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Abstract

We reduce the problem of finding an augmenting path in a general graph to
a reachability problem in a directed bipartite graph. A slight modification
of depth-first search leads to an algorithm for finding such paths. Although
this setting is equivalent to the traditional terminology of blossoms due to
Edmonds, there are some advantages. Mainly, this point of view enables
the description of algorithms for the solution of matching problems without
explicit analysis of blossoms, nested blossoms, and so on. Exemplary, we
describe an efficient realization of the Hopcroft-Karp approach for the com-
putation of a maximum cardinality matching in general graphs and a vari-
ant of Edmonds’ primal-dual algorithm for the maximum weighted matching
problem.

1 Introduction and motivation

Since Berge’s theorem in 1957 [4] it has been well known that for constructing a
maximum matching, it suffices to search for augmenting paths. But until 1965,
only exponential algorithms for finding a maximum cardinality matching in non-
bipartite graphs have been known. The reason was that one did not know how to
treat odd cycles, the so-called “blossoms”, in alternating paths. In his pioneering
work, Edmonds [12] solved this problem by shrinking these odd cycles. Because
each shrinking reduces the number of nodes in the current graph at least by two, the
total number of shrinkage’s is bounded by n

2
where n is the number of nodes in the

graphs. Hence, Edmonds original algorithm uses only O(n3) time. In [2, 17, 27, 37],
it is shown how to avoid explicit shrinking of odd cycles. All these algorithms use
O(n3) or O(nmα(m+n, n)) time where m is the number of edges in the graph and
α is the functional inverse of Ackermann’s function.
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In 1973, Hopcroft and Karp [24] proved the following fact. If one computes in
one phase a maximal set of pairwise disjoint shortest augmenting paths and aug-
ments these paths then O(

√
n) such phases would be sufficient. For the bipartite

case they showed that a phase can be implemented using a breadth-first search fol-
lowed by a depth-first search. This led to an O(n+m) implementation of one phase
and hence, to an O(

√
nm) algorithm for the computation of a maximum matching

in bipartite graphs. The implementation of a phase for non-bipartite graphs is
much harder. In 1975, Even and Kariv [11, 25] presented an O(min{n2,m log n})
implementation of a phase leading to an O(min{n2.5,

√
nm log n}) algorithm for

the computation of a maximum matching in general graphs. Galil [21] called the
full paper [25] “a strong contender for the ACM Longest Paper Award”. Tarjan
[34] called their paper “a remarkable tour-de-force”. In 1978, Bartnik [3] gave an
alternative O(n2) implementation in his unpublished Ph.D. thesis (see [23]). In
1980, Micali and Vijay Vazirani [31] have presented an O(m + n) implementation
of a phase without the presentation of a correctness proof. The algorithm as pre-
sented in [31] is not correct since their definition of “tenacity” does not work in
all cases. In 1988, Peterson and Loui have given an informal correctness proof of
the incorrect algorithm of Micali and Vazirani. Fourteen years later, Vijay Vazi-
rani [35] has repaired the mistake by changing the definition of “tenacity” and
provided a correctness proof. Recently [36], Vazirani has presented a new version
of a correctness proof. With respect to his proof in [35], he writes: “Although
the statements of these theorems were largely correct, their proofs, which involved
low level arguments about individual paths and their complicated intersections
with other structures, were, in retrospect, incorrect.” In 1999 [8], I have tried
to combine ideas of Micali and Vazirani and my framework. As pointed out by
Ross McConnell [29], the algorithm, as described in [8], is not correct. In 1991,
Gabow and Tarjan [20] have given an efficient scaling algorithm for general graph-
matching problems. As pointed out in their paper, by a slight modification of their
algorithm, they have obtained another O(m+ n) implementation of a phase. The
history of efficient implementations of a phase of the Hopcroft-Karp approach for
general graphs illustrates the need of a framework which allows a clear description
and an elaborated correctness proof of matching algorithms.

The first polynomial algorithm for the maximum weighted matching problem
has been also given by Edmonds [13]. A straightforward implementation of his
algorithm has run time O(n2m). Gabow [16] and Lawler [27] have developed O(n3)
implementations of Edmonds’ algorithm. Galil, Micali and Gabow [22] have given
an O(nm log n) implementation. At the first SODA, Gabow [18] has presented an
implementation of Edmonds algorithm which uses complicated data structures and
stated that the time complexity of his implementation is O(n(m+ n log n)).

Our goal is to avoid sophisticated explicit analysis of (nested) blossoms. Hence,
we reduce the problem of finding an augmenting path to a reachability problem
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in a directed, bipartite graph. We show, how to solve this reachability problem
by a modified depth-first search. This approach yields an algorithm which is not
fundamentally different from previous algorithms which use Edmonds’ traditional
terminology of blossoms. But if Edmonds’ algorithm is used as a subroutine with
respect to the solution of a more involved problem, using the framework of the
reachability problem which avoids the explicit consideration of blossoms can sim-
plify the situation considerably. To illustrate this, we describe a realization of
the Hopcroft-Karp approach [24] for the computation of a maximum cardinality
matching in general graphs. Furthermore, we show how to use the modified depth-
first search algorithm in the primal step of Edmonds’ maximum weighted matching
algorithm. For the description of the primal-dual method, we use no linear pro-
gram and no duality theory for linear programs. A straightforward O(nm log n)
implementation will be described as well.

In Section 2, the basic algorithm is presented. After the description of the
reduction to a reachability problem in a directed, bipartite graph, this reachabil-
ity problem is solved by a modification of depth-first search. The correctness of
the algorithm is proved and an efficient implementation is given. In Section 3,
a realization of the Hopcroft-Karp approach for general graphs is described and
its correctness is proved using the framework of the reachability problem. Fur-
thermore, an efficient implementation is given. In Section 4, we show how to use
the modified depth-first search as a subroutine in Edmonds’ maximum weighted
matching algorithm. Furthermore, we describe an O(nm log n) implementation of
this approach.

2 The basic algorithm

After the reduction of the problem of finding an augmenting path to a reachability
problem, we shall describe the solution of the reachability problem by a modifi-
cation of depth-first search. The resulting algorithm is equivalent to Edmonds’
algorithm since to each run of Edmonds’ algorithm there corresponds a run of the
modified depth-first search and vice versa [33]. Hence, the correctness of the modi-
fied depth-first search follows directly from the correctness of Edmonds’ algorithm.
Nevertheless, we shall prove the correctness of the algorithm directly without the
use of the correctness of Edmonds’ algorithm. Then we shall describe an efficient
implementation of the algorithm. The description of Edmonds’ algorithm within
the framework of the reachability problem seems not to be simpler than an elabo-
rated description of Edmonds’ algorithm within the traditional framework of blos-
soms. However, as we shall see later, if Edmonds’ algorithm is used as a subroutine
with respect to the solution of a more involved problem, using the framework of
the reachability problem can simplify the situation considerably.
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2.1 Definitions and the general method

A graph G = (V,E) consists of a finite, nonempty set of nodes V and a set of
edges E. G is either directed or undirected . In the (un-)directed case, each edge is
an (un-)ordered pair of distinct nodes. A graph G = (V,E) is bipartite if V can
be partitioned into disjoint nonempty sets A and B such that for all (u, v) ∈ E,
u ∈ A and v ∈ B or vice versa. Then we often write G = (A,B,E). A path
P from v ∈ V to w ∈ V is a sequence of nodes v = v0, v1, . . . , vk = w, which
satisfies (vi, vi+1) ∈ E, for 0 ≤ i < k. The length |P | of P is the number k of
edges on P . P is simple if vi 6= vj, for 0 ≤ i < j ≤ k. For conveniences, P will
denote the path v0, v1, . . . , vk, the set of nodes {v0, v1, . . . , vk}, and the set of edges
{(v0, v1), (v1, v2), . . . , (vk−1, vk)}. If there exists a path from v to w (of length 1)
then v is called a (direct) predecessor of w, and w is called a (direct) successor of
v. Let G = (V,E) be an undirected graph. M ⊆ E is a matching of G if no two
edges in M have a node in common. A matching M is maximal if there exists no
e ∈ E \M such that M ∪ {e} is a matching. A matching M is maximum if there
exists no matching M ′ ⊆ E of larger size. Given an undirected graph G = (V,E),
the maximum matching problem is finding a maximum matching M ⊆ E. A path
P = v0, v1, . . . , vk is M-alternating , if it contains alternately edges in M and in
E \ M . A node v ∈ V is M-free if v is not incident to any edge in M . Let
P = v0, v1, . . . , vk be a simple M -alternating path. P is M-augmenting if v0 and
vk are M -free. Let P be an M -augmenting path in G. Then M ⊕ P denotes the
symmetric difference of M and P ; i.e., M ⊕ P = M \ P ∪ P \M . It is easy to see
that M ⊕ P is a matching of G, and |M ⊕ P | = |M |+ 1.

The key to most algorithms for finding a maximum matching in a graph is the
following theorem of Berge [4].

Theorem 1 Let G = (V,E) be an undirected graph and M ⊆ E be a matching.
Then M is maximum if and only if there exists no M-augmenting path in G.

Berge’s theorem directly implies the following general method for finding a maxi-
mum matching in a graph G.

Algorithm 1
Input: An undirected graph G = (V,E), and a matching M ⊆ E.
Output: A maximum matching Mmax.
Method:
while there exists an M -augmenting path

do
construct such a path P ;
M := M ⊕ P

od;
Mmax := M .
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The key problem is now this: How to find an M -augmenting path P , if such a
path exists? We solve this key problem in the following way.

1. We reduce the key problem to a reachability problem in a directed, bipartite
graph GM = (V ′, EM).

2. We solve this reachability problem constructively.

2.2 The reduction to a reachability problem

In the bipartite case, we construct from G = (A,B,E) and a matching M ⊆ E a
directed graph GM = (A ∪ {s}, B ∪ {t}, EM) by directing the edges in M from A
to B, and directing the edges in E \M from B to A. Additionally, we add two
new nodes s and t to A∪B, add for each M -free node b ∈ B the edge (s, b) to EM ,
and add for each M -free node a ∈ A the edge (a, t) to EM . It is easy to prove that
there is an M -augmenting path in G if and only if there is a simple path from s
to t in GM . This reachability problem can be solved by performing a depth-first
search of GM with start node s. Now we shall consider the general case.

Let G = (V,E) be an undirected graph and M ⊆ E be a matching. Let
VM := {x ∈ V | x is M -free}. For the definition of GM we have the following
difficulty. Let us consider the graph described in Figure 1 where edges in M are
wavy. The M -augmenting path from x to y enters the edge e in b and leaves the
edge from a. The M -augmenting path from v to w enters e in a and leaves e from
b. A priori, we cannot divide the set of nodes V into two sets A and B such that an
M -augmenting path exists in G if and only if there exists an M -augmenting path,
using alternately nodes from A and from B. Hence, for defining GM , we introduce
for each node v ∈ V two nodes [v,A] and [v,B] such that an analogous construction
of a graph GM is possible. Both edges ([v,A], [w,B]) and ([w,A], [v,B]) are in GM

if and only if (v, w) ∈ M . Both edges ([x,B], [y, A]) and ([y,B], [x,A]) are in GM

if and only if (x, y) ∈ E \M . Additionally, we add for each M -free node v ∈ V the
edges (s, [v,B]) and ([v, A], t) to GM , where s and t are two new distinct nodes.
More formally, let GM := (V ′, EM) where

V ′ := {[v,A], [v,B] | v ∈ V } ∪ {s, t} s, t 6∈ V, s 6= t

EM := {([v, A], [w,B]), ([w,A], [v,B]) | (v, w) ∈M}
∪ {[x,B], [y, A]), ([y,B], [x,A]) | (x, y) ∈ E \M}
∪ {(s, [v,B]), ([v, A], t) | v ∈ VM} .

Analogously to the bipartite case, we have directed the edges in M “from A to B”
and the edges in E \M “from B to A”. Since the distinct nodes [v, A] and [v,B]
in V ′ correspond to the same node v in V , it does not suffice to construct a simple
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Figure 1: Difficulty with respect to the definition of GM .

path from s to t in GM for finding an M -augmenting path in G. Hence, we define
strongly simple paths in GM which cannot contain both nodes [v, A] and [v,B], for
all v ∈ V . A path P in GM is strongly simple if

a) P is simple, and

b) ∀[v,A] ∈ V ′ : [v,A] ∈ P ⇒ [v,B] 6∈ P .

Now we can formulate the reachability problem in GM which is equivalent to the
problem of finding an M -augmenting path in G.

Theorem 2 Let G = (V,E) be an undirected graph, M ⊆ E be a matching, and
GM = (V ′, EM) be defined as above. Then there exists an M-augmenting path in
G if and only if there exists a strongly simple path from s to t in GM .

Proof: “⇒”: Let Q = w1, w2, . . . , wl−1, wl be an M -augmenting path in G. Then
wi 6= wj, 1 ≤ i < j ≤ l, and w1, wl ∈ VM . Hence, by the construction of GM ,
Q′ = s, [w1, B], [w2, A], . . . , [wl−1, B], [wl, A], t is a strongly simple path in GM .

“⇐”: Let P = s, [v1, B], [v2, A], [v3, B], . . . , [vk−1, B], [vk, A], t be a strongly simple
path in GM . Then vi 6= vj, 1 ≤ i < j ≤ k, and v1, vk ∈ VM . Hence, P ′ =
v1, v2, . . . , vk is an M -augmenting path in G.

Because of Theorem 2, the reachability problem equivalent to the problem of
finding an M -augmenting path in G is to find a strongly simple path from s to t
in GM .
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2.3 The solution of the reachability problem

Depth-first search (DFS) finds simple paths in a directed graph. Hence, we cannot
use DFS directly for the solution of the reachability problem in GM . We will modify
the usual DFS such that the modified depth-first search (MDFS) finds precisely the
strongly simple paths in GM . Let [v, A] := [v,B] and [v,B] := [v, A]. Remember
that a DFS partitions the edges of the graph into four categories [1]. Similarly, the
edges of GM are partitioned into five categories by an MDFS of GM :

1. Tree edges , which are edges leading to new nodes [v,X], X ∈ {A,B} for
which [v,X] is not a predecessor during the search.

