
Iterative Message Passing Algorithm for Bipartite
Maximum Weighted Matching

Yuan-sheng Cheng
Department of Electrical Engineering

University of Southern California
Los Angeles, CA 90089-2565, USA

Email: yuanshec@usc.edu

Michael Neely
Department of Electrical Engineering

University of Southern California
Los Angeles, CA 90089-2565, USA

Email: mjneely@usc.edu

Keith M. Chugg
Department of Electrical Engineering

University of Southern California
Los Angeles, CA 90089-2565, USA

Email: chugg@usc.edu

Abstract— We derive iterative message passing update rules
for solving the bipartite maximum weighted matching problem.
It is shown that if the optimal matching solution is unique, the
algorithm converges to this optimal solution at a rate comparable
to the algorithm of Bayati et. al. It is shown that the two
algorithms are both standard messages passing, but on dual
graphs of each other. Also, the algorithm presented here requires
less storage. We also provide a method to use the proposed
algorithm to solve the integer Maximal Weighted Matching
problem – i.e., where the optimal solution is generally not unique.

I. INTRODUCTION

Message passing algorithms on various graphical models
have been widely used and demonstrated in different areas,
like modern coding theory, DNA sequences analysis, artifi-
cial intelligence, etc. It is well known [1] [2] that if the
graphical models are cycle free, message passing algorithms
converge to the optimal MPF (marginalized product of func-
tions) solutions. However, if the graphical model has cycles,
message passing algorithms experimentally perform well in
many instances (like Turbo Decoding), while the optimality
and convergence properties are still open problems.

The bipartite Maximum Weighted Matching (MWM) prob-
lem has been well studied in combinational optimization and
network theory [11], as they provide several applications. In
particular, it was shown in [12] [7] that scheduling according
to an MWM for every timeslot will stabilize an N ×N packet
switch. Furthermore, the MWM problem has important appli-
cations to optimal routing, scheduling, and resource allocation
in wireless ad-hoc networks, where distributed implementation
is crucial [8] [9].

The Hungarian method [5] finds an optimal solution for
the bipartite weighted matching problem in O(n3) opera-
tions. More recently, the Auction algorithm proposed by
Bertsekas [6] solves the same problem as a suboptimal way. It
finds a solution within nε of being optimal in O(

n2 max{|wij |}
ε

)
operations, where ε is an arbitrary parameter.

Motivated by the analogies between the formulation of bi-
partite weighted matching and the decoding of modern codes,
we derived the iterative message passing algorithm described
in this paper. The final update rules are concise and can be
implemented in a distributed way. Through simulation, we

observed that the algorithm converged to the optimal MWM
solution when the solution was unique. While we were at-
tempting to prove this convergence property, Bayati, Shah, and
Sharma demonstrated an iterative message-passing algorithm
to solve the same problem and also proved the convergence
properties that we observed empirically [3]. In this paper we
apply the the proof technique of [3] to our algorithm to verify
optimality and show the relationship between the algorithm
of [3], which we will refer to as the BSS algorithm after its
authors, and our algorithm.

In the next section, we describe the mathematical model we
used and derive the message passing update rules in Section
III. Convergence is proved in Section IV and the algorithm
is compared to the BSS algorithm in Section VI. In Section
V we introduce the modified algorithm for on integer MWM
applications. Section VII contains discussion and suggestions
for future work.

II. MATHEMATICAL MODEL

Let G = (T,B, E) be an symmetric complete bipartite
graph. T and B are sets of n nodes. We label them as
T = {T1, T2, T3, ..., Tn} and B = {B1, B2, B3, ..., Bn}. We
label all edge as (t, b) ∈ E, where t ∈ T and b ∈ B. A subset
M ⊆ E is said to be a matching if no two edges in M are
incident to the same node. If each edge (Ti, Bj) is associated
with a real number wij , called a weight, finding a matching
for which the sum of the weights of edges is maximum is
called Maximum Weighted Matching.

