s randomized algorithm for the perfect
matching decision problem. At present, all efficient (i.e., poly-logarithmic time and
polynomial number of processors) parallel algorithms for matching problems use ran-
domization. The best parallel algorithms for finding a maximum matching are the
Monte Carlo algorithms of Mulmuley, Vazirani, and Vazirani [MVV 87], Galil and

RANDOMIZED ALGORITHMS FOR MATCHING PROBLEMS 1639

Pan [GP 88], and Karp, Upfal, and Wigderson [KUW 86]; the parallel complexities

are O((log |V |)2) time using Õ(|V | |E|M(|V |)) processors and O((log |V |)3) time us-

ing Õ(|V |M(|V |)) processors, respectively. Our parallel complexity bounds are stated
for the Exclusive Read Exclusive Write (EREW) PRAM model. Efficient parallel Las
Vegas algorithms for matching problems have been designed by Karloff [Kf 86] and
Wein [W 91].

It turns out that our algorithm for finding a minimum vertex separator for two
given vertex sets X and Y in a directed graph can be developed independently of
matching theory; this is done in section 4, building on the work of Linial, Lovász,
and Wigderson [LLW 88] and Cheriyan and Reif [CR 94]. Preliminary versions of the
results of computing the Gallai–Edmonds decomposition and directed graph X→Y
separators have appeared in [C 94] and [C 93], respectively.

Section 2 contains notation, definitions, and preliminary results. Section 3 de-
velops the algorithms for problems in matching theory. Section 4 is independent
of section 3 and develops an algorithm for a minimum X→Y separator in a directed
graph. Finally, Section 5 contains conclusions, and the appendix contains some proofs.

2. Preliminaries. For the given graph G = (V,E), we use n and m to denote
the number of vertices and edges, i.e., n = |V | and m = |E|. For a subset X of V ,
X denotes V − X. For a matrix A with row and column indices from V and two
subsets X, Y of V , A(X,Y) denotes the submatrix of A formed by the X-rows and
the Y -columns. The vector with a 1 in position j and zeros elsewhere is denoted by
ej , and [Aej] denotes the (n+ 1)× n matrix formed by adding the (n+ 1)th row ej to

an n× n matrix A.

A few standard definitions from matching theory are needed; see [LP 86]. An
odd (even) component of a graph is a connected component whose vertex set has odd
(even) cardinality. A vertex cover of a graph G = (V,E) is a vertex set C ⊆ V such
that each edge is incident with some vertex of C. Given a graph G = (V,E) and a
matching E′, a vertex is called matched if it is incident to an edge of E′ and is called
exposed otherwise. A near perfect matching is one with exactly one exposed vertex.
For a graph G, ν(G) denotes the number of edges of a maximum matching. The
deficiency of G is the number of vertices exposed in a maximum matching n− 2ν(G).
A vertex x is called noncritical if it is exposed in at least one maximum matching,
otherwise x is called critical. Equivalently, x is noncritical if ν(G − x) = ν(G) and
is critical if ν(G − x) < ν(G). A graph H is called factor critical if for each of its
vertices x, H − x has a perfect matching.

The following lemma due to Zippel [Z 79] and Schwartz [Sc 80] (also see [Ko 91,
Corollary 40.2]) is useful for estimating the failure probability of a whole class of
randomized algorithms.

Lemma 2.1 (Zippel–Schwartz). If p(x1, x2, . . . , xm) is a nonzero polynomial of
degree d with coefficients in a field and S is a subset of the field, then the probability
that p evaluates to zero on a random element (s1, s2, . . . , sm) ∈ Sm is at most d/|S|.

Recall from section 1 the definition of the skew symmetric adjacency matrix B̃ =
B̃(xij) of a graph G and Tutte’s observation that det(B̃) is not identically zero iff G
has a perfect matching. Lovász generalized this observation; for a proof, see [RV 89].

Proposition 2.2 (Lovász). Let B̃ = B̃(xij) be the skew symmetric adjacency

matrix of a graph G. Then rank(B̃) = 2ν(G).

A random skew symmetric adjacency matrix B is obtained by substituting the
variables xij in B̃(xij) by independent random numbers wij from a subset {1, . . . ,W}

1640 JOSEPH CHERIYAN

of a field. The next result is due to Lovász [Lo 79] and follows from the previous one
by applying the Zippel–Schwartz lemma.

Proposition 2.3 (Lovász). Let B = B̃(wij) be a random skew symmetric
adjacency matrix of a graph G, where the wij are independent random numbers
from {1, . . . ,W}. Then rank(B) ≤ 2ν(G), and with probability at least 1 − (n/W),
rank(B) = 2ν(G).

Given a digraph (directed graph) G = (V,E) and a pair of subsets X and Y of
the vertices, an X→Y (vertex) separator is a set of vertices S such that G − S has
no path from a vertex in X − S to a vertex in Y − S. For a pair of subsets X and Y
of the vertices, p(X,Y) denotes the maximum number of vertex disjoint paths from
X to Y (any two of these paths have no vertices in common, not even the terminal
vertices). Clearly, every X→Y separator has cardinality at least p(X,Y). Menger’s
theorem states that for every pair of subsets X and Y of the vertices, there exists an
X→Y separator with cardinality p(X,Y). We call an X→Y separator minimum if
its cardinality is minimum, namely, p(X,Y).

Let us call two problems linear-time equivalent if there is a linear-time algorithm
to transform an instance of the first problem to an instance of the second such that
a solution to the second instance can be transformed in linear time to a solution of
the first instance, and vice versa. Part (i) of the next proposition is well known. The
novel point of part (ii) is that a digraph minimum vertex separator can be obtained in
linear time from an arbitrary minimum vertex cover of an appropriately constructed
bipartite graph. See the appendix for a proof of the proposition.

Proposition 2.4.

(i) The problem of finding a maximum cardinality matching in a bipartite graph
is linear-time equivalent to the problem of finding a maximum cardinality set
of vertex-disjoint X→Y paths in a digraph.

(ii) The problem of finding a minimum vertex cover in a bipartite graph is linear-
time equivalent to the problem of finding a minimum X→Y separator in a
digraph.

We use the soft-Oh notation to denote the complexity of algorithms. The soft-
Oh notation drops poly-logarithmic factors: For functions f and g, f is Õ(g) iff
there are constants n0, k ≥ 0 such that f(n) ≤ g(n)(logn)k, for all n ≥ n0. Note

that Õ(M(n)) = O(n2.38), since M(n) is known to be O(n2.376) (see section 1).
All computations of the algorithms presented below are over the field Zq of integers
modulo a prime number q. When choosing random numbers w, we assume that they
are drawn from the uniform distribution over {1, . . . ,W}, where W is an integer
and W < q. Throughout, we take q = |V (G)|O(1); i.e., q is polynomially bounded
in the number of vertices of the graph G. Consider the number of bit operations for
multiplying two |V |×|V | matrices over the field of integers modulo q. Since an integer
modulo q can be represented using O(log q) = O(log |V |) bits and the multiplication
of two q-bit numbers takes O(q2) bit operations, it follows that the number of bit

operations is Õ(M(|V |)).

3. Randomized algorithms for problems in matching theory. This sec-
tion develops randomized Õ(M(|V |))-time algorithms for the following problems in
matching theory: finding a Gallai–Edmonds decomposition; finding a minimum ver-
tex cover in a bipartite graph; finding the allowed edges of a graph; and finding the
canonical partition of an elementary graph.