2. Weak back edges , which are edges leading to new nodes [v,A] for which [v,B]
is a predecessor during the search.

3. Back edges , which go from descendants to ancestors during the search.

4. Forward edges , which go from ancestors to proper descendants but are not
tree edges.

5. Cross edges , which go between nodes that are neither ancestors nor descen-
dants of one another during the search.

Like DFS, MDFS uses a stack K for the organization of the search. Analogously
to DFS, the MDFS-stack K defines a tree, the MDFS-tree T . Before describ-
ing MDFS in detail, we shall describe the algorithm informally. TOP(K) de-
notes the last node added to the MDFS-stack K. In each step, MDFS con-
siders an edge (TOP(K), [w, Y ]) which has not been considered previously. Let
e = ([v,X], [w,X]) be the edge under consideration. We distinguish two cases.

1. X = A, i.e. (v, w) ∈M . tree edge

2. X = B, i.e. (v, w) ∈ E \M

2.1 [w,A] ∈ K back edge

2.2 [w,A] 6∈ K but [w,B] ∈ K
i) [w,A] has been in K previously cross edge

ii) [w,A] has not been in K previously weak back edge

2.3 [w,A] 6∈ K and [w,B] 6∈ K
i) [w,A] has been in K previously forward or cross edge

ii) [w,A] has not been in K previously tree edge
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MDFS differs from DFS only in Cases 2.2.ii and 2.3.i. Next, we shall discuss both
of these cases.

Case 2.2.ii: Since [w,A] has not been in K previously, DFS would perform the op-
eration PUSH([w,A]). Since [w,B] ∈ K and MDFS should only construct strongly
simple paths in GM , the operation PUSH([w,A]) is not performed by MDFS.

Note that the path P = s, P1, [w,B], P2, [v,B] defined by the MDFS-stack
K is strongly simple. Hence, the path Q = [x,A], P22, [v,B], [w,A] where P2 =
P21, [x,A], P22 is strongly simple for each node [x,A] on P2. We say then that
MDFS has found the strongly simple path Q from [x,A] to [w,A]. Since the path
Q is above the node [w,B] with respect to the MDFS-stack K, after the execution
of the operation POP ([w,B]), no node on Q is in the MDFS-stack K. Moreover,
as we shall prove later, for all nodes [z,X] on P2 the operations PUSH([z,X]),
POP ([z,X]), PUSH([z,X]) and POP ([z,X]) have been performed before the op-
eration POP ([w,B]).

Case 2.3.i: Since [w,A] has been in K before, DFS would perform no PUSH-
operation. But the different treatment of Case 2.2.ii can cause the following situa-
tion: MDFS has found a strongly simple path Q = [w,A], Q′, [u,A] from the node
[w,A] to a node [u,A] but at that moment, the node [u,B] was below [w,A] in
the MDFS-stack K such that the operation PUSH([u,A]) has not been performed.
But now, [u,B] 6∈ K.

As we shall prove later, the paths P from s to [v,B] and Q from [w,A] to
[u,A] are strongly disjoint ; i.e. there is no node [r,X] on P , X ∈ {A,B} such that
{[r, A], [r, B]} ∩Q 6= ∅. Since MDFS has found a strongly simple path P,Q from s
to [u,A], MDFS now performs the operation PUSH([u,A]).

Note that with respect to depth-first search, the DFS-stack contains exactly
the current search path. With respect to the modified depth-first search, the sit-
uation is different. In Case 2.3.i, the node [u,A] is pushed. But to obtain a cur-
rent search path, between the nodes [v,B] and [u,A], we have to insert any path
[w,A], Q′, [u,A] which has been found by MDFS. Since we do not want to forget
the information about the first node [w,A] on the path which we add between the
nodes [v,B] and [u,A], we create the artificial tree edge ([v,B], [u,A])[w,A]. Such an
edge is called extensible edge. It is possible that there exists various such paths Q′.
Hence, after the execution of PUSH([u,A]), the number of corresponding current
search paths can increase. Whenever we say that we consider a current search path
we mean that we can take an arbitrary corresponding current search path. If we
add to the constructed MDFS-tree T all forward, back, cross and weak back edges
and every extensible edge ([v,B], [u,A])[w,A] is replaced by all strongly simple paths
Q = [v,B], [w,A], Q′, [u,A], then we obtain the expanded current MDFS-tree Texp.

We say that MDFS has constructed a path P if the MDFS-stack K contains the
path P where each extensible edge ([v,B], [u,A])[w,A] in K is replaced by one of the
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strongly simple paths Q = [v,B], [w,A], Q′, [u,A] which replace this extensible edge
in Texp. We say that MDFS has formed a strongly simple path P if Texp contains P .
We say that MDFS has found a strongly simple path P ′, [v,B], [w,A] if the path
P ′, [v,B] is formed by MDFS and the edge ([v,B], [w,A]) is a considered weak
back edge. Next we shall describe MDFS in detail. We have to solve the following
problem: How to find the node [u,A] in Case 2.3.i? For the solution of this problem,
we assume that MDFS is organized such that for all nodes [w,A] ∈ V ′, the following
holds true:

After performing the operation POP([w,A]), MDFS has always computed a set
L[w,A] of nodes such that L[w,A] contains exactly those nodes [u,A] ∈ V ′ satisfying
the requirements that

1. MDFS has found a path P = [w,A], Q, [u,A] with [u,B] 6∈ Q,

2. PUSH([u,A]) has never been performed, and

3. POP([u,B]) has been performed.

Before the execution of POP([w,A]), we fix L[w,A] := ∅.

In the description of MDFS we assume for all [w,A] ∈ V ′ that L[w,A] is computed
correctly. As we shall prove later, it will always hold that |L[w,A]| ≤ 1. The
computation of L[w,A] as well as an efficient implementation of MDFS, can be
found in Section 2.5. For [v,X] ∈ V ′, N [v,X] denotes the adjacency list of [v,X].
Note that after the POP of the head [w,B] of a matched edge ([v, A], [w,B]), the
POP of the tail [v,A] of this edge has also to be performed. Hence, at the end of
the procedure SEARCH, we shall have two POP-operations.

Algorithm 2 (MDFS)
Input: GM = (V ′, EM).
Output: A strongly simple path P from s to t, if such a path exists.
Method:

Initialize the stack K to be empty;
PUSH(s);
while K 6= ∅ and no path from s to t is constructed

do
SEARCH

od.

SEARCH is a call of the following procedure.

procedure SEARCH;
if TOP(K) = t

9



then
reconstruct a strongly simple path P from s to t
which has been constructed by the algorithm

else
mark TOP(K) “pushed”;
for all nodes [w, Y ] ∈ N [TOP (K)]
do

if Y = B
(Case 1) then

PUSH([w,B]);
SEARCH

(Case 2) else
if [w,A] ∈ K

(Case 2.1) then
no PUSH-operation is performed

else
if [w,B] ∈ K

(Case 2.2) then
no PUSH-operation is performed

(Case 2.3) else
if [w,A] is marked “pushed”

(Case 2.3.i) then
while L[w,A] 6= ∅
do

choose any [u,A] ∈ L[w,A];
PUSH([u,A]);
SEARCH

od
(Case 2.3.ii) else

PUSH([w,A]);
SEARCH

fi
fi

fi
fi

od;
POP;
POP

fi.
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2.4 The correctness proof of MDFS

The correctness proof of MDFS is inspired by the correctness proof of DFS. But in
contrast to DFS, the proof is difficult. The difficulties come from the fact that the
MDFS-stack does not contain the whole current search path and the decisions taken
by the algorithm only depend on the content of the current stack. Hence, the proof
that the algorithm constructs only strongly simple paths is involved. First we shall
prove some lemmas. The first lemma implies that the first PUSH-operation which
destroys the property “strongly simple” must push a node with second component
A.

Lemma 1 As long as MDFS constructs only strongly simple paths, the following
holds true: After the operation PUSH([v,A]) where v is not M-free, the operation
PUSH([w,B]) where ([v,A], [w,B]) ∈ EM always follows without destroying the
property “strongly simple”.

Proof: After the execution of the operation PUSH([v,A]), always the unique edge
([v,A], [w,B]) ∈ EM is considered and the operation PUSH([w,B]) is performed.
If this operation would destroy the property “strongly simple”, then [w,A] and
hence, [v,B] would be on a current search path. But then, already the operation
PUSH([v, A]) would have destroyed the property “strongly simple”, a contradiction.

The next lemma shows that in a certain situation MDFS constructs a path from
s to a node [x,A].

Lemma 2 Let [u,B] ∈ V ′ be a node for which MDFS performs the operation
PUSH([u,B]). Furthermore, at the moment when POP([u,B]) is performed, only
strongly simple paths have been constructed by MDFS. Let [x,A] ∈ V ′ be a node
such that at the moment when PUSH([u,B]) is performed, there is a strongly simple
path P = [u,B], [v,A], Q, [x,A] with [z,X], [z,X] 6∈ K for all [z,X] ∈ P . Then
PUSH([x,A]) has been performed before POP([u,B]).

Remark: Lemma 2 implies that either PUSH([x,A]) and POP([x,A]) have been
performed before the execution of PUSH([u,B]), or both operations have been
performed between the operations PUSH([u,B]) and POP([u,B]).

Proof: Assume that the assertion does not hold. We consider a path P =
[u,B], [v,A], [v′, B], Q′, [x,A] of shortest length such that PUSH([x,A]) has not
been performed before POP([u,B]). It is clear that the edge e = ([u,B], [v, A]) has
been considered before the execution of POP([u,B]). By assumption, [v, A] 6∈ K
and [v,B] 6∈ K at the moment when e is considered. Hence, MDFS is in Case 2.3.

If the operation PUSH([v, A]) is performed according to this consideration of
edge e, then PUSH([v′, B]) would be the next operation performed by the algo-
rithm. By assumption, P is a shortest path such that the assertion is not fulfilled.
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Therefore, PUSH([x,A]) has been performed before POP([v′, B]), and hence, before
POP([u,B]), a contradiction.

If the operation PUSH([v,A]) is not performed according to this considera-
tion of edge e, then MDFS is in Case 2.3.i and performs the corresponding while-
statement. Consider the moment when MDFS terminates this while-statement;
i.e., L[v,A] = ∅. Let [z, A] be the first node on P for which PUSH([z, A]) has
not been performed. Since [x,A] has this property, the node [z, A] exists. Let
P = [u,B], [v,A], Q1, [y,B], [z, A], Q2, [x,A]. By construction, each node on P1 =
[u,B], [v, A], Q1, [y,B] is pushed and each edge on P1 is considered. Hence, all these
nodes and edges are in Texp such that P1 is formed by MDFS. Furthermore, the
edge ([y,B], [z, A]) is a considered weak back edge. Therefore, MDFS has found
the path P1, [z, A]. By assumption, PUSH([z, A]) has never been performed. Since
[z,B] 6∈ K when PUSH([u,B]) is performed it holds that POP([z, B]) has been
performed. Hence, [z, A] ∈ L[v,A], and hence, L[v,A] 6= ∅. But this contradicts
L[v,A] = ∅ such that the lemma is proved.

The following lemma shows that in a certain situation some nodes are already
pushed. For the proof of the lemma, we need the notation of the so-called back-path
r(S) of a path S in GM . Essentially, the back-path of S is obtained by changing the
direction of the edges on S and running S backwards. To get a formal definition
for r(S), we denote for w ∈ V ′

r(w) :=

 [v,X] if w = [v,X]
t if w = s
s if w = t.

Let S = w1, w2, . . . , wk be a path in GM . The back-path r(S) of S is defined by

r(S) := r(wk), r(wk−1), . . . , r(w1).

The following lemma is a direct consequence of Lemma 2.

Lemma 3 Let [u,B] ∈ V ′ be a node for which MDFS performs the operation
PUSH([u,B]). Furthermore, at the moment when POP([u,B]) is performed, only
strongly simple paths have been constructed by MDFS. If there exists a strongly sim-
ple path P = [v,A], Q, [w,B] such that at the moment when PUSH([u,B]) is per-
formed, [z,X], [z,X] 6∈ K, for all [z,X] ∈ P , and ([u,B], [v, A]), ([w,B], [u,A]) ∈
EM then for all [z,X] ∈ P , the operations PUSH([z,X]) and PUSH([z,X]) have
been performed before the execution of the operation POP([u,B]).

Proof: For [z,X] ∈ P , the assertion follows by an application of Lemma 2 to the
path [u,B], P . With respect to [z,X] where [z,X] ∈ P , we apply Lemma 2 to the
path [u,B], r(P ).
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Note that by the definition of L[u,A], |L[u,A]| > 0 implies that PUSH([u,A])
and POP([u,A]) have been performed. The following lemma extracts properties of
the algorithm MDFS which enable us to prove the correctness and to develop an
efficient implementation of MDFS.

Lemma 4 MDFS maintains the following invariants:

1. MDFS constructs only strongly simple paths.

2. |L[w,A]| ≤ 1, for all [w,A] ∈ V ′.

3. Assume that the algorithm performs the assignment L[w,A] := [u,A]. Then
after the execution of PUSH([u,A]) always L[w,A] = L[u,A].

Remark: Invariant 2 and Invariant 3 are not needed for the correctness proof.
But we shall need these invariants for an efficient implementation of the algorithm.
Moreover, the proof of Invariant 1 is easier if we prove all invariants simultaneously.

Proof: Consider the first situation in which one of the three invariants is not
maintained. Three cases have to be considered.

Case 1: Invariant 1 is not maintained.

Only a PUSH-operation can destroy the property “strongly simple”. Note that
a PUSH-operation cannot affect Invariant 2 or Invariant 3. Lemma 1 implies that
this PUSH-operation occurs during the consideration of an edge e = ([v,B], [w,A]).