For a particular matching M and for each edge (Ti, Bj),
let xij represents an indicator variable that is equal to one
if (Ti, Bj) is in M , and zero else. Let X be the n by
n matrix which (i, j) component is xij . When considering
only full matches, X corresponds to a permutation matrix. So
Maximum Weighted Matching can be defined as:

X∗ = arg max
X∈P

∑
0≤i,j≤n

wijxij (1)

where P is the set of permutation matrices. We call X∗ the
maximum configuration of MWM.

Consider the function f(X) : R
n×n → R:

f(X) =

n∏
i,j

fij(xij)

n∏
k=1

χTk
({xkj}

n
j=1)

n∏
l=1

χBl
({xil}

n
i=1) (2)

ISIT 2006, Seattle, USA, July 9 - 14, 2006

19341424405041/06/$20.00 ©2006 IEEE

x11 x12 x13 x21 x22 x23 x31 x32 x33

T1 T2 T3B1 B2 B3

f11 f12 f13 f21 f22 f23 f31 f32 f33

Fig. 1. Factor Graph for f(X) with n = 3

xijxij

fij(xij) fij(xij)

TiTi

µTi→xij

BjBj

µxij→Bj

µxij→Ti

µBj→xij

mTi→xij

mxij→Bj

mBj→xij

mxij→Ti

wij

Fig. 2. A detailed view of the messages of the iMPA for MWM

where

χTk
(·) =

{
1 , if exactly one of {xkj}

n
j=1 variables is 1

0 , otherwise

χBl
(·) =

{
1 , if exactly one of {xil}

n
i=1 variables is 1

0 , otherwise

fij(xij) = exp(wijxij) (3)

By the definition of indicator functions χTk
(·)s and χBl

(·)s,
f(X) is non-zero if and only if X is a permutation matrix.
Since max and log functions are interchangeable, the max-
imum configuration of f(X) is equal to the X∗. The final
expression become:

X∗ = arg max
X∈P

∑
0≤i,j≤n

wijxij = arg max
X∈P

f(X) (4)

III. MAX-SUM UPDATE RULES

While there are many equivalent notational conventions for
graphical models, we use factor graphs in this paper [1].
The factor graph associated with (2) is shown in Fig. 1. The
graph is very similar to Tanner graph representing a parity
check code with the difference being that the constraint nodes
associate with χTi

(·)s and χBj
(·)s enforce a “exactly one 1”

rule instead of even parity. Fig. 1 shows the example for the
case n = 3.

Our goal may be viewed as being equivalent to the Max-
imum Likelihood Sequence Detection (MLSD) with the as-
sociated constraints on {xij}. Thus, we may apply message
passing update rules on max-product semiring [1], [4]. We
consider a schedule where messages start from the variable
nodes and are passed toward constraint nodes and upwards
and downwards iteratively. By symmetry, for each variable

xij , we define the corresponding messages µ
(k)
xij→Ti

(xij),

µ
(k)
xij→Bj

(xij), µ
(k)
Bj→xij

(xij) and µ
(k)
Bj→xij

(xij) (See Fig. 2),
where the superscripts k are the iteration number of the
messages and all messages are real functions defined on {0, 1}
and may be viewed as tables or vectors of two values. By
convention, the initial messages are set to 1:

µ
(−1)
Ti→xij

(xij) = µ
(−1)
Bj→xij

(xij) = 1, xi,j = 0, 1

Applying max-product message update rules [1], we get:

µ
(k)
xij→Ti

(xij) = fij(xij) · µ
(k−1)
Bj→xij

(xij)

µ
(k)
xij→Bj

(xij) = fij(xij) · µ
(k−1)
Ti→xij

(xij)

µ
(k)
Bj→xij

(xij) = max
xij

⎡
⎣χBj

({xij}
n
i=1)

∏
m �=i

µ
(k−1)
xmj→Bj

(xmj)

⎤
⎦

µ
(k)
Ti→xij

(xij) = max
xij

⎡
⎣χTi

({xij}
n
j=1)

∏
l �=j

µ
(k−1)
xil→Ti

(xil)

⎤
⎦

where each of the above holds for xij = 0, 1. At each iteration
k, we compute

D
(k)
(ij)(xij) = fij(xij) · µ

(k)
Ti→xij

(xij) · µ
(k)
Bj→xij

(xij)

Our estimation of xij based on kth iteration is: We choose
x

(k)
ij = 1 if D

(k)
(ij)(1) > D

(k)
(ij)(0), otherwise x

(k)
ij = 0.