RANDOMIZED ALGORITHMS FOR MATCHING PROBLEMS 1641

3.1. A randomized algorithm for the Gallai–Edmonds decomposition.
Recall that a vertex x is called noncritical if it is exposed in at least one maximum
matching, otherwise x is called critical. We use D(G) to denote the set of noncritical
vertices and A(G) to denote the set of vertices in V (G) −D(G) adjacent to vertices
of D(G). The set of remaining vertices, V (G)− (D(G) ∪A(G)), is denoted by C(G).
For ease of notation, D(G) and C(G) are also used to denote the subgraphs of G
induced by the respective vertex sets. See [LP 86, Theorem 3.2.1] for a proof of the
next theorem.

Theorem 3.1 (Gallai–Edmonds). Let G be a graph, and let D(G), A(G), and
C(G) be as defined above. Then

(i) each component of the subgraph induced by C(G) has a perfect matching;
(ii) each component of the subgraph induced by D(G) is factor critical;
(iii) the deficiency of G equals

]components(D(G))− |A(G)|,

where]components(D(G)) denotes the number of connected components in
the subgraph induced by D(G);

(iv) every maximum matching of G contains a perfect matching of each component
of C(G), a near perfect matching of each component of D(G), and matches
all the vertices of A(G) with vertices in distinct components of D(G).

The key result for our algorithm follows. Recall the notation [Bej] from section 2.

Lemma 3.2. Let B = B̃(wij) be a random skew symmetric adjacency matrix of a
graph G, where the wij are independent random numbers from {1, . . . ,W}. Consider
any vertex x, and let j be its index in B.

(i) If x is noncritical, then with probability at least 1 − (2n/W) the rank of the
matrix [Bej] is greater than that of B.

(ii) If x is critical, then with probability at least 1− (n/W) the rank of the matrix
[Bej] equals that of B.

Proof. Consider the augmented graph G′ and its random skew symmetric adja-
cency matrix B′, where G′ is obtained from G by adding a new vertex z (with index
n + 1) and the edge xz, and B′ is obtained from B by adding a row r · ej and a
corresponding column, where r is a random number independent of the entries of B,
i.e.,

B′ =

B 0
...

−r
...

0 . . . r . . . 0

.

Consider the cardinality of a maximum matching of G′. If there exists a maximum
matching of G with x exposed, then ν(G′) is greater than ν(G) because the new edge
xz of G′ may be added to the maximum matching of G. However, if x is matched
in every maximum matching of G, then ν(G′) equals ν(G). In other words, x is
noncritical in G iff ν(G′) is greater than ν(G). Applying Proposition 2.3 to G′ and
B′, we see that if x is noncritical in G, then with probability at least 1− (2n/W),

rank(B′) = 2ν(G′) = 2ν(G) + 2 = rank(B) + 2.

1642 JOSEPH CHERIYAN

Consider the matrix [Bej] obtained from B′ by removing the last column and then

dividing the last row by r. Since rank([Bej]) ≥ rank(B′) − 1, part (i) of the lemma

follows.
For part (ii) we have seen that ν(G′) equals ν(G) if x is critical. Hence, with

probability at least 1−(n/W), rank(B) = 2ν(G) = 2ν(G′) ≥ rank(B′) ≥ rank([Bej]) ≥
rank(B).

Algorithm 1. Monte Carlo Gallai–Edmonds Decomposition
Input: Graph G = (V,E).
Output: With high probability, the Gallai–Edmonds decomposition of G.
Step 0:

Order the vertices, and number them 1, 2, . . . , n.
Fix the number W = nO(1), and choose a prime q, W < q = nO(1).
For each edge ij, choose a random weight w(ij) ∈ {1, 2, . . . ,W}.
Construct a random skew symmetric adjacency matrix B of G,
where for each edge ij, i > j,

Bij = w(ij) and Bji = −w(ij) (Bij = 0 if ij is not an edge).
Step 1:

Compute the rank r of B over the field Zq.
Step 2:

For each of the vectors ej , j = 1, . . . , n,
compute the rank rj of the matrix [B

ej
] over the field Zq.

Let D be the set of vertices j with rj > r.
Step 3:

Let A be the subset of V −D adjacent to D, and let C be the set
of vertices neither in D nor in A.

With high probability, the Gallai–Edmonds decomposition of G
is given by A,C,D.

Fig. 2.

The algorithm for finding the Gallai–Edmonds decomposition follows immediately
from both the previous lemma and Theorem 3.1. Find the set D(G) of noncritical
vertices with high probability by comparing the rank of each [Bej], j = 1, . . . , n, with

the rank of B. The probability that the set D(G) is correctly computed is at least

1−(2n2/W). Knowing D(G), the sets A(G) and C(G) can be found in Õ(n+m) time.
See Algorithm 1 in Figure 2 for a full description. The working of the algorithm on
an example is illustrated in Figure 1. The following straightforward implementation
of Algorithm 1 runs in Õ(n ·M(n)) = O(n ·n2.38) time: For each j = 1, . . . , n, use the

algorithm of [IMH 82] to find the rank of [Bej] in Õ(M(n)) time. We now improve the

running time from Õ(n ·M(n)) to Õ(M(n)). The Õ(M(n)) bound holds even for the
number of bit operations; to see this, recall the remarks at the end of section 2. To
obtain a faster implementation, observe that rank([Bej]) is greater than rank(B) iff ej
is not in the row space of B, i.e., iff ej is not a linear combination of the row vectors

of B. We can “simultaneously” compute the ranks of all the [Bej]’s by computing a

matrix N such that for any row vector v, v · N = 0 iff v is a linear combination
of the row vectors of B. Once N is computed, we simply find the product of the
n × n identity matrix In with N . The nonzero rows of N correspond exactly to the
vectors ej having rank([Bej]) greater than rank(B). Coming to the computation of

N , we take N to be a basis for the null space (i.e., kernel) of B. Note that for any

RANDOMIZED ALGORITHMS FOR MATCHING PROBLEMS 1643

subspace U (e.g., the row space of B) of a finite-dimensional vector space W over a
finite field (e.g., the n-dimensional vector space over Zq), dimU + dimU⊥ = dimW ,

and so (U⊥)⊥ = U [Lo 93, Exercise 5.31]. Hence, even for the n-dimensional vector
space over Zq we can check whether a vector v is in the row space of B by checking
whether v ·N is zero. It is well known that for any n×n matrix B, a basis for the null
space can be computed in sequential time Õ(M(n)) (see [IMH 82, pp. 53–54]) and in

randomized parallel time O((logn)2) using Õ(M(n)) processors (see [KP 91, p. 190]).

Lemma 3.3. Let B = B̃(wij), wij ∈ {1, . . . ,W}, be a random skew symmetric
adjacency matrix of a graph, and let the n × (n − rank(B)) matrix N be a basis for
the null space of B. Let v be an arbitrary vertex, and let j be its index in B. If v
is critical (noncritical), then with probability at least 1− (2n/W) the jth row of N is
zero (nonzero).