If [w,A] is not marked “pushed”, then Case 2.3.ii applies and PUSH([w,A])
is performed. Since [w,B] 6∈ K, the only possible situation in which this PUSH-
operation destroys the property “strongly simple” is the following: On a current
search path there is a subpath Q which is caused by an application of Case 2.3.i
of MDFS such that [w,B] ∈ Q. Hence, there exists [u,A] ∈ V ′ such that the
addition of Q to this current search path is caused by the operation PUSH([u,A]).
By construction, the assumptions of Lemma 3 are fulfilled with respect to [u,B]
and [w,B] on P . Hence, by Lemma 3, PUSH([w,A]) has been performed before
POP([u,B]), and hence, before PUSH([u,A]), a contradiction.

Hence, [w,A] is marked “pushed” such that Case 2.3.i of MDFS applies. By
Invariant 2, |L[w,A]| ≤ 1. We thus write L[w,A] = [u,A] instead of L[w,A] = {[u,A]}.
By Case 2.3.i, for the node [u,A] = L[w,A], the operation PUSH([u,A]) is performed
such that MDFS extends the current search paths by a path [w,A], Q, [u,A], but
only [u,A] is pushed. By the definition of L[w,A] and by Lemma 3, the opera-
tions PUSH([z,X]), POP([z,X]), PUSH([z,X]), and POP([z,X]) have been per-
formed, for all [z,X] ∈ Q such that none of these nodes is contained in the current
MDFS-stack K. Hence, the only possible situation in which PUSH([u,A]) de-
stroys the property “strongly simple” is the following: There is a node [p,X] ∈
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[w,A], Q, [u,A], and a subpath Q′ of a current search path which is caused by an
application of Case 2.3.i such that [p,X] ∈ Q′ or [p,X] ∈ Q′. Since one end node
of an edge in the current matching uniquely determines the other end node, we can
choose [p,X] such that [p,A] ∈ Q′.

Consider the node [u′, A] ∈ K such that PUSH([u′, A]) is the operation which
adds the subpath Q′ to this current search path. Therefore, immediately before
the execution of PUSH([u′, A]), L[p,A] = [u′, A]. Hence, by Invariant 3, after the
execution of PUSH([u′, A]), always L[p,A] = L[u′,A]. By the choice of [p,A], L[p,A] =
[u,A], and hence, L[u′,A] = [u,A] in the situation under consideration. Hence,
POP([u′, A]) has been performed such that [u′, A] 6∈ K, a contradiction.

Case 2: Invariant 2 is not maintained.

Then there exists [w,A], [p1, A], [p2, A] ∈ V ′ such that L[w,A] = {[p1, A]} before
the execution of POP([p2, B]) and L[w,A] = {[p1, A], [p2, A]} after the execution
of POP([p2, B]). Hence, MDFS has found a path P1 = [p1, B], Q, [p1, A] with
[w,A] ∈ Q and found a path P2 = [p2, B], Q′, [p2, A] with [w,A] ∈ Q′.

If MDFS has found the path P2 after the execution of POP([p1, B]), then [w,A]
can only be added to Q′ in the following way: An operation PUSH([u,A]), caused
by an application of Case 2.3.i with respect to a node [v,A] (i.e., [u,A] ∈ L[v,A]) is

performed such that the current search path is extended by a path [v,A], Q̃, [u,A]
with [w,A] ∈ Q̃. But then, [u,A] ∈ L[w,A] before the execution of PUSH([u,A]).
PUSH([u,A]) is performed after POP([p1, B]). Hence, [u,A], [p1, A] ∈ L[w,A] be-
tween the execution of these two operations. This contradicts the assumption that
we consider the situation in which Invariant 2 is not maintained for the first time.

Hence, MDFS has found the path P2 before the execution of POP([p1, B]).
Note that [p1, B] 6∈ Q′. Otherwise, by Lemma 3, PUSH([p1, A]) is performed before
POP([p2, B]), and hence, [p1, A] 6∈ L[w,A] after POP([p2, B]). Let [r, A] be the first
node on Q′ such that [r, A] ∈ Q or [r, B] ∈ Q. Since node [w,A] has this property,
the node [r, A] exists. Let

Q′ = Q′1, [r, A], Q′2 and Q =

{
Q1, [r, A], Q2 if [r, A] ∈ Q
Q1, [r, B], Q2 if [r, B] ∈ Q.

Consider the path

R =

{
Q′1, [r, A], Q2, [p1, A] if [r, A] ∈ Q
Q′1, [r, A], r(Q1), [p1, A] if [r, B] ∈ Q.

Then Lemma 2 applies with respect to [p2, B], [p1, A] and the strongly simple path
R. Hence, PUSH([p1, A]) is performed before POP([p2, B]), and hence, [p1, A] 6∈
L[w,A] after POP([p2, B]), a contradiction.

Case 3: Invariant 3 is not maintained.
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After the execution of PUSH([u,A]), it holds that L[w,A] = L[u,A] = ∅. We shall
prove that L[w,A] = L[u,A] after the next POP-operation which changes L[w,A] or
L[u,A]. Then, the assertion follows because of Invariant 2 and the transitivity of
the relation =. Let POP([p,B]) be the next POP-operation which enlarges L[w,A]

or L[u,A]. K[w,A] denotes the current MDFS-stack, directly after the execution of
PUSH([w,A]). Let K ′ = K[w,A] ∩K[u,A]. Note that [u,B] ∈ K[w,A] \K ′. According
to the location of [p,B] with respect to K[w,A] and to K[u,A], we have to discuss
three cases.

By construction, [p,B] 6∈ K[w,A] \ K ′. Otherwise, POP([p,B]) would be per-
formed before PUSH([u,A]).

Assume that [p,B] ∈ K[u,A] \K ′. Let [q, B] be the first node in K[w,A] \K ′ such
that [q, A] ∈ K[u,A] \ K[p,B]. Node [q, B] exists since [u,B] has the property that
[u,B] ∈ K[w,A] \K ′. Consider the back-path of the path from node [p,B] to node
[q, A]. This back-path implies that [q, B] and [p,A] fulfill the assumptions of Lemma
2. Hence, PUSH([p,A]) occurs before POP([q, B]). Since [q, B] ∈ K[w,A] \K ′, the
operation PUSH([p,A]) is also performed before POP([p,B]). Hence, POP([p,B])
can enlarge neither L[w,A] nor L[u,A].

It remains to consider [p,B] ∈ K ′. Let [q, B] ∈ K ′ be the node nearest to
the top of K ′ for which PUSH([q, A]) has not been performed at the moment
when MDFS performs PUSH([u,A]). Since [p,B] has this property, [q, B] exists.
By consideration of the back-path of the path from [q, B] to [u,B], it is easy to
prove that MDFS finds a path from [u,A] to [q, A] not containing [q, B]. Hence,
L[u,A] = [q, A] after the execution of POP([q, B]), and hence, [q, B] = [p,B]. Since
MDFS has found a path from [w,A] to [u,A] which does not contain [q, B], it holds
that L[w,A] = [q, A] = [p,A].

Now, the correctness of the algorithm MDFS can easily be derived from Lemma
2 and Lemma 4.

Theorem 3 MDFS constructs a strongly simple path from s to t iff such a path
exists.

Proof: Assume P = s, [v′0, B], [v1, A], [v′1, B], . . . , [v′r−1, B], [vr, A], t is a strongly
simple path from s to t. It is clear that MDFS considers the edge (s, [v′0, B]) and per-
forms the operation PUSH([v′0, B]). (Note that v′0 is M -free.) Hence, [v′0, B], [vr, A]
fulfill the assumptions of Lemma 2 with respect to the path [v′0, B], [v1, A], . . . , [v′r−1, B],
[vr, A]. By Lemma 2, MDFS performs PUSH([vr, A]) and hence, PUSH(t). There-
fore, MDFS constructs a path from s to t. By Invariant 1 of Lemma 4, MDFS
constructs only strongly simple paths.
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2.5 An implementation of MDFS

Now we shall describe how to get an efficient implementation of MDFS. Only two
parts of the algorithm are nontrivial to implement.

1. The manipulation of L[w,A], [w,A] ∈ V ′.

2. The reconstruction of a strongly simple path P from s to t which is con-
structed by the algorithm.

For the solution of both subproblems it is useful to perform the POP-operations not
explicitly and to maintain the whole MDFS-tree T . This can be done as follows:
The data structure is a tree T . A pointer TOP always points to TOP(K) in T .
The current MDFS-stack K is represented by the unique path from the root s of T
to TOP(K) in T . For performing the operation POP, the pointer TOP is changed
such that it points to the unique direct predecessor in T . When we perform a
PUSH-operation, the node in T to which TOP(K) points obtains a new leaf. After
the PUSH-operation TOP(K) points to this new leaf.

Invariant 2 and Invariant 3 are the key for the efficient implementation of MDFS.
Now we shall describe the update of L[w,A]. By the definition of L[w,A], we only
have to change L[w,A] after a PUSH- or after a POP-operation. More exactly, we
have to perform after PUSH([u,A]) the operation L[w,A] := ∅ if L[w,A] = [u,A] and
after POP([u,B]) the operation L[w,A] := [u,A] if PUSH([u,A]) has never been
performed and MDFS has found a path P = [w,A], Q, [u,A] for which [u,B] 6∈ Q.

After the execution of POP([u,B]), if PUSH([u,A]) has never been performed,
MDFS needs all nodes [w,A] for which a path P = [w,A], Q, [u,A] such that
[u,B] 6∈ Q has been found by MDFS. This can easily be done by any graph search
method like depth-first search on the current Texp, starting at node [u,A] and run-
ning the considered edges backwards. When the node [u,B] is reached, a backtrack
is performed. But with respect to efficiency, it is useful to investigate the properties
of MDFS and to refine the backward graph search.

First, we shall characterize the paths P = [w,A], Q, [u,A] with [u,B] 6∈ Q,
found by MDFS. Let P = e1, e2, . . . , et. Then, the following properties are fulfilled:

1. et is a weak back edge.

2. If we start in edge et and consider P backwards, then we see a nonempty se-
quence of tree edges followed by a single cross, forward or back edge, followed
by a nonempty sequence of tree edges followed by a single cross, forward or
back edge, and so on.

Hence, after the execution of POP([u,B]), we need the following sets of nodes:

R[u,A] := {[v,B] ∈ V ′ | ([v,B], [u,A]) is a weak back edge}
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and for some [q, A] ∈ V ′

E[q,A] := {[v,B] ∈ V ′ | ([v,B], [q, A]) is a cross, forward, or back edge}.

According to Invariant 3, during the backward search, some subpaths can be
skipped over. Therefore, we need the following set of nodes

D[q,A] := {[p,A] ∈ V ′ | L[p,A] = [q, A] previously}.

By Invariant 3, D[q,A] ⊆ D[q′,A] implies L[q,A] = L[q′,A]. We say that D[q,A] is current
if D[q,A] 6⊆ D[q′,A], for all [q′, A] ∈ V ′ \ {[q, A]}. According to Invariant 3, we can
compute L[p,A] in the following way.

1. Compute [q, A] such that [p,A] ∈ D[q,A], and D[q,A] is current.

2. If [q, A] does not exist, then L[p,A] = ∅. Otherwise,

L[p,A] =

{
[q, A] if PUSH([q, A]) has never been performed
∅ otherwise.

As described above, a correct manipulation of the current sets D[q,A] allows the
solution of the first subproblem. Note that by Invariant 2 of Lemma 4, each
[p,A] ∈ V ′ is contained in at most one current set D[q,A]. If during the backward
search a node [p,A] is met for which L[p,A] 6= ∅ previously, some nodes can be
skipped over. Hence, we have also to know if L[p,A] 6= ∅ previously. This will be
realized by the correct update of the following set

L := {[p,A] ∈ V ′ | L[p,A] 6= ∅ previously}.

Now we can give a detailed description of the backward search which will be per-
formed after POP([u,B]). The consideration of those paths P = [w,A], Q, [u,A]
with [u,B] 6∈ Q is done in several rounds. In the first round, we construct back-
wards all paths without any cross, forward, or back edge. In the second round,
all paths with exactly one such edge are constructed implicitly, and so on. Let Tv
denote the nodes in Texp which have been already considered during the backward
search. If a node in Tv is considered again, the search has not to be continued
at that node. In the first round, we consider the weak back edges ([v,B], [u,A]).
In the ith round, i > 1, we consider those edges ([v,B], [q, A]) ∈ E[q,A] for which
L[q,A] = [u,A] is computed in the (i−1)st round. Starting in node [v,B], we follow
backwards the tree edges as long as a node in Tv ∪ {[u,B]} is reached. If we reach
a node [p,A] ∈ L, then we compute the current D[r,A] such that [p,A] ∈ D[r,A] and
we jump to [r, B] for the continuation of the backward search. Since we perform a
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backward search, [r, B] is switched to [r, A]. According to Invariant 3, L[x,A] = L[r,A]

and hence, L[x,A] = [u,A] for all [x,A] ∈ D[r,A].
For the organization of the backward search, we use a queue Q which contains

the start nodes of the next round. During Round i, the start nodes of Round i+ 1
are added to the end of the queue. Since the data structure is a queue, all start
nodes of a round are treated before the first start node of the next round is taken
away from Q.

For the reconstruction of a strongly simple path from s to t constructed by the
algorithm, we have to know the non-tree edges used on the path. Hence, for all
[r, A] ∈ V ′ we use a variable P[r,A] to store the needed information with respect to
the node [r, A]. This means, we store in variable P[r,A] that non-tree edge which
concludes the block of tree edges which contains the tree edge with end node [r, A]
at the moment when L[r,A] 6= ∅ for the first time during the backward search.