The above is standard max-product message-passing [1],
[4]. We now provide some simplifications based on standard
methods used in the iterative message-passing literature
(cf. [4]). First, since the log(·) function is monotonically
increasing, we can take log(·) on both sides of update rules
without changing the results. This places the algorithm into
max-sum form. Furthermore, message normalization [4] can
be used to reduce the required memory by a factor of 2; i.e.,
storing the difference between the messages for 0 and 1 values
at each step of update. This yields call the normalized (scalar)
messages m

(k)
Ti→xij

, m
(k)
Bj→xij

, m
(k)
xij→Ti

and m
(k)
xij→Bj

(See

Fig. 2) – e.g., m
(k)
Bj→xij

= log(µ
(k)
Bj→xij

(1)/µ
(k)
Bj→xij

(0)).
The result is Algorithm 1:

1) Initialization:

m
(0)
Ti→xij

= −max
m �=i

wmj (5)

m
(0)
Bj→xij

= −max
l �=j

wil (6)

2) At kth iteration:

m
(k)
Ti→xij

= − max
m �=j

{m
(k−1)
Bm→xim

+ wim} (7)

m
(k)
Bj→xij

= − max
l �=i

{m
(k−1)
Tl→xlj

+ wlj} (8)

3) At kth iteration, we computes:

M
(k)
ij = m

(k)
Ti→xij

+ m
(k)
Bj→xij

+ wij (9)

Estimation of xij based on kth iteration is: x̂
(k)
ij = 1 if

M
(k)
ij > 0 and x̂

(k)
ij = 1 otherwise.

ISIT 2006, Seattle, USA, July 9 - 14, 2006

1935

Note that when a message passes through a variable node
xij , it increases it value by wij and the message that leaves
the constraint nodes (any top or bottom node) is simply the
negative value of the maximum of other incoming messages
at the same constraint node. Also note that Algorithm 1
could be implemented in a distributed manner.

IV. PROOF OF OPTIMALITY

Our approach follows that of Bayati et. al. [3]. Let w∗ =
max{|wij |} and ε be the difference between maximum weight
matching and the second largest weight matching. Then we
have the following results:

Theorem 1: For a symmetric complete bipartite graph, if
the maximum weighted matching is unique, Algorithm 1 con-
verges to the optimal solution after k > 3nw∗

ε
. In other words,

the decision x̂
(k)
ij is the same as [X∗]ij after k-th iterations.

To prove theorem 1, we use the computation tree first
introduced by Wiberg [10]. The computation tree Gij for
variable xij in factor graph G is a factor graph constructed by
creating a root node xij corresponding to xij in G and then
recursively adding edges and nodes to Gij that correspond to
the messages passed in the message passing algorithm. Each
vertex in Gij corresponding a unique vertex in G. The kth

level computation tree, G
(k)

ij , represents the computation for
k iterations. i.e., applying the algorithm on the computation
tree from leaves to root, the message obtained by xij on the
root is exactly the messages obtained by xij on kth iteration.