Let A,C,D denote the partition of V computed by an execution of the Monte
Carlo algorithm. To make the algorithm Las Vegas, we need to verify whether A,C,D
is the Gallai–Edmonds decomposition. We first verify whether ν(G) is computed
correctly and then verify whether the set D equals the set of noncritical vertices D(G).
By Proposition 2.3, ν(G) is at least rank(B)/2, where B is the random skew symmetric
adjacency matrix. Suppose that each component of D is odd and each component of
C is even. Then ν(G) is at most (|V | − (]components(D) − |A|))/2, because every
matching E′ of G leaves at least]components(D)− |A| exposed vertices; to see this,
observe that for each odd component of G−A, either the odd component contains an
exposed vertex or an edge of E′ matches a vertex of the odd component to a vertex of
A. Our verification subroutine (in the Las Vegas algorithm) determines the odd and
even components of G−A and compares rank(B) with |V |−(]components(D)−|A|). If
equality fails to hold in the comparison, or one of the components ofD is even, or one of
the components of C is odd, then the Las Vegas algorithm reports failure. Otherwise,
ν(G) is guaranteed to equal rank(B)/2, and moreover, the set A is guaranteed to be
a barrier. A set X ⊆ V (G) is called a barrier if |V | − 2ν(G) (i.e., the deficiency of G)
equals the difference of the number of odd components of G−X and |X|. We claim
that if A is a barrier and ν(G) = rank(B)/2, then the computed partition A,C,D is
the Gallai–Edmonds decomposition. To see this, note that if a vertex with index j has
rank([Bej]) greater than rank(B) = 2ν(G), then the vertex is noncritical; hence, every

vertex in the computed set D is noncritical. Also, every noncritical vertex is contained
in D by the following result (see [LP 86, Theorem 3.3.17]): If X ⊆ V (G) is a barrier,
then every noncritical vertex is contained in the union of the odd components of
G−X. Consequently, D = D(G), and so, by construction, A = A(G) and C = C(G).

Theorem 3.4. There is a Las Vegas algorithm with a sequential running time
of Õ(M(n)) for finding the Gallai–Edmonds decomposition and the cardinality of a

maximum matching of a graph. A parallel version of the algorithm uses Õ(M(n))
processors and takes parallel time O((logn)2).

3.2. Finding a minimum vertex cover in a bipartite graph. Due to the
information provided by the Gallai–Edmonds decomposition, the above Las Vegas
algorithm may be applied to solve other problems in matching theory within the
same complexity bounds. In this subsection, we show how the algorithm may be used
to find a minimum vertex cover of a bipartite graph. Moreover, by the equivalence
of the bipartite minimum vertex cover problem and the digraph minimum X→Y
separator problem (see Proposition 2.4), we can also find a minimum X→Y separator
in a digraph. We need a theorem from matching theory; see [LP 86, Theorem 3.2.4].

1644 JOSEPH CHERIYAN

Theorem 3.5 (Dulmage and Mendelsohn). Let G = (V1, V2, E) be a bipartite
graph, where V1 and V2 are the sets of the vertex bipartition. For i = 1, 2 let Ai =
A(G) ∩ Vi, Ci = C(G) ∩ Vi, and Di = D(G) ∩ Vi, where A(G), C(G), and D(G) are
the three sets of the Gallai–Edmonds decomposition of G. Then C1 ∪ A1 ∪ A2 and
C2 ∪A1 ∪A2 are minimum vertex covers.

The above theorem, combined with the Las Vegas algorithm for the Gallai–
Edmonds decomposition, immediately yields an efficient Las Vegas algorithm for a
minimum vertex cover of a bipartite graph G = (V1, V2, E). The algorithm may be
simplified by focusing on just one of the sets Vi, i = 1, 2, of the vertex bipartition and
for each vertex in that set computing whether or not it is critical. Also, instead of
using the skew symmetric adjacency matrix we use the bipartite adjacency matrix H,
which has a row for each vertex in V1 and a column for each vertex in V2; an entry
Hij is nonzero iff G has the edge ij, i ∈ V1, j ∈ V2. See Algorithm 2 in Figure 3.

Algorithm 2. Monte Carlo Bipartite Minimum Vertex Cover
Input: Bipartite graph G = (V1, V2, E).
Output: With high probability, a minimum vertex cover of G.
Step 0:

Order the vertices of V1 and V2, and number them 1, 2,
Fix the number W = nO(1), and choose a prime q, W < q = nO(1).
For each edge ij, i ∈ V1, j ∈ V2, choose a random weight w(ij) ∈ {1, 2, . . . ,W}.
Construct a random bipartite adjacency matrix H of G,
where for each edge ij, i ∈ V1, j ∈ V2, Hij = w(ij) (Hij = 0 if ij is not an

edge).
Step 1:

Compute the rank r of H over the field Zq.
Step 2:

For each of the vectors ej , j = 1, . . . , |V2|,
compute the rank rj of the matrix [H

ej
] over the field Zq.

Let D2 ⊆ V2 be the set of vertices j ∈ V2 with rj > r.
Step 3:

Let A1 be the subset of V1 adjacent to D2, i.e.,
A1 = {i ∈ V1 : ij ∈ E and j ∈ D2}.

With high probability, a minimum vertex cover of G is given by
A1 ∪ (V2 −D2).

Fig. 3.

Theorem 3.6. There is a Las Vegas algorithm with a sequential running time
of Õ(M(n)) for finding a minimum cardinality vertex cover of a bipartite graph. A

parallel version of the algorithm uses Õ(M(n)) processors and takes parallel time
O((logn)2). The same complexity bounds apply for finding a minimum cardinality
X→Y separator of a digraph.

In section 4, an algorithm for finding minimum X→Y separators in digraphs
(and for finding bipartite minimum vertex covers) is designed using different methods
than those used in this section. Yet it turns out that the two algorithms for bipartite
minimum vertex covers are identical.

3.3. Finding the allowed edges. Recall from section 1 that an edge of a graph
G = (V,E) is called allowed if it is contained in at least one maximum matching. The
notion of an allowed edge is important in matching theory; see [LP 86, Chapter 5]. We
develop a Monte Carlo algorithm for finding the set of allowed edges of an arbitrary

RANDOMIZED ALGORITHMS FOR MATCHING PROBLEMS 1645

graph; the sequential and parallel complexities are the same as those of our algorithm
in Theorem 3.4. The best previous sequential or parallel algorithms for finding the
set of allowed edges of a graph take at least as much sequential time (or, parallel time
and parallel processors) as needed for computing a maximum matching.

Our method for finding the set of allowed edges first constructs the Gallai–
Edmonds decomposition A(G), C(G), D(G) using the algorithm of Theorem 3.4. Now
observe that every edge incident to a noncritical vertex v is allowed: First, consider a
maximum matching such that v is exposed, and switch the matching by adding any
edge vw and removing the matched edge incident to w. Second, every edge with one
end vertex in A(G) and the other end vertex in either A(G) or C(G) is not allowed,
by Theorem 3.1. Finally, we are left with the edges with both end vertices in C(G).
Since every component of C(G) has a perfect matching, we apply the following result
of Rabin and Vazirani (see [RV 89, Lemma 4]) to find (with high probability) the
allowed edges of components of C(G).