The implementation of MDFS must be done with attention to the correct ma-
nipulation of the sets D[q,A], R[q,A], and E[q,A]. The following table describes in
terms of the case of MDFS, and in terms of the operation which is performed, how
MDFS has to update these sets.

case, operation set updating
Case 1 no update
Case 2.1 E[w,A] := E[w,A] ∪ {[v,B]}
Case 2.2.i E[w,A] := E[w,A] ∪ {[v,B]}
Case 2.2.ii R[w,A] := R[w,A] ∪ {[v,B]}
Case 2.3.i
L[w,A] 6= ∅ no update
L[w,A] = ∅ E[w,A] := E[w,A] ∪ {[v,B]} if [w,A] 6∈ L
Case 2.3.ii no update
PUSH([u,A]) no update
POP([v,B]) D[v,A] := {[p,A] | MDFS has found a path from

[p,A] to [v,A] not containing [v,B]}

In Case 2.1, it is clear that [w,A] 6∈ L since POP([w,A]) has not been performed.
In Case 2.2.i, [w,A] 6∈ L follows directly from [w,B] ∈ K and Lemma 1. Note
that in Case 2.3.i, subcase L[w,A] 6= ∅, we have to store the information that edge
([v,B], [w,A]) is used. In the implementation, we accomplish this by adding the
edge ([v,B], [w,A]) to the node [v,B] in K. Then we obtain the expanded node
〈([v,B], [w,A]); [v,B]〉. The considerations above lead to the following implemen-
tation of the procedure SEARCH.

procedure SEARCH;
if TOP(K) = t
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then
reconstruct a strongly simple path P from s to t
which has been constructed by the algorithm

else
mark TOP(K) “pushed”;
for all nodes [w, Y ] ∈ N [TOP (K)]
do

if Y = B
(Case 1) then

PUSH([w,B]);
SEARCH

(Case 2) else
if [w,A] ∈ K

(Case 2.1) then
E[w,A] := E[w,A] ∪ {TOP (K)}

else
if [w,B] ∈ K

(Case 2.2) then
if [w,A] is marked “pushed”

(Case 2.2.i) then
E[w,A] := E[w,A] ∪ {TOP (K)}

(Case 2.2.ii) else
R[w,A] := R[w,A] ∪ {TOP (K)}

fi
(Case 2.3) else

if [w,A] is marked “pushed”
(Case 2.3.i) then

if L[w,A] 6= ∅
then

expand TOP(K) in K to
〈(TOP (K), [w,A]);TOP (K)〉;
PUSH(L[w,A]); L[w,A] := ∅;
SEARCH

else
if [w,A] 6∈ L
then

E[w,A] := E[w,A] ∪ {TOP (K)}
fi

fi
(Case 2.3.ii) else

PUSH([w,A]);
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SEARCH
fi

fi
fi

fi
od;
(∗ let TOP(K) = [v,B]∗)
Lcur := [v,A];
DLcur := ∅;
Q := ∅;
for all [q, B] ∈ R[v,A]

do
CONSTRL(([q, B], [v,A]), [v,B]);

od;
while Q 6= ∅
do

remove the front node [k,A] from Q;
for all [q, B] ∈ E[k,A] which have not already been

considered during the backward search
do

CONSTRL(([q, B], [k,A]), [v,B])
od

od;
POP;
POP

fi.

CONSTRL is a call of the following procedure. The variable Pcur contains always
the non-tree edge which concludes the current block of tree edges.

procedure CONSTRL(([q, B], [u,A]), [x,B]);
Pcur := ([q, B], [u,A]);
[z, B] := [q, B];
while no node in Tv ∪ {[x,B]} is reached
do

starting in the node [z,B], perform a backward search until
a node in L ∪ Tv ∪ {[x,B]} is reached on the tree edges;
if [y, A] 6∈ L is met during the backward search
then

DLcur := DLcur ∪ {[y, A]};
L := L ∪ {[y, A]};
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P[y,A] := Pcur;
add the node [y, A] at the end of Q

fi;
if [y, A] ∈ L is met by the backward search
then

(∗ Let D[r,A] be the current set containing [y, A]. ∗)
DLcur := DLcur ∪D[r,A];
[z,B] := [r, B]

fi
od.

The reconstruction of a strongly simple path P from s to t constructed by the
algorithm remains to be explained. Beginning at the end of P , such a path P
can be reconstructed by traversing the MDFS-tree T backwards. Note that TOP
points to the end of P , and that the father of each node in T is always unique.
As long as we traverse tree edges of the algorithm MDFS, we have no difficulty.
But every time when we meet a node [u,A] which has been added to P by an
application of Case 2.3.i, we have to reconstruct a subpath [w,A], Q, [u,A] which
has been joined to P . In this situation, the considered portion of T is the expanded
node 〈([v,B], [w,A]); [v,B]〉; i.e., the structure of T tells us that MDFS has applied
Case 2.3.i. It remains the reconstruction of the subpath [w,A], Q, [u,A]. For doing
this, we start in the node [w,A]. We use P[w,A] to obtain the non-tree edge of
MDFS, which finishes the block containing the tree edge with end node [w,A]. Let
P[w,A] = ([x,B], [y, A]). Then P 1

[w,A] denotes [x,B], and P 2
[w,A] denotes [y, A]. First

we reconstruct the block from the node [w,A] to the node P 1
[w,A] = [x,B]. Then

we reconstruct the block from the node P 2
[w,A] = [y, A] to the node P 1

[y,A], and so on
until the node [u,A] is met. Each block can be reconstructed as the path P itself.
These considerations lead to the following procedure for the reconstruction of an
augmenting path, constructed by the algorithm.

procedure RECONSTRPATH(t, s);
NODEcur := t;
while NODEcur 6= s
do

if father(NODEcur) is not expanded
then

NODEcur := father(NODEcur)
else (∗ let father(NODEcur) = 〈([v,B], [w,A]); [v,B]〉∗)

RECONSTRQ(NODEcur, [w,A]);
NODEcur := [v,B]
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fi
od.

RECONSTRQ is a call of the following procedure.

procedure RECONSTRQ([u,A], [w,A]);
ST := [w,A];
RECONSTRPATH(P 1

ST , ST );
while P 2

ST 6= [u,A]
do

ST := P 2
ST ;

RECONSTRPATH(P 1
ST , ST )

od.

The correctness of the manipulation of L[w,A], [w,A] ∈ V ′, and the correctness of
the reconstruction of the M -augmenting path P follow from Lemma 4, and are
straightforward to prove. The procedure RECONSTRPATH resembles standard
recursive methods used for the reconstruction of augmenting paths (see e.g. [34]).
The time and space complexity of our implementation of MDFS remain to be
considered. It is easy to see that the time used by the algorithm MDFS is bounded
by O(n + m) plus the total time needed for the manipulation of the sets D[q,A],
[q, A] ∈ V ′. If we use linear lists for the realization of the sets D[q,A] with a pointer
to the node [q, A] for each element of D[q,A], the execution time for each union
operation is bounded by O(n). Following the pointer corresponding to [p,A], we
can find the set containing [p,A] in constant time. At most n union operations are
performed by MDFS. Hence the total time used for the manipulation of the sets
D[q,A] is bounded by O(n2). The time needed for the n union operations can be
reduced to O(n log n) if we use the following standard trick, the so-called weighted
union heuristic:

We store with each set the number of elements of the set. A union operation is
performed by changing the pointer of the smaller of the two sets which are involved
and updating the number of elements. Every time when the pointer with respect
to an element is changed, the size of the set containing this element is at least twice
of the size of its previous set. Hence, for each element, its pointer is changed at
most log n-times. Hence, the total time used for all union operations is O(n log n).
Altogether, the total time used for the augmentation of one augmenting path is
O(m+ n log n).

If we use for the update of the sets D[q,A] disjoint set union [34], the total
time can be bounded to be O((m + n)α(m,n)) where α is the inverse Ackermann
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function. Note that for each node [p,A] one find operation suffices for the decision
of L[p,A]. Furthermore, we can reduce these bounds to O(m+n) using incremental
tree set union [19]. The space complexity of MDFS is bounded by O(m+ n). The
considerations above lead to the following theorem.

Theorem 4 MDFS can be implemented such that it uses only O(m+ n) time and
O(m+ n) space.

3 The Hopcroft-Karp approach for general graphs

In 1973, Hopcroft and Karp [24] proved the following fact. If one computes in one
phase a maximal set of shortest pairwise disjoint augmenting paths and augments
these paths then O(

√
n) such phases would suffice. In the bipartite case, they

have described an elegant simple O(m + n) implementation of an entire phase.
Let us sketch this implementation. First they have reduced the problem of finding
augmenting paths to a reachability problem in a directed graph GM with two
additional nodes s and t. Then, by performing a breadth-first search on GM with
start node s until the target node t is reached, they have obtained a layered, directed
graph ḠM for which the paths from s to t correspond exactly to the shortest
M -augmenting paths in G. Using depth-first search, they find a maximal set of
pairwise disjoint M -augmenting paths. Whenever an M -augmenting path is found,
the symmetric difference is applied to the path and the current matching, the path
and all incident edges are deleted and the depth-first search is continued. Breadth-
first search and depth-first search takeO(m+n) time. Hence, the implementation of
Hopcroft and Karp of a phase has time complexity O(m+n). Since M -augmenting
paths can be found in general graphs by a slightly modified depth-first search
(MDFS), the following question suggests itself: Can we get an implementation
of an entire phase by performing something like breadth-first search followed by
MDFS? We shall give an affirmative answer to this question.

3.1 The description of a phase

Let G = (V,E) be an undirected graph, M be a matching of G, and GM = (V ′, EM)
be the directed graph as defined in Section 2.2. Our goal is to construct from GM

a layered directed graph ḠM = (V ′, ĒM) such that

1. the lth layer contains exactly those nodes [v,X] ∈ V ′ such that a shortest
strongly simple path from s to [v,X] in GM has length l, and

2. ḠM contains all shortest strongly simple paths from s to t in GM .
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The level of a node [v,X] ∈ V ′ is the length of a shortest strongly simple path
from s to [v,X]. In ḠM , the ith layer contains exactly the nodes of level i. It is
clear that s is the only node in Layer 0. By the structure of GM , level([v,B]) is
odd and level([v, A]) is even for all v ∈ V . Since breadth-first search (BFS) on GM

with start node s finds shortest simple distances from s and not shortest strongly
simple distances, BFS cannot be used directly for the construction of ḠM . But we
can modify BFS such that the modified breadth-first search (MBFS) finds shortest
strongly simple distances. Remember that for the construction of the (l+1)st layer,
BFS needs only to consider the nodes in Layer l, and to insert into the (l + 1)st
layer all nodes w which fulfill the following properties:

1. There is a node v in the lth layer with (v, w) ∈ E.

2. Level(w) has not been defined.

With respect to finding strongly simple distances from s, the construction of the
(l + 1)st layer is a bit more difficult. By the structure of GM , the level of a free
node [w,B] is one and the level of a non-free node [w,B] is well-defined by the
level of the unique node [v, A] with ([v, A], [w,B]) ∈ EM . Hence, the construction
of odd layers is trivial. For odd l, we shall describe the construction of the (l+ 1)st
layer under the assumption that Layers 0, 1, 2, . . . , l are constructed. It is clear that
similar to BFS, MBFS has to insert into the (l + 1)st layer all nodes [w,A] ∈ V ′
which fulfill the following properties:

1. There is a node [v,B] in Layer l with ([v,B], [w,A]) ∈ EM , and there is a
strongly simple path from s to [v,B] of length l which does not contain the
node [w,B].

2. Level([w,A]) has not been defined.

But these are not all nodes which MBFS has to insert into Layer l+1. Consider the
example described by Figure 2. Note that level([v7, B]) = 7 but level([v3, A]) 6= 8,
since the unique shortest strongly simple path from s to [v7, B] contains [v3, B]. The
unique strongly simple path P from s to [v3, A] has length 14. Hence, level([v3, A]) =
14. Therefore, MBFS has to insert nodes [w,A] ∈ V ′ into Layer l+1 for which there
is a shortest strongly simple path P = s, [v1, B], . . . , [vl, B], [w,A] with level([vl, B]) <
l. For the treatment of these nodes and for the knowledge if there is a strongly
simple path from s to [v,B] of length l which does not contain the node [w,B], the
following notation is useful.

Let T ⊂ V ′ such that level([v,X]) is defined for all [v,X] ∈ T . We denote by
DOM(T ) the set of those nodes [u,B] ∈ V ′ \ T which satisfy:

a) For all [v,X] ∈ T , all shortest strongly simple paths from s to [v,X] contain
[u,B],
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Figure 2: Further node which has to be inserted into Layer l + 1.

b) level([u,A]) has not been defined, and

c) level([w,B]) ≤ level([u,B]) for all [w,B] ∈ V ′ satisfying a) and b).

If such a node [u,B] does not exist then DOM(T ) denotes the node s. Furthermore,
DOM({s}) denotes the node s. We shall use DOM(T ) only for subsets T of V ′ of
size at most two. Next we shall show that always |DOM(T )| = 1. This will be a
direct consequence of the following lemma.

Lemma 5 Let P = s, [v1, B], [v2, A], . . . , [vl, Z] be any shortest strongly simple
path from s to [vl, Z], i.e., level([vl, Z]) = l. Let [vj, X] ∈ P be a node with
level([vj, X]) ≥ l. Then level([vj, X]) = j and level([vi, Y ]) < level([vj, X]) for all
i < j.

Proof: Since [vj, X] is the jth node on the strongly simple path P it holds that
level([vj, X]) ≤ j. Suppose level([vj, X]) < j and let Q, [vj, X] be any shortest
strongly simple path from s to [vj, X]. Let P2 := [vj+1, X], [vj+2, X], . . . , [vl, Z].
Note that all nodes on P2 are not M -free. Let R := Q, [vj, X], P2. By construction,
|R| < |P |. Since P is a shortest strongly simple path from s to [vl, Z], the paths
Q and P2 cannot be strongly disjoint. Let [z, Y ] be the first node on Q such that
[z, Y ] or [z, Y ] is on P2. If [z, Y ] is on P2 then Y = A. If Y = B then the unique
node [x,A] with ([x,A], [z, B]) ∈ EM has to be the direct predecessor of the node
[z,B] on both paths Q and P2. This contradicts the choice of the node [z, Y ].
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If [z, Y ] is on P2 then also Y = A. If Y = B then the node [x,A] such that
([x,A], [z,B]) ∈ EM has to be on Q the direct predecessor of [z,B] and [x,B] has
to be on P2 the direct successor of [z, A]. But this would also contradict the choice
of the node [z, Y ]. This shows that in any case Y = A. Let

Q = Q1, [z, A], Q2 and P2 =

{
P21, [z, A], P22 if [z, A] ∈ P2

P21, [z, B], P22 if [z,B] ∈ P2.