Fig. 3 shows G
(2)

11 for example.
To simplify the proof, in the following parts of this section,

“nodes” on the computation tree represent only the constraint
nodes({Ti},{Bj}), not including variable nodes({xij}). Also,

an edge in G
(k)

ij will comprise the two edges between nodes
and the corresponding vertex. For example, the edge e shown
in Fig. 3 comprises the connection between B2 and T1 and
includes x12. Thus, the edge corresponding to xml, has an
associated weight w(e) = wml. We also define the subtree
H

(k)
ij (e) as the combination of e and its descendants part of

tree (see the area encloded by the dashed box in Fig. 3 for
example). In particular, if e is the rooted edge, H

(k)
ij (e) is just

the G
(k)

ij . Furthermore, we define a regular tree matching on

H
(k)
ij (e) to be a matching in which all the nodes on H

(k)
ij (e)

are incident to exactly one link of matching, except possible
the leaf nodes. In other words, in a regular tree matching the
constraints at each node, except possibly the leaf nodes, are
satisfied – i.e., exactly only one connected variable takes the
1 value. Finally, we define the function mwm(e), mapping
edges to real numbers, as the largest weight of all regular tree
matchings on H

(k)
ij (e) that including e as part of the matching.

Similarly, mwm′(e) refers to the largest weight of regular tree
matchings on H

(k)
ij (e) that do not include e.

Now consider how Algorithm 1 operates on G
(k)

ij . In gen-
eral, the messages comes from leaves (bottom nodes) towards
the root (top edge), and there are only three types of updates.

Level 1

Level 2

x11

x12 x13 x21

x22x22 x23x23

x31

x32x32 x33x33

T1

T2

T2T2

T3

T3T3

B2

B2 B2

B1

B3

B3 B3

H
(k)
11 (e)

e

Fig. 3. Computation Tree G
(k)
11

When messages pass through a node, the upwards output
message is the negative of the maximum of input messages.
When messages pass through an edge, it simply increased by
the weight of the edge. At the root edge of the tree, M

(k)
ij is

simply the sum of wij and the two upward messages from Ti

and Bj . Then we have the following lemma:

Lemma 1: At each node in the G
(k)

ij , with output edge o and
input edges i1, i2, ...il,: (i) the message at input im is equal to
mwm(im) − mwm′(im) and (ii) the output message is equal
to mwm(o) − mwm′(o) − w(o)..
We prove Lemma 1 by induction. For all nodes in the level 1
(refer to Fig. 3, the nodes B2, B3, T2, T3), the two statements
are clearly true by inspection. Then suppose the two statements
are true for all nodes at level l. For nodes at level l + 1, note
that every input message in this level comes from the output
message of certain node at level l. By the induction hypothesis,
for any input edge im, the input message is: mwm(im) −
mwm′(im) − w(im) + w(im) = mwm(im) − mwm′(im).
Also, for a node at level l + 1, with output edge o and input
edges i1, i2, ...ip, the following equations can be derived by
the properties of regular tree matching:

mwm(o) = w(o) +

p∑
m=1

mwm′(im)

mwm′(o) = max
1≤m≤p

{mwm(im) +
∑
r �=m

mwm′(ir)}

From the update rules operated at nodes:

output message = − max
1≤m≤p

{mwm(im) − mwm′(im)}

=

p∑
m=1

mwm′(im)

− max
1≤m≤p

{mwm(im) +
∑
r �=m

mwm′(ir)}

=mwm(o) − mwm′(o) − w(o)

This completes the proof of Lemma 1 and it is straightforward
to reach the following Lemma.

Lemma 2: Let er = (Ti, Bj) be the root edge of G
(k)

ij . Then

M
(k)
ij (xij) = mwm(er) − mwm′(er).