Lemma 3.7 (Rabin and Vazirani). Let G be a graph with a perfect matching,
and let B be a random skew symmetric adjacency matrix of G. If det(B) 6= 0, then
for each index i, 1 ≤ i ≤ n, there is an index j, 1 ≤ j ≤ n, such that Bij 6= 0 and
(B−1)ji 6= 0; moreover, for each pair i, j satisfying this condition, the corresponding
edge vivj is in some perfect matching of G.

Theorem 3.8. With probability at least 1− (1/nΘ(1)), the set of allowed edges of

a graph can be computed in sequential time Õ(M(n)) and in parallel time O((logn)2)

using Õ(M(n)) processors.
The above algorithm is Monte Carlo but not Las Vegas; if the algorithm reports

that an edge with both end vertices in C(G) is not allowed, then there is a small
probability that the edge is actually allowed. In all other cases, the algorithm’s
output is correct. For the special case of bipartite graphs, we give a Las Vegas
algorithm that achieves the same complexity bounds. Focus on a component H =
(V1, V2, E) of C(G), where V1 and V2 are the sets of the vertex bipartition. We
construct the connected subgraphs H1, . . . , Hk of H formed by the computed set
of allowed edges. For each connected subgraph Hi, 1 ≤ i ≤ k, |V (Hi) ∩ V1| must
equal |V (Hi) ∩ V2| and each edge with both end vertices in Hi must be allowed (see
[LP 86, Theorem 4.1.1]); otherwise, the algorithm reports failure. Next we construct
a bipartite graph H ′ by contracting to a distinct single vertex each of the two sets
in the vertex bipartition of each of the connected subgraphs H1, . . . , Hk; i.e., each
V (Hi) ∩ Vj , 1 ≤ i ≤ k, j = 1, 2, is contracted to a distinct vertex. We also replace
any parallel edges with single edges. Thus each Hi, 1 ≤ i ≤ k is contracted to a
distinct edge; observe that these “contracted edges” form a perfect matching of the
contracted graph H ′. If the contracted graph H ′ has a unique perfect matching, then
the computed set of allowed edges of H is correct; otherwise, the algorithm reports
failure; see [LP 86, Lemma 4.3.1]. To test for a unique perfect matching in H ′, we start
with the perfect matching consisting of the edges formed by contracting H1, . . . , Hk,
and check whether there exists an alternating cycle with respect to this matching.
The claimed complexity bounds suffice for testing for an alternating cycle.

Theorem 3.9. There is a Las Vegas algorithm with a sequential running time of
Õ(M(n)) for finding the set of allowed edges of a bipartite graph. A parallel version

of the algorithm uses Õ(M(n)) processors and takes parallel time O((logn)2).

3.4. Finding the canonical partition of an elementary graph. Recall from
section 1 that a graph G = (V,E) is called elementary if it has a perfect matching
and its allowed edges form a connected spanning subgraph. Also recall that a set X

1646 JOSEPH CHERIYAN

of vertices is called a barrier if the deficiency of G, |V | − 2ν(G), equals the difference
of the number of odd components of G − X and |X|. For an elementary graph the
deficiency is zero, so X ⊆ V is a barrier iff |X| equals the number of odd components
of G−X. If G is elementary, then the (inclusionwise) maximal barriers of G form a
partition S1, S2, . . . , Sk of the vertex set V (G); this partition is called the canonical
partition [LP 86, section 5.2]. Here we develop an efficient randomized algorithm for
finding the canonical partition of an elementary graph. The Monte Carlo algorithm
for the canonical partition was discovered jointly with Padayachee. The sequential
Õ(m + n)-time algorithm for verifying the canonical partition is due to La Poutré
[L 95].

The following key result underlies our algorithm (see [LP 86, Theorem 5.2.2]):
Two (distinct) vertices x and y are in the same set Si of the canonical partition iff
G− {x, y} has no perfect matching. Based on this result and [RV 89, Lemma 3], we
find the canonical partition as follows: Assume that the given graph G is elementary.
We construct a random skew symmetric adjacency matrix B of G. If det(B) = 0,
then we stop and report failure. Otherwise we compute the inverse of B, B−1. To
compute the canonical partition of V (G), we attempt to construct an equivalence
relation Ψ on the vertex pairs such that vertices x and y are related iff the (x, y) entry
of B−1, (B−1)xy, is zero. If Ψ is indeed an equivalence relation, then the algorithm
outputs the equivalence classes of Ψ as the computed partition (with high probability,
this is the canonical partition); otherwise, if Ψ is not an equivalence relation, then we
stop and report failure. Verifying that Ψ is an equivalence relation and computing
its equivalence classes takes sequential time Õ(n2) and parallel time O((logn)2) using

Õ(n2) processors; first, observe that Ψ is reflexive ((x, x) ∈ Ψ,∀x ∈ V) and symmetric
((x, y) ∈ Ψ iff (y, x) ∈ Ψ) since B is skew symmetric and n is even; Ψ is transitive iff
each connected component of the graph (V,Ψ) is a clique.

Theorem 3.10 (with Padayachee). With probability at least 1 − (1/nΘ(1)),
the canonical partition of an elementary graph can be computed in sequential time
Õ(M(n)) and in parallel time O((logn)2) using Õ(M(n)) processors.

The above algorithm is Monte Carlo but not Las Vegas. For this paragraph, let
S1, . . . , Sk denote the partition computed by the Monte Carlo algorithm; the canonical
partition may differ from S1, . . . , Sk. If each set Si, 1 ≤ i ≤ k, is a barrier, then the
computed partition is the canonical partition. To see this, observe that for any two
vertices x and y in two different sets of the computed partition, the (x, y) entry of B−1

is nonzero; hence, by [RV 89, Lemma 3] the graph G−{x, y} has a perfect matching.
Consequently, by the key result on canonical partitions quoted above x and y must
be in different sets of the canonical partition. Hence, the canonical partition is a
refinement of the partition S1, . . . , Sk, and if the two partitions differ, then one of the
sets Si is the union of two or more maximal barriers. To obtain a Las Vegas algorithm
we do the following: For each set Si in the computed partition, we determine whether
it is a barrier by comparing the number of odd components of G−Si with |Si|. If every
set Si is a barrier, then we output S1, . . . , Sk as the canonical partition; otherwise we
report failure. There is a sufficiently efficient sequential algorithm due to La Poutré
[L 95] for the key computation in verifying the partition computed by our Monte
Carlo algorithm; this algorithm uses Sleator and Tarjan’s [ST 83] dynamic trees data
structure to maintain the connected components of the current subgraph and works
by appropriately deleting and inserting all edges incident to vertices in the set Si,
1 ≤ i ≤ k; also see La Poutré and Westbrook [LW 94].

Theorem 3.11 (La Poutré). Given a graph G = (V,E) and a collection of

RANDOMIZED ALGORITHMS FOR MATCHING PROBLEMS 1647

pairwise disjoint vertex sets S1, . . . , Sk, the number of odd components in G− Si for
all i, 1 ≤ i ≤ k, can be determined in (deterministic) sequential time Õ(m+ n).

Alternatively, the sequential Õ(m + n) time bound can be achieved by a ran-
domized Las Vegas algorithm using dynamic data structures recently developed by
Henzinger and King [HK 95].

Theorem 3.12. Given an elementary graph as input, there is a sequential Las
Vegas algorithm with a running time of Õ(M(n)) for finding the canonical partition.