If [z, A] ∈ P2, then S := Q1, [z, A], P22 would be a strongly simple path from s
to [vl, Z] shorter than P , a contradiction. Hence, [z, B] ∈ P2. But then S :=
Q1, [z, A], r(P21), [vj, X] would be a strongly simple path from s to [vj, X] shorter
than l. This contradicts level([vj, X]) ≥ l. Hence, level([vj, X]) = j.

Since [vi, Y ] is the ith node on P it holds that level([vi, Y ]) ≤ i. Hence, i < j
implies level([vi, Y ]) < level([vj, X]).

The following lemma is a simple consequence of Lemma 5.

Lemma 6 Let T ⊂ V ′, T 6= ∅ such that level([v,X]) is defined for all [v,X] ∈ T .
Then the following statements hold true:

a) |DOM(T )| = 1.

b) Let DOM(T ) = [u,B]. Then after the definition of level([u,A]), always
DOM(T ) = DOM([u,B]).

Proof: a) Assume that |DOM(T )| > 1. Let [u1, B] and [u2, B] be two dis-
tinct elements of DOM(T ). By the consideration of any shortest strongly sim-
ple path from s to [v,X] for any [v,X] ∈ T , applying Lemma 5, we obtain
level([u1, B]) < level([u2, B]) or level([u2, B]) < level([u1, B]). This contradicts
Part c) of the definition of DOM(T ).

b) After the definition of level([u,A]), level(DOM(T )) decreases. Hence, by Lemma
5, DOM(T ) has to be below [u,B] on all shortest strongly simple paths from s to
[v,X] for all [v,X] ∈ T . Hence, DOM([u,B]) is on all shortest strongly simple paths
from s to [v,X] for all [v,X] ∈ T . Assume that DOM(T ) 6= DOM([u,B]). Then
level(DOM(T )) > level(DOM([u,B])). By the definition of DOM([u,B]), there is
a shortest strongly simple path P1, [u,B] from s to [u,B] which does not contain
DOM(T ). Hence, P1, [u,B] cannot be a subpath of a shortest strongly simple path
from s to [v,X] for a node [v,X] ∈ T . Let Q1, [u,B], Q2 be any shortest strongly
simple path from s to [v,X]. Lemma 5 implies that |P1, [u,B]| = |Q1, [u,B]|. Since
P1, [u,B], Q2 is not a shortest strongly simple path, the paths P1 and Q2 are not
strongly disjoint. Let [z, A] be the first node on P1 such that [z, A] or [z,B] is on Q2.
Exactly as in the proof of Lemma 5, we prove that such a node cannot exist. Hence,
level(DOM(T )) ≤ level(DOM([u,B])). Therefore, DOM(T ) = DOM([u,B]).
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Now we shall describe a phase in detail. Note that to each node w ∈ V there
correspond two different levels, namely level([w,A]) and level([w,B]). The first
level of w denoted by level1(w) is the smaller one of these two levels. The other
level denoted by level2(w) is the second level of w.

In [5, 6], we have constructed during the (l + 1)st phase exactly the shortest
strongly simple paths of length l + 1. Especially for the treatment of the shortest
strongly simple paths P = s, [v1, B], . . . , [vl, B], [w,A] with level([vl, B]) < l, we
have used some sophisticated data structures to achieve a certain time bound.
In [6], we have used the dynamic nearest common ancestor algorithm of [18] in
combination with Fibonacci heaps [14] to get an O(m log n) implementation of a
phase. We have also described an alternative to the use of Fibonacci heaps which
uses two-dimensional arrays to get an O(m+ n3/2) implementation. A better way
is to use an idea of Micali and Vazirani [31, 35]. For all nodes w, they compute the
first level during Phase level1(w) and the second level during Phase 1

2
(level1(w) +

level2(w)− 1) + 1. We shall incorporate this idea into our framework.
Each phase separates into two parts. Both parts use breadth-first search. The

first level of each node w is computed during Part 1 of Phase level1(w). The second
level of each node w is computed during Part 2 of Phase 1

2
(level1(w) + level2(w)−

1)+1. Before describing the two parts of a phase, we shall investigate the structure
of shortest strongly simple paths defining the first and the second level of a node.
First we characterize exactly those shortest strongly simple paths which define the
first level of a node to be l + 1.

If l is even then level1(w) = l+1 for a node w ∈ V iff for the unique node v ∈ V
such that ([v, A], [w,B]) ∈ EM it holds that level([v, A]) = level1(v) = l. Note that
level([v,B]) < l implies that level([w,A]) < l such that level([w,B]) cannot be the
first level of the node w. Each shortest strongly simple path from s to the node
[v, A] followed by the edge ([v,A], [w,B]) is a shortest strongly simple path from s
to [w,B]. Furthermore, there is no other shortest strongly simple path from s to
[w,B].

If l is odd then level1(w) = l + 1 for a node w ∈ V iff level([w,A]) and
level([w,B]) are larger than l and there is a node [v,B] with level([v,B]) = l
and the edge ([v,B], [w,A]) is in EM . Exactly the shortest strongly simple paths
from s to such a node [v,B] followed by the edge ([v,B], [w,A]) are the shortest
strongly simple paths from s to [w,A].

Next, we shall characterize exactly those shortest strongly simple paths which
define the second level of a node to be l + 1.

If l is even then level2(w) = l + 1 for a node w ∈ V iff level([w,B]) > l,
level([w,A]) < l, and for the unique node v ∈ V such that ([v, A], [w,B]) ∈
EM it holds that level([v,A]) = l. Note that the node [w,A] cannot be on a
strongly simple path from s to [v,A] since the unique direct successor of [w,A]
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has to be the node [v,B]. With respect to the node [v, A], two cases are possible,
level([v, A]) = level1(v) and level([v,A]) = level2(v). Exactly the shortest strongly
simple paths from s to the node [v, A] followed by the edge ([v,A], [w,B]) are the
shortest strongly simple paths from s to [w,B].

If l is odd and level2(w) = l + 1 for a node w ∈ V then level([w,A]) > l
and level([w,B]) < l. With respect to a shortest strongly simple path P from s to
[w,A], for the direct predecessor [v,B] of [w,A], exactly two situations are possible,
level([v,B]) = l and level([v,B]) < l.

In the case that level([v,B]) = l two subcases can happen, level([v,B]) =
level1(v) and level([v,B]) = level2(v). Exactly the shortest strongly simple paths
P from s to such a node [v,B] with the property that [w,B] is not on P followed
by the edge ([v,B], [w,A]) are the shortest strongly simple paths from s to [w,A].

If level([v,B]) < l then consider any shortest strongly simple path
P = P ′, [v,B], [w,A] from s to [w,A]. Let [x,B] be the last node on P ′, [v,B] such
that the length of the subpath from s to [x,B] of P is equal level([x,B]). Since
level([v,B]) < l = level([w,A]) − 1, the node [x,B] has to be on P ′. Since the
level of the direct successor of s on P is one, the node [x,B] on P ′ exists. Let
P ′ = P1, [x,B], [y, A], P2. As we shall prove later, [y, A], P2, [v,B], [w,A] has to be
on the back-path of a shortest strongly simple path from s to the node [y,B].

Next, we shall describe MBFS in detail. At the beginning, V ′ = ∅ and ĒM = ∅.
In the first phase, the node s is inserted into Layer 0. For each M -free node w ∈ V ,
the node [w,B] is inserted into Layer 1 and the edge (s, [w,B]) is inserted into ĒM .
Assume that l > 0 and Phase l is finished. We shall give a detailed description of
the two parts of Phase l + 1.

Part 1 of Phase l + 1

If l is even then MBFS adds for all nodes [v, A] with level([v,A]) = l = level1(v)
the unique edge ([v, A], [w,B]) ∈ EM to ĒM and inserts the node [w,B] into the
(l+1)st layer. Note that level([v, A]) = level2(v) implies that the first level of node
w is already defined.

If l is odd then MBFS considers all edges ([v,B], [w,A]) with level([v,B]) = l
and ([v,B], [w,A]) has not been considered during Part 2 of a previous phase. If
the edge ([v,B], [w,A]) has been considered during Part 2 of a previous phase then
level1(w) is already defined. Three cases are possible.

Case 1: level([w,A]) > l and level([w,B]) > l.

MBFS inserts the node [w,A] into the (l+1)st layer and adds the edge ([v,B], [w,A])
to ĒM .

Case 2: level([w,A]) > l and level([w,B]) ≤ l.

Then the first level of the node w is already defined. But for the computa-
tion of the second level of w and some other nodes, the edge ([v,B], [w,A]) is
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needed. Hence, MBFS inserts the pair ([v,B], [w,B]) into the set E(k) where
k := 1

2
(level([v,B]) + level([w,B])).

Case 3: level([w,A]) ≤ l.

Then the first level of the node w is also defined. But the edge ([v,B], [w,A])
might be necessary for the computation of the second level of some nodes. Hence,
if level([w,B]) is already computed then the pair ([v,B], [w,B]) is inserted into
E(k) where k := 1

2
(level([v,B]) + level([w,B]). Otherwise, this pair is inserted into

E(k) directly after the computation of level([w,B]).

These are all cases. Next we shall describe the second part of Phase l + 1.

Part 2 of Phase l + 1

During Part 2 of Phase l + 1, level2(w) will be computed for all nodes w with
1
2
(level1(w) + level2(w) − 1) = l. MBFS considers all pairs of nodes [x, Z], [y, Z]

where Z = A if l is even and Z = B if l is odd such that

1. level([x, Z]) and level([y, Z]) have been defined,

2. ([x, Z], [y, Z]) ∈ EM , and

3. 1
2
(level([x, Z]) + level([y, Z])) = l.

Note that these are exactly the pairs in E(l). Starting in [x, Z] and [y, Z], MBFS
performs a breadth-first search on the back-paths of the current layered network un-
til DOM({[x, Z], [y, Z]}) is reached. All visited nodes [u,X] such that level([u,X])
has not been defined and [u,X] 6= DOM({[x, Z], [y, Z]}) are inserted into Layer k
where k = level([x, Z]) + level([y, Z]) + 1 − level([u,X]). The edges ([x, Z], [y, Z])
and ([y, Z], [x, Z]) are inserted into ĒM . Furthermore, MBFS adds the traversed
edges which are not in ĒM to ĒM .

3.2 The correctness proof of MBFS

We say that a path P is constructed by MBFS if all edges on P are inserted into
ĒM . We have to prove the following:

1. For all nodes w ∈ V , MBFS computes both levels level1(w) and level2(w)
correctly.

2. The layered network ḠM = (V ′, ĒM) computed by MBFS contains all shortest
strongly simple paths from s to t.

The correctness of MBFS is a direct consequence of the following theorem.

Theorem 5 Let w ∈ V and level1(w) = level([w,X]). Then the following holds:
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a) MBFS defines level([w,X]) correctly during Part 1 of Phase level([w,X]). All
shortest strongly simple paths from s to [w,X] have been constructed after the
termination of Part 1 of Phase level([w,X]).

b) Level([w,X]) has been defined and all shortest strongly simple paths from
s to [w,X] have been constructed after the termination of Part 2 of Phase
1
2
(level([w,A]) + level([w,B])− 1) + 1.

Proof: We prove the theorem by induction on the number of performed phases.
By construction, it is clear that the assertion of the theorem is fulfilled after the
termination of Phase 1. Note that no second level of a node has to be computed
during Phase 1. Assume that l > 0 and that the assertion of the theorem is fulfilled
after the termination of Phase l. We shall prove that the assertion also holds after
the termination of Phase l + 1.

First we shall prove that for all nodes with first level l + 1, their first level is
computed correctly during Part 1 of Phase l + 1. Furthermore, the corresponding
shortest strongly simple paths are constructed after termination of Part 1 of Phase
l + 1. No level of any other node is determined during Part 1 of Phase l + 1.

If the assertion of the theorem does not hold for a node [u,B] then the assertion
also does not hold for the unique node [v,A] with ([v,A], [u,B]) ∈ EM . Hence, if
l is even, the induction hypothesis implies that the assertion is fulfilled after the
termination of Part 1 of Phase l + 1. Therefore, we have only to consider the case
that l is odd.

Consider any node u ∈ V with level1(u) = level([u,A]) = l + 1. Let P be any
shortest strongly simple path from s to [u,A]. Let [x,B] be the direct predecessor
of [u,A] on P . Since level([u,B]) > level([u,A]), the node [u,B] cannot be a
node on a shortest strongly simple path from s to [x,B]. Hence, level([x,B]) =
level([u,A])− 1. Since the assertion of the lemma has been maintained in previous
phases, the node [x,B] and the edge ([x,B], [u,A]) have been considered during
Part 1 of Phase l + 1. Therefore, the node [u,A] is inserted into Layer l + 1 and
the edge ([x,B], [u,A]) is inserted into ĒM . Since each shortest strongly simple
path from s to [x,B] is contained in the current layered network, the path P is
constructed as well. On the other hand, if we have a shortest strongly simple path
P from s to a node [x,B] of length l and an edge ([x,B], [u,A]), where level1(u)
is not defined, then the path P, [u,A] is a shortest strongly simple path from s to
[u,A]. Hence, level1(u) = l+ 1. Therefore, only for nodes with first level l+ 1, the
first level is computed during Part 1 of Phase l + 1. This shows that the assertion
is fulfilled after the termination of Part 1 of Phase l + 1 such that Part a) of the
theorem is proved.

Next we shall show that the assertion of the theorem is fulfilled after the ter-
mination of Part 2 of Phase l+ 1. It is clear by construction that during Part 2 of
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a phase only the second level of some nodes is computed. We have to prove that
after the termination of Part 2 of Phase l+ 1, the following properties are fulfilled.

1. For all nodes [u,X] such that level([u,X]) := k is computed during Part 2 of
Phase l+1 it holds that 1

2
(level([u,A])+level([u,B])−1) = l and level([u,X])

is computed correctly.