ISIT 2006, Seattle, USA, July 9 - 14, 2006

1936

Note the rooted edge er separates G
(k)

ij into two branches. Let

H
(k)
ij (R) be the combination of edge er and the right branch of

G
(k)

ij , and H
(k)
ij (L) be the combination of edge er and the right

branch of G
(k)

ij . Then mwmR(er) refers to the largest weight

over all regular tree matching of H
(k)

ij (R) that including er as
part of a matching. Furthermore, mwm′

R(er), mwm′
L(er) and

mwmL(er) are defined in similar ways. Then:

M (k)
xij

(xij) =wij + (mwmL(er) − mwm′
L(er) − wij)

+ (mwmR(er) − mwm′
R(er) − wij)

=(mwmL(er) + mwmR(er)) − wij)

− (mwm′
L(er) + mwm′

R(er))

=mwm(er) − mwm′(er)

This completes the proof of Lemma 2.
Now we are ready to prove Theorem 1. The proof is by

contradiction. Assume er = (Ti, Bj) is not part of the MWM
in the original bipartite graph but x̂

(k)
ij = 1 – i.e., at the

kth iteration, mwm(er) > mwm′(er). We will show this is
impossible when k > 3nw∗

ε
. Let the set Ω represent all edges

in G
(k)

ij that are used to construct the matching with weight
mwm(er) (so Ω is a regular tree matching). By the definition
of mwm(er), er ∈ Ω. Let X∗ be the MWM in the original

bipartite graph. Let Ω∗ be the mapping of X∗ on the G
(k)

ij ,

then clearly Ω∗ is a regular tree matching on G
(k)

ij (this follows
the assumption the bipartite graph is complete and symmetric)
and er /∈ Ω∗. We then construct a path P in the G

(k)

ij in the
following way: Let P (0) = e = {T (0), B(0)}, where T (0) = Ti

and B(0) = Bj and for l ≥ 1, we augment P by:
• If l is odd, let P (l) be {B(l), P (l−1), T (l)}, where

(T (l−1), B(l)), (T (l), B(l−1)) ∈ Ω∗.
• If l is even, let P (l) be {T (l), P (l−1), B(l)}, where

(T (l−1), B(l)), (T (l), B(l−1)) ∈ Ω.
Continue augmenting the path P until it reaches the leaves of
G

(k)

ij , then edges of P belong to Ω and Ω∗ alternatively. (Since
both Ω∗ and Ω are regular tree matchings, we ensure such a
path exists). We modify Ω to Ω′ by adding edges belonging
to P

⋂
Ω∗ and removing those from P

⋂
Ω. Note Ω′ is also

a regular tree matching of G
(k)

ij and er /∈ Ω′. If we can show
weight(Ω′) > weight(Ω), then:

mwm′(er) ≥ weight(Ω′) > weight(Ω) = mwm(er)

and a contradiction is obtained.
Since the only difference between Ω′ and Ω is edges

in P , the only thing left to show is weight(P
⋂

Ω∗) >
weight(P

⋂
Ω). This follows from the following Lemma.

Lemma 3: If P is constructed by the way mentioned above,
weight(P

⋂
Ω∗) > weight(P

⋂
Ω) for k > 3nw∗

ε
.

Note that P has length 2k + 1. The trick is we can map P
onto the original bipartite graph G, and call the new path (on
G) P ′. The corresponding edges on P and P ′ have the same
weights. In general, P ′ composes a series of cycles C1, C2,
..., Cl, and a path Q′ = (e1, e2, ..., em), where e1, e2, ... are

a series of edges. Since the length of cycle on original graph
is at most 2n, we have l ≥ � 2k+1

2n
�. Note edges in each cycle

alternatively belong to Ω∗ and Ω. By the arguments in [3], if
the MWM is unique, in each cycle Ci, the weight of edges
∈ Ω∗ minus the weight of edges ∈ Ω is greater that or equal
to ε.

For odd k, where m is odd (since each cycle has even
length) and e1, em ∈ Ω∗, we can add a new edge em+1

to connect the two ends of Q′ to form a cycle. Let Q be
the mapping of Q′ from G to G

(k)

ij , then by the same cycle
arguments above:

weight(Q
⋂

Ω∗) − weight(Q
⋂

Ω) ≥ ε + weight(em+1)

≥ ε − w∗

Considering the whole path P :

weight(P
⋂

Ω∗) − weight(P
⋂

Ω) ≥ �
2k + 1

2n
�ε + ε − w∗

>
k

n
ε − w∗

> 0 for k >
nw∗

ε

For even k, we can get a similar results for k > 3nw∗

ε
.