Fig. 4. A digraph with a unique minimum X→Y separator S, where X = {x1, x2, x3, x4} and
Y = {y1, y2, y3, y4}. Vertex w1 is in T (S) since p({w1} ∪X,Y) = 3 > |S|, but vertex w2 is not in
T (S) since p({w2} ∪X,Y) = 2 = |S|.

4. An algorithm for digraph minimum X→Y separators. Using meth-
ods different from those employed in the previous section, this section develops a
randomized Monte Carlo algorithm for finding a minimum X→Y separator of a given
digraph G = (V,E), where X and Y are specified sets of vertices. In every instance
the algorithm outputs a correct solution with high probability, but it may output an
incorrect result with small probability. The complexity bounds of this Monte Carlo
algorithm suffice for verifying that the computed solution is indeed a minimum X→Y
separator, thus giving a Las Vegas algorithm with the same complexity bounds.

For an X→Y separator S with |S| = p(X,Y), let T (S) denote the set of vertices
such that G− S has a path from each vertex in T (S) to at least one vertex in Y − S
(note that T (S) is empty iff S = Y). Informally, T (S) forms the “Y -side” of the
separator S.

First, consider the simple case when the digraph has a unique minimum X→Y
separator S, i.e., any other set of vertices whose removal from G leaves no X→Y
paths has cardinality at least |S| + 1. See Figure 4. Then the set T = T (S) has
the key property that a vertex v is in T if and only if p({v} ∪X,Y) is greater than
p(X,Y). To see this, deduce from Menger’s theorem that G must have a separator

1648 JOSEPH CHERIYAN

S′ of cardinality p({v} ∪X,Y) whose removal from G leaves no path from ({v} ∪X)
to Y . Clearly, S′ is also an X→Y separator, so p({v} ∪X,Y) ≥ p(X,Y). If v 6∈ T ,
take the separator S′ to be S, since G − S has no path from a vertex in {v} ∪X to
a vertex in Y . Otherwise, if the vertex v is in T , then v is a witness to the fact that
S 6= S′ and hence, by the uniqueness of S, |S′| > |S|. Suppose that there is an efficient
method of computing p(X,Y) for any specified pair of sets X and Y of the vertices,
i.e., suppose that a fast “black box” subroutine for computing p(X,Y) is available.
(Such a method is described below.) Then the separator S may be found as follows.
For each vertex v ∈ V , check whether p({v} ∪ X,Y) is greater than p(X,Y). Then
construct the set T of vertices v that satisfy the inequality. The required separator S
consists of the predecessors of T together with the Y -vertices not in T , i.e.,

S = {s ∈ V − T | (s, v) ∈ E and v ∈ T} ∪ (Y − T).

In general, a digraph may have many minimum X→Y separators. Fortunately, one
of these separators satisfies the key property of the separator S and the vertex set
T (S) used above. This is proved in the next lemma. Although a full proof is given,
the first part of the lemma is well known.

Lemma 4.1. Let S? be an X→Y separator with cardinality p(X,Y) = k such
that T (S?) is (inclusionwise) minimal over all X→Y separators with cardinality k.
Then

(i) S? is unique, and
(ii) for each vertex v of G,

v ∈ T (S?) iff p({v} ∪X,Y) > k.

Proof. For a subset A of G’s vertices, define ∆(A) to be the set of vertices

{u ∈ V −A | (u, v) ∈ E and v ∈ A} ∪ (Y −A),

i.e., ∆(A) consists of the predecessors of A as well as the Y -vertices not in A. Note
that if A is the empty set, then ∆(A) = Y . For every A ⊆ V , Y is a subset of
A∪∆(A), and moreover, if A is a subset of V −X, then note that ∆(A) is an X→Y
separator (since every path from a vertex in X to a vertex in A∪∆(A) must contain
a vertex in ∆(A)). Let δ(A) denote the cardinality of ∆(A). The proof hinges on the
fact that the function δ : 2V −→ Z is submodular, i.e., for any two subsets A and B
of G’s vertices,

δ(A ∩B) + δ(A ∪B) ≤ δ(A) + δ(B).(1)

To see this, observe that if a vertex u contributes two to the left-hand side (i.e.,
u ∈ ∆(A ∩ B) ∩ ∆(A ∪ B)), then either u ∈ Y − (A ∪ B) or u ∈ V − (A ∪ B ∪ Y)
and there is an edge uv, v ∈ A ∩ B, so u contributes two to the right-hand side;
otherwise, if u contributes one to the left-hand side, then u contributes at least one
to the right-hand side.

To prove the first part of the lemma, by way of contradiction, assume that there
are two minimum X→Y separators S1 and S2 such that T1 = T (S1) is minimal and
T2 = T (S2) is minimal. Then note that T1 ∩ T2 is both a proper subset of T1 and
a proper subset of T2 (possibly, T1 ∩ T2 is the empty set). Consider the vertex sets
T1 ∩ T2 and T1 ∪ T2. Neither T1 ∩ T2 nor T1 ∪ T2 has any X-vertices since T1 has
no X-vertices and T2 has no X-vertices. Hence, ∆(T1 ∩ T2) is an X→Y separator

RANDOMIZED ALGORITHMS FOR MATCHING PROBLEMS 1649

and ∆(T1 ∪ T2) is an X→Y separator. Since the minimum cardinality of an X→Y
separator is p(X,Y) = k, it is clear that δ(T1∩T2) ≥ k and δ(T1∪T2) ≥ k. Now, using
the submodularity of δ (equation (1)), it follows that δ(T1∩T2) = k and δ(T1∪T2) = k.
Let S′ denote ∆(T1 ∩T2). Observe that T (S′) is a subset of T1 ∩T2 because, for each
vertex v 6∈ (T1∩T2), every path from v to a vertex in Y contains a vertex of ∆(T1∩T2).
This gives the desired contradiction and completes the first part of the lemma, since
neither T1 = T (S1) nor T2 = T (S2) is minimal.

For the second part of the lemma consider any vertex v ∈ T (S?). The maximum
number of vertex disjoint paths from ({v} ∪ X) to Y is either exactly k = p(X,Y)
or greater than k. Suppose that the number is k. Then, by Menger’s theorem,
there exists a separator S′ of cardinality k whose removal from G leaves no path
from ({v} ∪X) to Y . Clearly S′ is also a minimum X→Y separator. Now consider
a minimum X→Y separator S such that T (S) is a subset of T (S′) and T (S) is
(inclusionwise) minimal over all such separators; since S′ exists, S must exist. By the
first part of the lemma the separators S and S? are the same. This gives the desired
contradiction, since v ∈ T (S?) − T (S). We conclude that the maximum number of
vertex disjoint paths from ({v} ∪X) to Y is greater than k.

Two results are needed to develop a fast, probabilistic method for computing
p(X,Y). The first result is attributed to Ingleton and Piff [IP 73]; for completeness,
a proof that follows [LLW 88, Theorem 3.1] is included in the appendix. Associate
a variable x(i, i) with each vertex i and a variable x(i, j) with each edge (i, j) (all

variables are distinct). The free adjacency matrix F̃ = F̃ (x(i, j)) of G is an n × n
matrix whose entries are given by

F̃ij =

x(i, i) if i = j,
x(i, j) if i 6= j and (i, j) ∈ E,
0 otherwise.