2. For all nodes u ∈ V with 1
2
(level([u,A]) + level([u,B]) − 1) = l, the second

level of u is computed correctly during Part 2 of Phase l+ 1 and all shortest
strongly simple paths from s to [u,X] with level([u,X]) = level2(u) have been
constructed after the termination of Part 2 of Phase l + 1.

First, we shall prove that the first property is fulfilled and then we shall consider
the second property.

Assume that the first property is not fulfilled. Consider the first situation
such that the first property is not fulfilled. Assume that this situation occurs
during the backward search with respect to the pair [x, Z][y, Z] of nodes because
of the assignment level([u,X]) := k. Since a breadth-first search on the back-
paths is performed and this is the first time that the first property is not fulfilled,
level([u,X]) has to be larger than k. Furthermore, for each predecessor of [u,X] on
the back-path, its second level is computed correctly. By the construction of the
algorithm MBFS, there also holds level([x, Z]) + level([y, Z]) = 2l. First we shall
prove that 1

2
(level([u,A]) + level([u,B]) − 1) = l and then that there is a shortest

strongly simple path from s to [u,X] of length k.
By construction, k = level([x, Z]) + level([y, Z]) + 1− level([u,X]). Hence,

level([u,X]) + level([u,X]) = level([x, Z]) + level([y, Z]) + 1 = 2l + 1

and therefore,
1

2
(level([u,A]) + level([u,B])− 1) = l.

Assume that no shortest strongly simple path from s to [u,X] of length k ex-
ists. By Lemma 5, on all shortest strongly simple paths which contain the node
[u,X], the length of the subpath from s to [u,X] is equal level([u,X]. Fur-
thermore, since level([u,X]) is computed during the backward search, [u,X] 6=
DOM({[x, Z], [y, Z]}). Moreover, level(DOM({[x, Z], [y, Z]})) < level([u,X]).

Since no shortest strongly simple path from s to [u,X] of length k exists, the
node [u,X] has to be on the all shortest strongly simple paths from s to the direct
predecessor of [u,X] during the backward search. Each such strongly simple path
consists of a shortest strongly path from s to [x, Z] or [y, Z] and the backpath
of a shortest strongly simple path from s to [y, Z] and [x, Z], respectively until
the node [u,X] is reached without the node [u,X]. Therefore, the subpath from
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s to [x, Z] and [y, Z], respectively of these paths contains the node [u,X]. Since
[u,X] 6= DOM({[x, Z], [y, Z]}), there is a shortest strongly simple path from s
to at least one of the nodes in {[x, Z], [y, Z]} which does not contain the node
[u,X]. W.l.o.g., let R, [x, Z] be such a path. Let S = S1, [u,X], S2, [y, Z] and
S ′ = S ′1, [u,X], S ′2, [x, Z] be any shortest strongly simple paths from s to [y, Z] and
to [x, Z], respectively such that the path S1, [u,X], S2, [y, Z], [x, Z], r(S ′2) is strongly
simple and constructed during the backward search. Consider the path

T := R, [x, Z], [y, Z], r(S2), [u,X].

By construction, |T | = k. Since level([u,X]) > k, the paths R and r(S2) and hence,
the paths R and S2, are not strongly disjoint. Let [c, A] be the first node on R such
that one of the nodes [c, A] or [c, B] is on S2. Let

R = R1, [c, A], R2 and S2 =

{
S21, [c, A], S22 if [c, A] ∈ S2

S21, [c, B], S22 if [c, B] ∈ S2.

If [c, B] is on S2 then R1, [c, A], r(S21), [u,X] would be a strongly simple path from
s to [u,X] shorter than level([u,X]), a contradiction. Hence, [c, A] is a node on S2.
By construction, R1, [c, A], S22, [y, Z] is strongly simple. Hence,

|R1, [c, A]| ≥ |S1, [u,X], S21, [c, A]|.

If this inequality is strict then |S1, [u,X], S21, [c, A], R2, [x, Z]| < level([x, Z]). Hence,
the paths S1, [u,X], S21 and R2 are not strongly disjoint. Let [d,A] be the first
node on S1, [u,X], S21 such that one of the nodes [d,A] or [d,B] is on R2. If [d,A]
is on R2 then a strongly simple path from s to [x, Z] shorter than level([x, Z])
can easily be constructed, a contradiction. Hence, [d,B] is a node on R2. Let
R2 = R21, [d,B], R22. We distinguish two cases.

Case 1: [d,A] is on S21.

Let S21 = S211, [d,A], S212. Consider the path

T := R1, [c, A], R21, [d,B], r(S211), [u,X].

By construction, T is a path from s to [u,X] shorter than level([u,X]. By the choice
of the nodes [c, A] and [d,A], the path T is also strongly simple, a contradiction.
Hence, Case 1 cannot happen.

Case 2: [d,A] is on S1.

Let S1 = S11, [d,A], S12. Consider the path

T := S11, [d,A], r(R21), [c, B], r(S21), [u,X].
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Note that |T | < level([u,X]). Hence, T cannot be strongly simple. By the choice
of the nodes [c, A] and [d,A], the paths R21 and S21 are not strongly disjoint. Let
[h,A] be the first node on R21 such that one of the nodes [h,A] or [h,B] is a node
on S21. If [h,A] is on S21 then a strongly simple path from s to [u,X] shorter than
level([u,X]) can easily be constructed, a contradiction. Hence, [h,B] is a node on
S21. Let R21 = R211, [h,A], R212 and S21 = S211, [h,B], S212. Consider the path

T := R1, [c, A], R211, [h,A], r(S211), [u,X].

By construction, T is a path from s to [u,X] shorter than level([u,X]). By the
choice of the nodes [c, A] and [h,A], the path T is also strongly simple, a contra-
diction. Hence, also Case 2 cannot happen.

Altogether, we have proved |R1, [c, A]| = |S1, [u,X], S21, [c, A]|. Consider the
path

T := R1, [c, A], S22, [y, Z], [x, Z], r(S ′2), [u,X].

By construction, |T | = k. Since level([u,X]) > k, the path T cannot be strongly
simple. By construction, the paths R1 and r(S ′2) are not strongly disjoint. Let
[d,A] be the first node on R1 such that one of the nodes [d,A] or [d,B] is on
r(S ′2). If [d,A] is on r(S ′2) then a strongly simple path from s to [u,X] shorter than
level([u,X]) can easily be constructed, a contradiction. Hence, [d,B] is a node on
r(S ′2) and hence, [d,A] is on S ′2. Let R1 = R11, [d,A], R12 and S ′2 = S ′21, [d,A], S ′22.
Consider the path

T := R11, [d,A], S ′22, [x, Z], [y, Z], r(S2), [u,X].

By construction, the path T is strongly simple. Since S ′ is a shortest strongly simple
path from s to [x, Z] it holds that |R11, [d,A]| ≥ |S ′1, [u,X], S ′21, [d,A]|. In the same
way as we have proved |R1, [c, A]| = |S1, [u,X], S21, [c, A]|, we prove |R11, [d,A]| =
|S ′1, [u,X], S ′21, [d,A]| . Hence, |T | = k. This contradicts our assumption that
level([u,X]) > k. Altogether, the first property is proved.

Assume that the second property is not fulfilled. Let u ∈ V be a node with
smallest second level such that the second property is not fulfilled with respect to
the node u. This means that

1. 1
2
(level([u,A]) + level([u,B])− 1) = l and there is a shortest strongly simple

path P = P ′, [v,X], [u,X] with level2(u) = level([u,X]) but

2. P has not been constructed after the termination of Part 2 of Phase l+ 1 or
level2(u) has not been computed correctly.
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With respect to level([v,X]), the situations level([v,X]) = level([u,X]) − 1 and
level([v,X]) < level([u,X]) − 1 are possible. We shall investigate both cases one
after the other.

Case 1: level([v,X]) = level([u,X])− 1.

Two subcases are to consider, level([v,X]) = level1(v) and level([v,X]) =
level2(v).

Subcase 1.1: level([v,X]) = level1(v).

First we shall prove that level([v,X]) = level([u,X]) = l. If level([v,X]) > l
then level([u,X]) = level([v,X]) + 1 and level([u,A]) + level([u,B]) = 2l+ 1 imply
level([u,X]) < l. Let R be any shortest strongly simple path from s to [u,X]. Since
level1(v) > l, the nodes [v,A] and [v,B] cannot be on R. Hence, R, [v,X] would
be a strongly simple path from s to [v,X] shorter than level1(v), a contradiction.
Furthermore, level2(u) = level([v,X]) + 1 and level([u,A]) + level([u,B]) = 2l +
1 imply level([v,X]) = l and also level([u,X]) = l. Hence, during Part 1 of
Phase l + 1, Case 2 applies such that the pair [u,X], [v,X] is inserted into E(l).
Therefore, during Part 2 of Phase l + 1, the backward search with respect to the
pair [u,X], [v,X] has been performed.

By the induction hypothesis, at the beginning of Part 2 of Phase l+1, all shortest
strongly simple paths from s to [v,X] and all shortest strongly simple paths from s
to [u,X] are constructed. Since during Part 2 of Phase l + 1, the backward search
with respect to the pair [u,X], [v,X] is performed, the edges ([v,X], [u,X]) and
([u,X], [v,X]) are inserted into the layered graph. Hence, after the termination
of Part 2 of Phase l + 1, the path P = s, . . . , [v,X], [u,X] is constructed. By
construction of the algorithm MBFS, level([u,X]) has been computed correctly as
well. This contradicts our assumption such that Subcase 1.1 cannot happen.

Subcase 1.2: level([v,X]) = level2(v).

Let R = R′, [u,X] be any shortest strongly simple path from s to [u,X]. Con-
sider the path Q := R′, [u,X], [v,X].

If Q is a shortest strongly simple path from s to [v,X] then level([v, A]) +
level([v,B]) = 2l + 1. By the choice of the node u, all shortest strongly simple
paths from s to [v,X] has been constructed. By the induction hypothesis, R is
also constructed. Hence, during the backward search which constructs the path
s, P ′, [v,X], the edge ([v,X], [u,X]) is added to the layered network. Hence, the
path P is also constructed, a contradiction. Therefore, Q is not a shortest strongly
simple path from s to [v,X].

IfQ is strongly simple then level([v,X]) < |Q|. Hence, level([v, A])+level([v,B]) <
level([u,A]) + level([u,B]) = 2l + 1. By the induction hypothesis, level([v,X]) has
been computed and all shortest strongly simple paths from s to [v,X] have been
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constructed. Furthermore, level1(u) = level([u,X]) ≤ l. Hence, by the induction
hypothesis, all shortest strongly simple paths from s to [u,X] have been con-
structed and the edge ([u,X], [v,X]) has been considered during Part 1 of Phase
level([u,X]) + 1. Therefore, during Part 2 of a Phase k where k ≤ l+ 1, the back-
ward search has been performed with respect to the pair [v,X], [u,X] and the edge
([v,X], [u,X]) has been inserted into the layered network such that the path P has
been constructed after the termination of Part 2 of Phase k, a contradiction.

Hence, the path Q = R′, [u,X], [v,X] is not strongly simple. Since R′, [u,X] is
strongly simple, the node [v,X] or the node [v,X] has to be on the path R′. Let

R′ =

{
R′1, [v,X], R′2 if [v,X] ∈ R′
R′1, [v,X], R′2 if [v,X] ∈ R′.

If [v,X] is on R′ then level([v,X]) < |Q|. Exactly as in the case “Q is strongly
simple but |Q| > level([v,X])”, we prove that the path P has been constructed
after the termination of Part 2 of Phase l + 1 getting a contradiction. Hence,
[v,X] is on R′. But then, R′1, [v,X], [u,X] would be a strongly simple path from
s to [u,X] shorter than level([u,X]), a contradiction. Therefore, Subcase 1.2 and
hence, Case 1 cannot happen.

Case 2: level([v,X]) < level([u,X])− 1.

Let Q, [u,X] be any shortest strongly simple path from s to [u,X]. Let [x,B]
be the last node on P ′, [v,X] such that the length of the subpath from s to [x,B]
of P is equal to level([x,B]). Let P = P1, [x,B], [y, A], P2, [v,X], [u,X], let R :=
[u,X], [v,X], r(P2), [y,B] and let S := Q, [u,X], [v,X], r(P2), [y,B].

First we shall show that for all nodes [z, Y ] on R, the level of [z, Y ] is not larger
than the length of the subpath S([z, Y ]) := Q, [u,X], r(P21), [z, Y ] of S. Then
we shall use this fact to prove that all edges on the path R are contained in the
current layered graph. Since level([y,B]) ≤ |S([y,B])|, the pair [x,B], [y,B] has
been considered during Part 2 of a Phase k where k ≤ l + 1. Hence, the path P is
constructed after the execution of Part 2 of Phase k, a contradiction.

To prove level([z, Y ]) ≤ |S([z, Y ])| assume that level([z, Y ]) > |S([z, Y ])| for
a node [z, Y ] on R. Then S([z, Y ]) cannot be strongly simple such that Q and
P ′ := r(P21), [z, Y ] are not strongly disjoint. Let [p,A] be the first node on Q such
that one of the nodes [p,A] or [p,B] is a node on P ′. Let

Q = Q1, [p,A], Q2 and P ′ =

{
P ′1, [p,A], P ′2 if [p,A] ∈ P ′
P ′1, [p,B], P ′2 if [p,B] ∈ P ′.

If [p,A] ∈ P ′ then T := Q1, [p,A], P ′2 would be a strongly simple path from s
to [z, Y ] shorter than |S([z, Y ])|, a contradiction. Hence, [p,B] ∈ P ′. But then,
T := Q1, [p,A], r(P ′1), [u,X] would be a strongly simple path from s to [u,X] shorter
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than level([u,X]), a contradiction. Altogether, we have proved that level([z, Y ]) ≤
|S([z, Y ])|.