Considering both cases, we complete proof of Lemma 3.
In the case er belongs to X∗ but x̂

(k)
ij = 0, the proof is

similar and omitted fro brevity. Thus, this completes the proof
of Theorem 1.

V. MODIFIED ALGORITHM FOR INTEGER WEIGHTS

The above optimality result applies only for weighted bi-
partite graphs that have unique maximum (e.g., the algorithm
doesn’t work if all edges have the same weight). In applica-
tions like N × N packet switches [7], the optimal solution
is usually not unique. However, using the fact that queueing
backlogs are always integers, one possible way to solve this
is to modify wij before applying the iMPA algorithm. For
example, for integer wij , we consider

w′
ij = wij +

2(i−1)n+j

2n2+1

Then apply iMPA on the new weights w′
ij . Since for any

permutation π(·), we have:
n∑

i=1

w′
iπ(i) =

n∑
i=1

wiπ(i) +
n∑

i=1

2(i−1)n+π(i)

2n2+1

<
n∑

i=1

wiπ(i) +
∞∑

i=1

1

2n
=

n∑
i=1

wiπ(i) + 1

Because the original weights are integers, two weighted match-
ings that differ must differ by an integer and the modification
doesn’t change the relative ordering of their total weights.
Furthermore, since (i − 1)n + j < n2 + 1, we can represent
2(i−1)n+j

2n2+1
as 2−l, where l is a positive integer. Since every

different pair of (i, j) corresponds to a unique l, it is clear
that all combinations of these terms will yield different values

ISIT 2006, Seattle, USA, July 9 - 14, 2006

1937

φα1
φα2 φα3φβ1

φβ2
φβ3

x1 x2 x3y1 y2 y3

ψ11 ψ12 ψ13 ψ21 ψ22 ψ23 ψ31 ψ32 ψ33

Fig. 4. Factor Graph for the BSS model with n = 3

– i.e., weighted matchings originally having the same weights
will have different weights after modification. The above
arguments show the correctness of this modification and with
this modification, the algorithm finds an optimal solution for
arbitrary integer weighted matching problems.

VI. COMPARISON WITH THE BSS ALGORITHM

In this section we compare our algorithm with the one
proposed by Bayati et. al. [3]. The BSS algorithm may also be
viewed as running standard iterative message passing (max-
product or max-sum) on a graph that differs from that of
Fig. 1. The factor graph shown in Fig. 41 corresponds to
the BSS model. Note that in Fig. 1, the variables are binary
and represent the possible edge connections being active while
the constraints are that only one edges be active per row or
column. The BSS model in Fig. 4 is the dual graph where
the variables are n-ary, corresponding to the row (column)
location of the active edge and the constraints are that no
two of these variables corresponding to rows (columns) take
the same value. The algorithms can be compared in terms of
computation and memory requirements:
Computation per Iteration: In each iteration, Algorithm 1
needs one max operation and n additions per node. Con-
sidering max(·) an O(n) operation, Algorithm 1 has totally
2n · O(n) + 2n2 = O(n2) complexity per iteration. The
BSS algorithm presented in [3] requires O(n2) operations
per node, but it is also claimed that this can be reduced
to O(n), yielding O(n2) complexity per iteration. Thus, the
computational complexity of the two algorithms is roughly the
same.
Memory Requirements: By inspecting equations (9) and (10),
at each node, if we express the n outgoing messages as
a vector, the elements of the vector have only two values
and exactly one of the element has different value from
others. So we need 3 units of memory per node (two values
and the location of the different one) and totally 6n units
for Algorithm 1. By comparison, all the messages in BSS
algorithm are n × 1 vectors (each has two values in their
elements). So it appears to require 3n units of memory per
node and O(n2) total memory is required2. Thus, the algorithm
presented herein appears to be more memory efficient.