Theorem 4.2 (Ingleton and Piff). Let G be a digraph, and let F̃ be its free
adjacency matrix. Then for any k-vertex set X and any k-vertex set Y ,

p(X,Y) = k iff det F̃ (Y ,X) is not identically zero.

We also need a matrix identity of Jacobi (see [BR 91, Lemma 9.2.10]).
Fact (Jacobi). If a matrix F is nonsingular, then a square submatrix F (Y ,X)

is nonsingular iff the complementary submatrix F−1(X,Y) is nonsingular. More pre-
cisely,

det(F−1(X,Y)) = det(F (Y ,X))/ det(F).

To apply the above theorem to the algorithm, the variables are substituted by
random values. This is motivated by the Zippel–Schwartz lemma (Lemma 2.1).

Theorem 4.3. Let G = (V,E) be a digraph, and let F = F̃ (w(i, j)) be obtained
from G’s free adjacency matrix by randomly and independently assigning each variable
x(i, j) a random number w(i, j) from {1, . . . ,W}. Then with probability at least 1 −
(n/W), F is nonsingular. If F is nonsingular, then for every pair of sets X and Y
of the vertices,

p(X,Y) ≥ rank(F−1(X,Y)),

and with probability at least 1− (n2/W), p(X,Y) equals rank(F−1(X,Y)).

1650 JOSEPH CHERIYAN

Proof. View the determinant of the free adjacency matrix F̃ as a polynomial of
degree n in the variables x(i, j), 1 ≤ i, j ≤ n, and notice that it is not identically zero
because the diagonal term Πn

i=1x(i, i) is nonzero and no two nonzero terms cancel
out. Hence by Lemma 2.1, F is nonsingular with probability at least 1− (n/W).

Consider a maximum-cardinality set of vertex disjoint paths from X to Y . Let A
be the set of start vertices of these X→Y paths, and let B be the set of end vertices.
Obviously, A ⊆ X, B ⊆ Y , and |A| = |B| = p(X,Y) = p(A,B). Let H̃ = H̃(x(i, j))

denote (det F̃)F̃−1, i.e., H̃ is the n × n matrix whose (k, `) entry is (−1)k+` times

the (`, k) minor of F̃ (x(i, j)); every entry of H̃ is a polynomial of degree n− 1 in the

variables x(i, j). By Jacobi’s identity and Theorem 4.2, det H̃(A,B) is not identically
zero, while for every integer q > p(X,Y) the determinant of every q × q submatrix

of H̃(X,Y) is identically zero. The second part of the theorem follows by observing

that if F is nonsingular, then F−1 = F̃ (w(i, j))−1 = H̃(w(i, j))/ det F̃ (w(i, j)); now

apply Lemma 2.1 to det H̃(A,B).
The algorithm can now be sketched. See Algorithm 3 in Figure 5. Fix a number

W = nO(1), and let q be a prime such that W < q = nO(1). All computations are over
the field Zq of integers modulo q. The matrix F is constructed, and with high prob-
ability it is nonsingular. Inverting F gives the matrix F−1. If r = rank(F−1(X,Y))
equals |Y |, then by Theorem 4.3 p(X,Y) equals |Y |; therefore Y is a minimum X→Y
separator. Otherwise consider the unique minimum X→Y separator S? with T (S?)
minimal. The algorithm attempts to compute the vertex set T (S?) by finding the set
T of vertices v such that rank(F−1({v}∪X,Y)) is greater than r. With probability at
least 1−Θ(n3)/W , T equals T (S?). Hence, with high probability, the set S = ∆(T)
(i.e., the set of the predecessors of T and the Y -vertices not in T) is the minimum
X→Y separator S?.

To efficiently compute for each vertex v whether rank(F−1({v} ∪X,Y)) > r, the
algorithm needs to check that v’s row vector F−1({v}, Y) is not a linear combination
of the row vectors of F−1(X,Y). As in section 3, we “simultaneously” compute the
ranks of all the matrices F−1({v} ∪ X,Y), v ∈ V , by computing a matrix N such
that for any row vector w, w ·N = 0 iff w is a linear combination of the row vectors
of F−1(X,Y). The matrix N is easily obtained by computing a basis for the null
space of F−1(X,Y). Once N is computed, we simply find the product of the matrix
F−1(V, Y) with N .

To check that the computed set S is indeed a minimum X→Y separator, observe
that the cardinality of every X→Y separator is at least p(X,Y) ≥ r. Consequently,
if the removal of S from G leaves no path from X − S to Y − S, and |S| = r, then
|S| = p(X,Y) = r and hence S is a minimum X→Y separator. Also, by using
Proposition 2.4 this algorithm may be applied to find a minimum vertex cover in a
bipartite graph.

Consider the sequential complexity of the above algorithm. Inverting F takes
Õ(M(n)) bit operations [AHU 74, Theorem 6.5]. Finding a basis for the null space

of F−1(X,Y) takes Õ(M(n)) bit operations [IMH 82, pp. 53–54]. The remaining
computations are easy to execute within this bound. Consider the randomized par-
allel complexity of the algorithm. Inverting F takes parallel time O((logn)2) using

Õ(M(n)) processors ([KP 91, Theorem 6]), and these complexity bounds suffice for
finding a basis for the null space of F−1(X,Y) ([KP 91, p. 190]) (both computations
are randomized, and on a given matrix the computed results may be incorrect with
small probability). The remaining steps are easy to implement within these complex-
ity bounds.

RANDOMIZED ALGORITHMS FOR MATCHING PROBLEMS 1651

Algorithm 3. Monte Carlo Minimum X→Y Separator
Input: Graph G = (V,E).
Output: With high probability, a minimum X→Y separator of G.

Order the vertices, and number them 1, 2, . . . , n.
Fix the number W = nO(1), and choose a prime q, W < q = nO(1).
Construct the matrix F by replacing each nonzero entry in the free adjacency
matrix of G by an independent random number from {1, 2, . . . ,W}.

Invert F over the field Zq to obtain the matrix F−1.
(If F is singular, the algorithm stops and reports failure.)

Compute the rank r of the submatrix F−1(X,Y) over Zq.
If r = |Y |, then the required separator is S = Y . Stop.

Otherwise, compute a basis {N1, . . . , N|Y |−r} for the null space of the
submatrix F−1(X,Y) over Zq (each Ni is a vector of dimension |Y |).
Compute the matrix Z = F−1(V, Y) ·N over Zq,
where N is the matrix whose ith column is Ni.
Let Zv denote the row of Z given by F−1({v}, Y) ·N .
Construct the set of vertices T = {v | Zv is a nonzero vector}.

With high probability, the required separator S consists of the predecessors
of T together with the Y -vertices not in T , i.e.,

S = ∆(T) = {s ∈ V − T | (s, v) ∈ E and v ∈ T} ∪ (Y − T).

Making the algorithm Las Vegas:
If G− S has no path from X − S to Y − S, and |S| = r,
then guarantee that S is a minimum X→Y separator; otherwise, report failure.

Fig. 5.

Theorem 4.4. Given a digraph G and a pair of sets X, Y of G’s vertices, a
minimum X→Y separator can be computed by a Las Vegas algorithm. The sequential
running time is Õ(M(n)). The parallel complexity is O((logn)2) time using Õ(M(n))
processors. The same complexity bounds apply for finding a minimum vertex cover of
a bipartite graph.