Assume that an edge ([z, Y ], [z′, Y ]) is not contained in the current layered net-
work after the execution of Part 2 of Phase l + 1. Since level([z, Y ]) ≤ |S([z, Y ])|,
we obtain level([z′, Y ])+level([z, Y ]) ≤ level([u,X])+level([u,X])−1 = 2l. Hence,
1
2
(level([z′, Y ])+ level([z, Y ])) ≤ l. Therefore, the pair [z′, Y ][z, Y ] has been consid-

ered and the edge ([z, Y ], [z′, Y ]) has been inserted into the current layered graph
during Part 2 of a Phase k where k ≤ l + 1, a contradiction. Altogether we have
shown that the path P is constructed after the execution of Part 2 of Phase l + 1.
Moreover, since the pair [x,B], [y,B] has been considered during Part 2 of Phase
l+1, level([u,X]) has been computed correctly because of the consideration of this
pair of nodes. This shows that Case 2 cannot happen as well. This proves the
second property.

Altogether, the theorem is proved.

3.3 An implementation of an entire phase

First we shall describe the implementation of MBFS, and then we shall show how
to combine MBFS and MDFS to get an implementation of an entire phase.

Obviously, Part 1 of all phases can be implemented in such a way that the total
time is bounded by O(m+ n). For the implementation of Part 2 of all phases, we
have to describe how to implement the search on the back-paths, starting in [v, Z]
and [w,Z], until DOM({[v, Z], [w,Z]}) is reached. Most importantly, since we do
not know DOM({[v, Z], [w,Z]}) in advance, meaning that DOM({[v, Z], [w,Z]})
has to be computed simultaneously, we have to take care that the search does
not continue beyond DOM({[v, Z], [w,Z]}). Note that by Lemma 5, the subpaths
from s to DOM({[v, Z], [w,Z]}) are always shortest strongly simple paths from s
to DOM{[v, Z], [w,Z]}. Hence, we can perform a breadth-first search on the back-
paths until the current level contains exactly one node. By Lemma 5, this node
has to be DOM({[v, Z], [w,Z]}).

With respect to the efficiency, at the moment when the search meets a node
[u,X] for which level([u,X]) = level2(u) has been defined, we have to compute
efficiently the next node of the search having the property that its level is not
defined. By definition, this node is DOM([u,X]). As a consequence of Lemma 6,
we can maintain these nodes by a data structure for disjoint set union such that for
the computation of DOM([u,X]) one find operation would suffice. In that case, an
extensible edge would be stored. Using disjoint set union [34], the total time can
be bounded to be O((m+ n)α(m,n)) where α is the inverse Ackermann function.
Using incremental tree set union [19], we obtain a total time bound of O(m + n)
for the computation of the next node such that its level is not defined.

36



The levels of the nodes [v, Z] and [w,Z] have not to be equal. If the level of
the two nodes are different then we start the breadth-first search at the node with
larger level. We always continue the search at the nodes with largest level until
all nodes in the front of the search are on the same level. But we do not need to
perform a precise breadth-first search. Hence, we can organize the search in the
following way:

1. In the front of the search, continue the search always in a node [u,X] such
that there is another node [p, Y ] in the front of the search with level([p, Y ]) ≤
level([u,X]).

2. If the front of the search contains exactly one node then stop the search.

Next, we shall combine MBFS and MDFS for the implementation of an entire phase.
Knowing ḠM , a maximal set of up to s and t pairwise disjoint shortest strongly
simple paths from s to t in ḠM can be computed using MDFS in O(m + n) time.
Every time, a strongly simple path P from s to t is found, all nodes [v,A], [v,B]
with [v,A] ∈ P or [v,B] ∈ P and all incident edges are deleted from ḠM . If a node
gets zero indegree or zero outdegree, then also this node, and all incident edges,
are deleted. Altogether, we have obtained the following theorem.

Theorem 6 A maximum matching in a general graph G = (V,E) can be computed
in O(

√
n(m+ n)) time and O(m+ n) space, where |V | = n and |E| = m.

4 The primal-dual method for the

maximum weighted matching problem

Let G = (V,E) be an undirected graph. If we associate with each edge (i, j) ∈ E
a weight w(i, j) > 0 then we obtain a weighted undirected graph G = (V,E,w).
The weight w(M) of a matching M is the sum of the weights of the edges in M .
A matching M ⊆ E has maximum weight iff

∑
(i,j)∈M ′ w(i, j) ≤

∑
(i,j)∈M w(i, j)

for all matchings M ′ ⊆ E. Given a weighted undirected graph G = (V,E,w), the
maximum weighted matching problem is finding a matching M ⊆ E of maximum
weight. Our goal is to develop a method for the computation of a maximum
weighted matching in a given weighted undirected graph.

4.1 The description of the method

Let G = (V,E,w) be a weighted undirected graph. Let F = {E1, E2, . . . , Er},
Ei ⊆ E be a family of pairwise distinct subsets of E. With each node i ∈ V
we associate a node weight π(i) ≥ 0. Furthermore, with each edge set El ∈ F , we
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associate a set weight µ(El) ≥ 0. These new variables are called dual variables. The
values of the dual variables are treated in such a way that the following invariant
is always maintained.

• w(i, j) ≤ π(i) + π(j) +
∑

(i,j)∈El
µ(El) for all (i, j) ∈ E.

The right side of this inequality is the dual weight d(i, j) of the edge (i, j) ∈ E. We
define the dual weight d(M) of a matching M by

d(M) :=
∑

(i,j)∈M

d(i, j).

Note that because of the invariant, always w(M) ≤ d(M) for all matchings M ⊆ E.
With respect to an arbitrary matching M ⊆ E, the maximal possible contribution
of the node weight π(i) to d(M) is π(i) since i is adjacent to at most one edge in
M . Note that |El ∩M | ≤ c(El) where c(El) is the size of a maximum cardinality
matching with respect to El. Hence, the maximal possible contribution of the set
weight µ(El) to d(M) is c(El)µ(El). Hence,∑

i∈V

π(i) +
∑
El∈F

c(El)µ(El)

is always an upper bound for the dual weight of any matching of G. Therefore,
with respect to a matching M ,

w(M) =
∑
i∈V

π(i) +
∑
El∈F

c(El)µ(El)

implies that the matching M has maximum weight. The question is now: When
with respect to a matching M , this equation holds?

The right side of the equation contains for each edge in M its dual weight. Since
the dual weight of an edge is at least as large as its weight, we obtain the necessary
condition d(i, j) = w(i, j) for all edges (i, j) ∈M . Since all summands in both sums
of the right side of the equation are non-negative, the node weight π(i) has to be
zero for all M -free nodes i ∈ V . Furthermore, for all El such that |M ∩El| < c(El),
the set weight µ(El) has also to be zero. On the other hand, these conditions are
fulfilled with respect to a matching M for which w(M) = d(M). Altogether, we
have obtained the following necessary and sufficient optimality conditions :

1. r(i, j) := d(i, j)− w(i, j) = 0 for all (i, j) ∈M ,

2. π(i) = 0 for all M -free nodes i ∈ V , and

3. µ(El) > 0 for El ∈ F implies |El ∩M | = c(El).
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The value r(i, j) is called the reduced cost of the edge (i, j). Because of the invariant
which is maintained, the reduced cost of an edge is always non-negative.

The primal-dual method for the weighted matching problem can be separated
into rounds. The input of every round will be a matching M , a set F of pairwise
distinct subsets of E such that µ(El) > 0 for all El ∈ F , and values for the dual
variables which fulfill the first and third optimality conditions with respect to the
matching M . The second optimality condition can be unsatisfied with respect to
some free nodes. Our goal within a round is to modify M and the values of the
dual variables such that Conditions 1 and 3 remain valid and the number of nodes
violating Condition 2 is strictly decreased.

A round divides into two steps, the search step and the extension step. The
search step tries to improve the current matching by finding an augmenting path
P such that the number of free nodes with node weight larger than zero can be
decreased by the augmentation of P . Since Condition 1 has to be maintained,
the search step can only be performed on edges with reduced cost zero. If the
search step cannot improve the current matching then the extension step changes
the values of some dual variables using an appropriate value δ. The extension step
can decrease the reduced cost of some edges to zero. Hence, it is possible that the
next search step will find an augmenting path.

During the search step, we use MDFS. Hence, we define with respect to the
current matching M the weighted directed bipartite graph GM := (V ′, EM , w)
where

V ′ := {[v,A], [v,B] | v ∈ V } ∪ {s, t} s, t 6∈ V, s 6= t

EM := {([v, A], [w,B]), ([w,A], [v,B]) | (v, w) ∈M}
∪ {([x,B], [y, A]), ([y,B], [x,A]) | (x, y) ∈ E \M}
∪ {(s, [v,B]), ([v,A], t) | v ∈ V is M -free} .

This means that EM contains for each edge in E two copies. Both copies of the edge
(i, j) obtain weight w(i, j), dual weight d(i, j), and hence, reduced cost r(i, j). We
arrange that edges with tail s or head t have always reduced cost zero. According
to Condition 1, it is only allowed to consider augmenting paths where all edges on
these paths have reduced cost zero. Hence, the input graph G∗M = (V ′, E∗M , w) of
the search step will be the subgraph of GM containing exactly those edges in EM
having reduced cost zero; i.e.,

E∗M := {([i,X], [j,X]) ∈ EM | r(i, j) = 0} ∪ {(s, [i, B]), ([i, A], t) | i M -free}.

By definition, for each edge (i, j) ∈ M it holds that ([i, A], [j, B]), ([j, A], [i, B]) ∈
E∗M . We start with the empty matching ∅ and define the graph G∅ = (V ′, E∅, w)
as described above. Let W := max(i,j)∈E w(i, j). We initialize all node weights π(i)
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by W
2

. Altogether, we obtain the input graph G∗∅ = (V ′, E∗∅ , w) for the first search
step where

E∗∅ = {([i, B], [j, A]), ([j, B], [i, A]) | ([i, B], [j, A]) ∈ E∅, w(i, j) = W}
∪{(s, [i, B]), ([i, A], t) | i ∈ V }.

At the beginning, the family F of subsets of E will be empty such that no set weight
has to be defined. During the execution of the algorithm, the needed elements of
F and the corresponding set weights will be defined. Whenever to some edge set
El 6∈ F a value µ(El) > 0 is associated, El enters F . As soon as µ(El) gets to be
zero, the set El is removed from F .

A search step terminates with a matching M , a weighted directed graph GM =
(V ′, EM , w), a current subgraphG∗M = (V ′, E∗M , w) ofGM such that noM -augmenting
path P is contained in G∗M , a current set F where the set weight of each set in F is
positive, and values for the dual variables. This is the input of the next extension
step.

For the treatment of the extension step consider the expanded MDFS-tree Texp,
computed by the last MDFS on G∗M . Note that this MDFS was unsuccessful; i.e.,
no path from the start node s to the target node t has been found. The goal is to
add edges to Texp such that possibly an augmenting path can be found. Therefore,
we have to decrease the reduced cost of edges with positive reduced cost. Such an
edge (i, j) has to be in E \M and [i, B] has to be in Texp. Let

VA := {[i, A] | i ∈ V } and VB := {[i, B] | i ∈ V }.

Furthermore, let

AT := VA ∩ Texp and for a moment BT := VB ∩ Texp.

Later, we shall see that according to the optimality conditions which we have to
maintain, some nodes in VB ∩ Texp are not allowed to be a node in BT . Hence, we
shall modify the definition of BT by removing exactly these nodes.

The idea is to decrease the reduced cost r(i, j) of all edges (i, j) with positive
reduced cost and [i, B] ∈ BT by an appropriate value δ. This is done by decreasing
the node weight π(i) by δ for all nodes i with [i, B] ∈ BT . As a consequence of the
decrease of the node weight π(i), the reduced cost of each edge e in G∗M with end
node [i, A] or [i, B] becomes negative. Because of the invariant maintained by the
method, such a reduced cost has to be increased until its value is zero again. We
distinguish two cases:

1. The other end node of e is in AT but not in BT .

2. The other end node of e is in BT .
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If Case 1 is fulfilled then we can increase the reduced cost of the edge e by increasing
the node weight of the other end node of e by δ; i.e., we increase π(j) by δ for all
nodes j such that [j, A] ∈ AT and [j, B] 6∈ BT . Note that increasing the node weight
π(j) of a node j increases the reduced cost of each edge (i, j). If (i, j) ∈ E \M
then r(i, j) has only to be non-negative. Since r(i, j) was non-negative before the
increase of π(j), it is also non-negative after the increase. If (i, j) ∈M then r(i, j)
has to be zero. Note that [j, A] ∈ AT implies for the unique node [i, B] with
(i, j) ∈M that [i, B] ∈ BT . Hence, π(i) has been decreased by the same value such
that r(i, j) = 0 before the change of the dual variables implies that r(i, j) = 0 after
the change.

If Case 2 is fulfilled then the reduced cost r(i, j) is decreased by 2δ. This can
be corrected by increasing the set weight µ(El) of exactly one set El containing the
edge (i, j) by 2δ. Two questions have to be answered.

1. What is the accurate edge set El for increasing its set weight?

2. What is the appropriate value δ?

To answer the first question, let us consider MDFS which is used as a subroutine
during the search step. Review the definitions and properties of the sets L[w,A] and
D[q,A] as given on Pages 9 and 17, respectively. At the moment when an edge set
Eq is chosen to obtain a positive set weight µ(Eq), the set Eq corresponds to the
current set D[q,A] as defined on Page 17 and Eq enters F . Note that F can contain
edge sets which are generated during a previous run of MDFS. The corresponding
set D[q,A] has not to be current with respect to the current run of MDFS. Hence,
we introduce an analogous terminology to “current” with respect to the edge sets
in F . A set Eq ∈ F is called maximal iff Eq 6⊆ Eq′ for all Eq′ ∈ F \ {Eq}. Now, it
is useful to investigate the structure of a set D[q,A]. Let

D′[q,A] := {q} ∪ {p ∈ V | [p,A] ∈ D[q,A]}

and
D̃[q,A] := {[p,A], [p,B] | p ∈ D′[q,A]}.