VII. CONCLUSION AND DISCUSSION

The algorithm presented and the BSS algorithm have com-
plexity of O(

n3 max |wij |
ε

). The Auction algorithm [6] finds a

1We use the notation in [3] and express their model as a factor graph.
2Memory requirements are not discussed in [3].

solution within nε′ with complexity O(
n2 max |wij |

ε′
). Letting

ε′ = ε/n, where ε is the same definition in this paper, then
the complexity becomes O(

n3 max |wij |
ε

). Thus, our algorithm,
the BSS, and the Auction algorithm have the same complexity.
Further research is required to better understand of the relation
between the Auction algorithm and standard message-passing
on graphs.

It is also interesting that the traditional [11] way to solve the
weighted matching problem is to apply primal-dual algorithm
to a linear program (LP) yielding the optimal “Hungarian
method”. This optimality is obtained despite the fact that,
in general, a LP has fractional optimal solutions since the
constraint xij ∈ {0, 1} is relaxed. However, for the LP
corresponding to the MWM problem, these fractional optimal
solutions will not be the basic feasible solutions. The relation
of integer linear optimization and the max-product algorithm
has been recently studied [13] and the optimality of the
algorithm described in this paper provides a good example. An
interesting future direction is the characterization of such LP
problems and the applicability of message-passing algorithms.

REFERENCES

[1] Frank R. Kschischang, Brendan J. Frey, and Hans-Andrea
Loeliger,“Factor Graphs and Sum-Product Algorithm,”IEEE Transactions
on Information Theory, Vol.47, pp.498-519, Feb 2001.

[2] Srinivas M. Aji and Robert J. McEliece,“The Generalized Distributive
Law,”IEEE Transactions on Information Theory, Vol.46, pp.325-343, Mar
2000.

[3] M. Bayati, D. Shah, M. Sharma, “Maximum Weight Matching via
Max-Product Belief Propagation,” IEEE International Symposium on
Information Theory, Sept 2005.

[4] Keith Chugg, Achilleas Anastasopoulos, Xiaopeng Chen,“Iterative Detec-
tion,” Kluwer Academic Publishers, 2001.

[5] H.W. Kuhn,“The hungarian method for the assignment problem,” Naval
Research Logistics Quarterly, 1995, 83-87.

[6] Bertsekas, D.P.,“A Distributed Asynchronous Relaxation Algorithm for
the Assignment Problem,” Proc. 24th IEEE Conf. Dec. & Contr., 1985.

[7] N.McKeown and V. Anantharam and J. Walrand,“Achieving 100%
Throughput in an Input-Queued Switch,” Proc. INFOCOM Vol 1, pp
296-302, March 1996.

[8] M. J. Neely and E. Modiano and C. E Rohrs, “Dynamic Power Allocation
and Routing for Time Varying Wireless Networks,” IEEE Journal on
Selected Areas in Communications, Vol 23, Issue 1, pp.93-109, Jan 2005.

[9] X. Wu and R. Srikant, “Regulated Maximal Matching: A Distributed
Scheduling Algorithm for Multi-Hop Wireless Networks with Node-
Exclusive Spectrum Sharing,” Submitted to IEEE Conference on Decision
and Control, 2005.

[10] N.Wiberg,“Codes and decoding on general graphs,” Ph.D. dessertation,
Linköping Univ., Linköping, Sweden,1996.

[11] Eugene Lawler, “Combinatorial Optimization,”Dover Publications,2001.
[12] L.Tassiulas and A.Ephremides, “Stability properties of contrained queing

systems an scheduling policies for maximum throughput in multihop radio
networks.,” IEEE Transactions on Automatic Control, Vol.37, no.12, Dec.
1992.

[13] Jon Feldman, Martin J. Wainwright and David R. Karger, “Using Linear
Programming to Decode Binary Linear Codes,”IEEE Transactions on
Information Theory, Vol 51, Issue 3, pp 954-972, March 2005.

ISIT 2006, Seattle, USA, July 9 - 14, 2006

1938