5. Conclusions. The most important problem left open is whether a maximum
matching can be computed in deterministic or randomized time O(n2.5−ε), ε > 0. The
same problem specialized to bipartite graphs, or equivalently (by Proposition 2.4)
the problem of finding a maximum-cardinality set of vertex disjoint X→Y paths in
a digraph in (randomized) time O(n2.5−ε), is also open. Another interesting open
problem pertains to graphs with 0–1 weights on the edges: Can the maximum weight
of a perfect matching, but not necessarily the edge-set of the matching, be computed
in (randomized) time O(n2.5−ε)? Can the algorithm of Theorem 3.8 for finding the
allowed edges be made Las Vegas without affecting the complexity bounds? The
algorithm for finding a minimum bipartite vertex cover may be derived starting either

1652 JOSEPH CHERIYAN

from the Gallai–Edmonds theorem (Theorem 3.1) or from the theorem on the free
adjacency matrix (Theorem 4.2). Do these two theorems have other connections?

6. Appendix. Proofs of Proposition 2.4 and Theorem 4.2.

Proof of Proposition 2.4. First, we show how to transform instances and recover
solutions of the two bipartite graph problems using the corresponding digraph prob-
lems. Let H = (V1, V2, E) be a bipartite graph, where V1 and V2 are the sets of the
vertex bipartition. Construct a digraph G = (V1 ∪ V2, F) from H by orienting all
edges from V1 to V2. Every matching of H corresponds to a set of vertex disjoint
V1→V2 paths in G. Hence, a maximum matching of H can be found by computing a
maximum cardinality set of vertex disjoint V1→V2 paths in G. Consider the bipartite
graph minimum vertex cover problem. A subset of V1 ∪ V2 is a vertex cover of H iff
it is a V1→V2 separator of the digraph G. Therefore, a minimum vertex cover of H
can be found by computing a minimum V1→V2 separator of G.

Next consider the transformation of the two digraph problems to the correspond-
ing bipartite graph problems, and the transformation of the solutions. Let G = (V, F)
be the given digraph, and let X and Y be specified subsets of V . Without loss
of generality assume that X ∩ Y = ∅; the method here easily extends to the case
when X ∩ Y 6= ∅. Let n denote |V (G) − X − Y |. We construct a bipartite graph
H = (V1, V2, E) starting from G,X, Y . For each vertex v ∈ V (G)−X − Y , H has a
pair of vertices v1, v2 with v1 ∈ V1 and v2 ∈ V2; H also has the edge v1v2; for each
vertex x ∈ X, H has a vertex x1 ∈ V1; and for each vertex y ∈ Y , H has a vertex
y2 ∈ V2. For every vertex v of G let v1 and v2 denote the corresponding vertices in
V1 and V2 (if they exist); let X1 denote the set of vertices of H that corresponds to
X. For each edge (v, w) of G, v 6∈ Y and w 6∈ X, there is an edge v1w2 in H.

A set of vertex disjoint X→Y paths of G of maximum cardinality (namely,
p(X,Y)) gives a matching E′ of H with |E′| = p(X,Y) + n: start with E′ =
{v1v2 : v ∈ V (G)−X − Y } and then, sequentially for each of the X→Y paths of G
in the set mentioned above, augment E′ using the corresponding alternating path of
H. Moreover, we claim that a matching E′ of H gives a set of at least |E′| −n vertex
disjoint X→Y paths of G: starting from the vertices in X1 in H, use the matching E′

and the edges v1v2, v ∈ V (G)−X − Y , to construct a set of vertex disjoint paths in
G; each of these paths ends either at a vertex in Y or at a vertex v 6∈ Y such that in H
the corresponding vertex v1 is exposed; hence, at most |V1| − |E′| = |X1|+n− |E′| of
these paths in G have their end vertices in V −Y ; our claim follows since the number
of these paths in G is |X1|. Consequently, ν(H) = p(X,Y) + n, and every maximum
matching of H yields a set of p(X,Y) vertex disjoint X→Y paths of G.

Now consider the problem of finding a minimum X→Y separator S of G. We
find a minimum vertex cover C of H and then construct S as follows: S contains a
vertex x ∈ X iff C contains the vertex x1; S contains a vertex y ∈ Y iff C contains the
vertex y2; and S contains a vertex v ∈ V (G)−X − Y iff C contains both the vertices
v1 and v2. Since |C| = ν(H) = p(X,Y) + n, and since either v1 ∈ C or v2 ∈ C for
each vertex v ∈ V (G)−X − Y , we see that |S| = p(X,Y). We claim that S is an
X→Y separator of G. By way of contradiction, suppose that there is a path P in
G − S with start vertex x ∈ X and end vertex y ∈ Y . Focus on the subgraph H(P)
of H formed by the edges that correspond to the edges of P , together with the edges
v1v2 of H that correspond to the internal vertices v of P (i.e., v ∈ V (P)− {x, y}).
Since C is a vertex cover of H, every edge of H(P) must be incident with some vertex
of C. Consequently, either x ∈ C or y ∈ C or there is an internal vertex v of P
such that v1 ∈ C and v2 ∈ C. We have the desired contradiction since S intersects

RANDOMIZED ALGORITHMS FOR MATCHING PROBLEMS 1653

Fig. 6. An illustration of the proof of Theorem 4.2. The submatrix F̃ (Y ,X) is indicated by
dashed lines.

P .
Proof of Theorem 4.2. First, consider the case when p(X,Y) is less than k = |Y |.

Let S be an X→Y separator of cardinality p(X,Y) and let T denote the set of vertices
that have paths to Y −S in G−S. Let R denote V − (S∪T). Note that X is a subset
of R ∪ S and Y is a subset of S ∪ T . Since G has no edges of the form (r, t), r ∈ R,

t ∈ T , each entry of the submatrix F̃ (R, T) is zero. (See Figure 6.) A line denotes
either a row or a column of a matrix. Focus on the number of lines needed to cover all
the nonzero entries of F̃ (Y ,X), and consider the columns corresponding to the vertex
set (R∪S)−X and the rows corresponding to the vertex set (S ∪T)−Y . Each entry

of F̃ (Y ,X) that is not covered by these lines is in an R-row and a T -column; hence
the entry is zero. Thus the number of lines needed is at most

((n− |T |)− k) + ((n− |R|)− k) ≤ (n− k − 1),

since n = |R|+ |S|+ |T | ≤ (k − 1) + |R|+ |T |. Now use the fact that for a bipartite
graph, the cardinality of every matching is less than or equal to the cardinality of
every vertex cover. It follows that there are at most (n − k − 1) nonzero entries in

F̃ (Y ,X) with no two of these entries on a line. Hence, det F̃ (Y ,X) is identically zero
since each term in the standard expansion of the determinant is zero.

Next suppose that p(X,Y) equals k = |Y |. Let P1, . . . , Pk be a maximum set of
vertex disjoint X→Y paths. Denote the start vertex of path Pi (1 ≤ i ≤ k) by xi and
denote the end vertex by yi. Let A denote the set of vertices not in these paths. For
each vertex v ∈ A define σ(v) to be v, and for each vertex v ∈ (V −A−Y), define σ(v)
to be the successor of v in the path Pi containing v. Note that σ is well defined even if
trivial paths Pi (having xi = yi) are present. For each v ∈ Y , note that σ(v) belongs

to X and that F̃v,σ(v) is a nonzero entry of the submatrix F̃ (Y ,X). Moreover, observe
that σ is one-one, i.e., σ(v) = σ(w) iff v = w, and therefore no two entries from the

set {F̃v,σ(v) | v ∈ Y } are on a line. It follows that the product (±1) · Πv∈Y F̃v,σ(v) is

one of the terms in the standard expansion of det F̃ (Y ,X). Clearly the product is

1654 JOSEPH CHERIYAN

nonzero. Hence, the determinant evaluates to ±1 when the value 1 is assigned to each
entry F̃v,σ(v), v ∈ Y , and the value 0 is assigned to the remaining entries of F̃ (Y ,X).
Therefore, the determinant is not identically zero.

Acknowledgments. Section 4 has benefited from discussions with Éva Tardos.
The Monte Carlo algorithm for the canonical partition in section 3.4 was discovered
jointly with K. Padayachee and is included with his consent. J. A. La Poutré com-
municated an almost linear-time algorithm for verifying the canonical partition. The
careful comments by the referees are appreciated.

REFERENCES

[AHU 74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

[B 90] N. Blum, A new approach to maximum matching in general graphs, Proc. 17th ICALP,
Lecture Notes in Comput. Sci. 443, Springer-Verlag, Berlin, 1990, pp. 586–597.

[BR 91] R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge University
Press, New York, 1991.

[C 93] J. Cheriyan, Random weighted Laplacians, Lovász minimum digraphs and finding min-
imum separators, extended abstract in Proc. 4th Annual ACM-SIAM Symposium
on Discrete Algorithms, Austin, TX, SIAM, Philadelphia, 1993, pp. 31–40.

[C 94] J. Cheriyan, A Las Vegas O(n2.38) algorithm for the cardinality of a maximum match-
ing, extended abstract in Proc. 5th Annual ACM-SIAM Symposium on Discrete
Algorithms, Arlington, VA, SIAM, Philadelphia, 1994, pp. 442–451.

[CR 94] J. Cheriyan and J. H. Reif, Directed s-t numberings, rubber bands, and testing digraph
k-vertex connectivity, Combinatorica, 14 (1994), pp. 435–451.

[CW 90] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions,
J. Symbolic Comput., 9 (1990), pp. 251–280.

[E 91] W. Eberly, Efficient parallel independent subsets and matrix factorizations, in Proc. 3rd
IEEE Symposium on Parallel and Distributed Processing, IEEE Computer Society
Press, Los Alamitos, CA, 1991, pp. 204–211.

[E 65] J. Edmonds, Paths, trees and flowers, Canad. J. Math., 17 (1965), pp. 449–467.
[GT 91] H. N. Gabow and R. E. Tarjan, Faster scaling algorithms for general graph-matching

problems, J. Assoc. Comput. Mach., 38 (1991), pp. 815–853.
[GP 88] Z. Galil and V. Pan, Improved processor bounds for combinatorial problems in RNC,

Combinatorica, 8 (1988), pp. 189–200.
[Ga 64] T. Gallai, Maximale Systeme unabhängiger Kanten, Magyar Tud. Akad. Mat. Kutató

Int. Közl, 9 (1964), pp. 401–413.
[HK 95] M. Rauch Henzinger and V. King, Randomized dynamic algorithms with polyloga-

rithmic time per operation, in Proc. 27th Annual ACM Symposium on Theory of
Computing, Las Vegas, NV, ACM, New York, 1995, pp. 519–527.

[IMH 82] O. H. Ibarra, S. Moran, and R. Hui, A generalization of the fast LUP matrix decom-
position algorithm and applications, J. Algorithms, 3 (1982), pp. 45–56.

[IP 73] A. W. Ingleton and M. J. Piff, Gammoids and transversal matroids, J. Combin.
Theory Ser. B, 15 (1973), pp. 51–68.

[KP 91] E. Kaltofen and V. Pan, Processor efficient parallel solution of linear systems over
an abstract field, in Proc. 3rd Annual ACM Symposium on Parallel Algorithms and
Architectures, ACM, New York, 1991, pp. 180–191.

[Kf 86] H. J. Karloff, A Las Vegas RNC algorithm for maximum matching, Combinatorica, 6
(1986), pp. 387–391.

[KUW 86] R. M. Karp, E. Upfal, and A. Wigderson, Constructing a perfect matching is in
Random NC, Combinatorica, 6 (1986), pp. 35–48.

[Ko 91] D. Kozen, The Design and Analysis of Algorithms, Springer-Verlag, Berlin, 1991.
[L 95] J. A. La Poutré, Personal communication, 1995.
[LW 94] J. A. La Poutré and J. Westbrook, Dynamic two-connectivity with backtracking, in

Proc. 5th Annual ACM-SIAM Symposium on Discrete Algorithms, Arlington, VA,
SIAM, Philadelphia, 1994, pp. 204–212.

[LLW 88] N. Linial, L. Lovász, and A. Wigderson, Rubber bands, convex embeddings and graph
connectivity, Combinatorica, 8 (1988), pp. 91–102.

[Lo 79] L. Lovász, On determinants, matchings and random algorithms, in Fundamentals of

RANDOMIZED ALGORITHMS FOR MATCHING PROBLEMS 1655

Computation Theory, L. Budach, ed., Akademie-Verlag, Berlin, 1979, pp. 565–574.
[Lo 93] L. Lovász, Combinatorial Problems and Exercises, 2nd ed., North-Holland, Amsterdam,

1993.
[LP 86] L. Lovász and M. Plummer, Matching Theory, Akadémiai Kiadó, Budapest, Hungary,

1986.
[MV 80] S. Micali and V. V. Vazirani, An O(

√
|V ||E|) algorithm for finding maximum match-

ing in general graphs, in Proc. 21st Annual IEEE Symposium on Foundations of
Computer Science, Syracuse, NY, IEEE Computer Society Press, Los Alamitos,
CA, 1980, pp. 17–27.

[MVV 87] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani, Matching is as easy as matrix
inversion, Combinatorica, 7 (1987), pp. 105–113.

[RV 89] M. O. Rabin and V. V. Vazirani, Maximum matchings in general graphs through
randomization, J. Algorithms, 10 (1989), pp. 557–567.

[Sc 80] J. T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities,
J. ACM, 27 (1980), pp. 701–717.

[ST 83] D. D. Sleator and R. E. Tarjan, A data structure for dynamic trees, J. Comput.
System Sci., 26 (1983), pp. 362–391.

[T 47] W. T. Tutte, The factorization of linear graphs, J. London Math. Soc., 22 (1947),
pp. 107–111.

[V 94] V. V. Vazirani, A theory of alternating paths and blossoms for proving correctness of the

O(
√
V E) general graph matching algorithm, Combinatorica, 14 (1994), pp. 71–109.

[W 91] J. Wein, Las Vegas RNC algorithms for unary weighted perfect matching and T -join
problems, Inform. Process. Lett., 40 (1991), pp. 161–167.

[Z 79] R. E. Zippel, Probabilistic algorithms for sparse polynomials, in Proc. EUROSAM 79,
Edward W. Ng, ed., Lecture Notes in Comput. Sci. 72, Springer-Verlag, Berlin, 1979,
pp. 216–226.