The node q is the unique node p ∈ D′[q,A] such that p is end node of an edge

(r, p) ∈ M with r 6∈ D′[q,A]. If a path P runs through a set D̃[q,A] then there is an

edge such that P enters D̃[q,A] using this edge and also an edge such that P leaves

D̃[q,A] using that edge. We say that a path P enters or leaves D̃[q,A] via an edge in
E \M if the used edge ([x,B], [y, A]) corresponds to an edge (x, y) ∈ E \M . Let
(r, q) ∈ M be the unique matched edge with end node q. During the execution of
MDFS, for an M -augmenting path P , there are three possibilities to run through
a set D̃[q,A].
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1. P enters D̃[q,A] via the matched edge ([r, A], [q, B]) and leaves D̃[q,A] via an
edge in E \M .

2. P enters D̃[q,A] via an edge in E \M and leaves D̃[q,A] via the matched edge
([q, A], [r, B]).

3. P enters and leaves D̃[q,A] via an edge in E \M .

If an M -alternating path R enters D̃[q,A] via the edge ([r, A], [q, B]) then, by Lemma
3, for all v ∈ D′[q,A], [v,B] ∈ BT . Therefore, with respect to each edge ([i,X], [j,X])

in E∗M with both end nodes in D̃[q,A], the node weights π(i) and π(j) have been
decreased by δ such that we have to increase the set weight of exactly one edge set
containing the edge (i, j) by 2δ. Note that for all v ∈ V there exists at most one
current D[q,A] such that v ∈ D′[q,A]. Hence, we define the edge set Eq corresponding
to D′[q,A] where D[q,A] current by

Eq := (D′[q,A] ×D′[q,A]) ∩ E.

If we have to increase the set weight with respect to an edge ([i, B], [j, A]) ∈ E∗M
then we choose the edge set Eq where D[q,A] is the current set such that i, j ∈ D′[q,A].
Hence, for all current sets D[q,A], we perform the following operation:

• If Eq is not already in F then Eq is inserted into F with µ(Eq) := 2δ.
Otherwise, µ(Eq) is increased by 2δ.

The following lemma shows that in this situation, the current set D[q,A] always
exists.

Lemma 7 Let [i, B], [j, B] ∈ BT and ([i, B], [j, A]), ([j, B], [i, A]) ∈ E∗M . Then
there exists a current set D[q,A] such that i, j ∈ D′[q,A].

Proof: Note that ([i, B], [j, A]), ([j, B], [i, A]) ∈ E∗M iff r(i, j) = 0. With respect
to the positions of the nodes [i, B] and [j, B] in the MDFS-tree T , exactly the
following two situations are possible:

1. There is no path P from the root s to a leaf of T such that both nodes are
on P .

2. There is a path P from the root s to a leaf of T such that both nodes are on
P .

If the first situation arises then there exists a unique node in T such that both
nodes [i, B] and [j, B] are successors of this node in T and no successor of this node
in T has this property. Since no M -augmenting path has been found during the
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last MDFS, this node cannot be the node s. Hence, this node has to be a node
[u,B] ∈ VB. Let s,Q, [u,B] be the path from s to the node [u,B] in T . Further-
more, let [u,B], P1, [i, B] and [u,B], P2, [j, B] be the paths in T from [u,B] to [i, B]
and [j, B], respectively. By the definition of L[j,A] and L[i,A], because of the paths
s,Q, [u,B], P1, [i, B], [j, A], r(P2), [u,A] and s,Q, [u,B], P2, [j, B], [i, A], r(P1), [u,A],
L[j,A] = L[i,A] = [u,A] if [u,A] 6∈ AT . If [u,A] ∈ AT , i.e., PUSH([u,A]) has been
performed, then, by Lemma 4, L[j,A] = L[i,A] = L[u,A]. By the definitions of the
current set D[q,A] and the set D′[q,A], the assertion follows directly.

Assume that the second situation arises. W.l.o.g., let [j, B] be a successor of
[i, B] in T . Let s,Q, [i, B], R, [j, B] be the path from s to [j, B] in T .

If [i, A] 6∈ AT then, because of the path s,Q, [i, B], [j, A], r(R), [i, A] and the
definition of L[j,A], it follows L[j,A] = [i, A]. By the definition of D[i,A], the node
[j, A] is contained D[i,A]. The definition of D′[i,A] implies i, j ∈ D′[i,A] such that the
assertion follows directly.

If [i, A] ∈ AT then, by Lemma 4, L[j,A] = L[i,A]. Hence, the assertion follows
directly.

Let us examine the effect of the augmentation of the path P to the number of
edges in the current matching with both end nodes in D′[q,A]. If P enters and leaves

D̃[q,A] via an edge in E \M , then this number decreases by one. In the other two
cases, this number does not change. Hence, the augmentation of an augmenting
path which goes through D̃[q,A] using the unique matched edge with one end node in
D′[q,A] and the other end node not in D′[q,A] is always allowed. But the augmentation

of an augmenting path which enters and leaves D̃[q,A] via an edge in E \M is only
allowed if µ(Eq) = 0; i.e., Eq is not contained in F . Now, we shall determine the
accurate value for δ.

Since all node weights have to be non-negative, δ cannot be larger than the
node weight of any M -free node i. Note that with respect to an M -free node i,
always [i, B] ∈ BT is fulfilled. Since all nodes are initialized with the same node
weight and always the node weights of all nodes in BT are decreased using the same
value, all free nodes have the same node weight and no non-free node has a smaller
node weight. Hence, δ ≤ π(i) where i is M -free implies that after the change of
the dual values, all node weights are non-negative.

Let [i, B] ∈ BT . Then π(i) will be decreased by δ. For (i, j) ∈ E, in dependence
of the status of the other end node j with respect to BT and AT , three situations
can arise:

If [j, B] 6∈ BT and [j, A] 6∈ AT then π(j) will not be changed by the extension
step. Hence, we have to choose δ := r(i, j) to decrease the reduced cost r(i, j) of
the edge (i, j) to zero.

If [j, B] 6∈ BT and [j, A] ∈ AT then π(j) will be increased by δ. Hence, inde-
pendently of the choice of δ, the reduced cost r(i, j) does not change.
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If [j, B] ∈ BT then π(j) will be also decreased by δ. Hence, we have to choose
δ := 1

2
r(i, j) to decrease r(i, j) to zero.

Note that δ has to be chosen in such a way that after the extension step r(i, j) ≥
0 for all edges (i, j) ∈ E. Hence, δ should not be larger than the minimal reduced
cost with respect to edges (i, j) with [i, B] ∈ BT , [j, B] 6∈ BT and [j, A] 6∈ AT , and
also not larger than the half of the minimal reduced cost with respect to edges
(i, j) with [i, B], [j, B] ∈ BT , r(i, j) > 0, and there is no current D[q,A] such that
i, j ∈ D′[q,A]. Note that i, j ∈ D′[q,A] with respect to a current set D[q,A] implies

that r(i, j) does not change since µ(Eq) is increased by 2δ. Because of Lemma 7,
r(i, j) = 0 implies that there is a current D[q,A] such that i, j ∈ D′[q,A].

Since MDFS obtains in addition to the input graph the current set F and
the corresponding set weights, because of the maintenance of the third optimality
condition, the following holds true with respect to a maximal Eq ∈ F :

Assume that during the MDFS no path uses the edge ([r, A], [q, B]) to enter
D̃[q,A]; i.e., [q, B] 6∈ Texp. If there is a path R entering D̃[q,A] via an edge in E \M
then µ(Eq) > 0 implies that R has to leave D̃[q,A] via the edge ([q, A], [r, B]),
independently if the node [q, A] is already pushed or not. Since (q, r) ∈ M and
therefore ([q, A], [r, B]) ∈ E∗M , this is always possible. Note that more than one
such a path can run through D̃[q,A]. Depending on the nodes in D̃[q,A] which are
entering nodes of such a path R, the following situations can happen with respect
to a node v ∈ D′[q,A].

a) [v,B] ∈ BT ,

b) [v,B] 6∈ BT but [v, A] ∈ AT , or

c) [v,B] 6∈ BT and [v,A] 6∈ AT .

The problem to solve is the following: How to change the node weights of the nodes
in D′[q,A]? Each entering node [v,A] of D[q,A] is the head of an edge ([x,B], [v, A])

where [x,B] ∈ BT . Hence, π(x) is decreased by δ. According to the first optimality
condition, π(v) has to be increased by δ. Possibly, there are edges in Eq with exactly
one end node is an entering node, with both end nodes are entering nodes or with
no end node is an entering node. With respect to all these cases, the node weights
and µ(Eq) have to be changed in such a way that the optimality conditions remain
to be valid. For doing this, we increase π(v) by δ for all v ∈ D′[q,A]. Since we have

increased the reduced cost of all edges in Eq by 2δ, we decrease µ(Eq) by 2δ. Since
µ(Eq) has to be non-negative, δ has to be chosen such that before the change of
the dual variables, µ(Eq) ≥ 2δ.

Remember that we consider the situation that [q, B] 6∈ Texp. Possibly, there
exist nodes [i, B] ∈ D̃[q,A] which are in Texp. Since we cannot decrease π(i) by δ
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and increase π(i) by δ at the same time, it is not allowed for such a node to be in
BT . Hence, we define

Bf := {[i, B] | [i, B] ∈ D̃[q,A], Eq maximal and [q, B] 6∈ Texp}

and we redefine
BT := (VB ∩ Texp) \Bf .

Altogether, δ can be defined in the following way.

δ0 := π(i), where i is M -free,

δ1 := min{r(i, j) | [j, A] 6∈ AT , [j, B] 6∈ BT and [i, B] ∈ BT},
δ2 := min{r(i, j) | [i, B], [j, B] ∈ BT , r(i, j) > 0 and there is no current

D[q,A] with i, j ∈ D′[q,A]}, and

δ3 := min{µ(Eq) | Eq ∈ F maximal, [q, B] 6∈ BT and [q, A] ∈ AT}.

Then we define

δ := min

{
δ0, δ1,

δ2
2
,
δ3
2

}
.

Altogether, we have obtained the following extension step.

δ0 := π(i) for an M -free node i;
δ1 := min{r(i, j) | [j, A] 6∈ AT , [j, B] 6∈ BT and [i, B] ∈ BT};
δ2 := min{r(i, j) | [i, B], [j, B] ∈ BT , r(i, j) > 0 and there is no current

D[q,A] with i, j ∈ D′[q,A]};
δ3 := min{µ(Eq) | Eq ∈ F maximal, [q, B] 6∈ BT and [q, A] ∈ AT};
δ := min

{
δ0, δ1,

δ2
2
, δ3

2

}
;

for all [i, B] ∈ BT

do
π(i) := π(i)− δ

od;
for all ([i, B] 6∈ BT , [i, A] ∈ AT ) or (i ∈ D′[q,A], Eq ∈ F maximal with

[q, B] 6∈ BT but [q, A] ∈ AT )
do

π(i) := π(i) + δ
od;

for all current D[q,A] and [q, B] ∈ BT

do
µ(Eq) := µ(Eq) + 2δ

od;
for all maximal Eq ∈ F , [q, B] 6∈ BT and [q, A] ∈ AT
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do
µ(Eq) := µ(Eq)− 2δ

od.

The correctness of the described primal-dual method follows from the discussion
done during the development of the method. Note that the primal-dual method
described above is equivalent to the method developed by Edmonds [13].

4.2 An implementation of the primal-dual method

First we shall determine an upper bound for the number of dual changes which
can occur between two augmentations in the worst case. Then we shall describe
the implementation of the search steps between two augmentations. Finally, we
shall describe an implementation of the computation of δ and the update of the
dual variables. With respect to the determination of the upper bound, we have to
consider four cases.

Case 1: δ = δ0

Then after the change of the dual variables, π(i) = 0 for all M -free nodes
i ∈ V . Therefore, the current matching M is of maximum weight and the algorithm
terminates. Hence, Case 1 occurs at most once.

Case 2: δ = δ1

Then during the next search step, at least one new node [j, A] enters AT . Hence,
Case 2 occurs at most n times.

Case 3: δ = δ2
2

Then during the next search step, at least one new edge (i, j) enters E∗M . Fur-
thermore, at the moment of the definition of the value δ, there is no current D[q,A]

with i, j ∈ D′[q,A]. Lemma 7 shows that after the next search step there exists a
current set D[q,A] such that D′[q,A] contains both nodes i and j. This means, by the
union of two smaller current sets, a larger current set is obtained. Between two
augmentations, the number of such unions is bounded by n − 1. Hence, Case 3
occurs at most n− 1 times.

Case 4: δ = δ3
2

Then at least one edge set Eq leaves the family F . As long as [q, B] 6∈ BT , no
edge set E ′q can enter the family F . But if [q, B] is pushed, a corresponding edge
set E ′q cannot contribute to the definition of the value δ3 before [q, B] leaves BT

again. This cannot happen before the next augmentation. Hence, Case 4 occurs
at most n times.
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Altogether we have shown that the number of dual changes between two aug-
mentations is bounded by 3n.

With respect to the implementation of the search steps between two augmenta-
tions, MDFS has to be adapted to the situation that the current search path enters
the set D̃[q,A] via an edge in E \M with respect to a maximal edge set Eq ∈ F .
According to the discussion during the development of the primal-dual method, we
have to jump to the node [q, A] and to continue the search using the unique edge
([q, A], [r, B]) ∈ E∗M . This can be organized using a data structure for disjoint set
union. But this data structure has also to support a further operation.

If according to an extension step, µ(Eq) becomes zero, the corresponding edge
set leaves the family F . Note that Eq is a maximal set in F . If there is a set
Eq′ ⊂ Eq in F then another set in F becomes to be maximal. This means that we
have to undo the union operation performed with respect to the set Eq.

With respect to the implementation of MDFS, we have introduced a data struc-
ture for disjoint set union which uses the weighted union heuristic. Our goal is now
to extend this data structure to support also deunion operations such that the time
used for the deunion operations will be, up to a small constant factor, the same as
the time used for the union operations and each find operation uses only constant
time. This can be done in the following way:

During the execution of an union operation, instead of changing a pointer, we
add a new pointer. The current pointer of an element will be always the last
created pointer. Since the pointer of any element is changed at most log n times,
for each element, at most log n extra pointer are used. The time used for the
union operations remains essentially the same. A deunion can be performed by the
deletion of the current pointers created during the corresponding union operation,
the update of the set sizes and the update of the name of the larger subset. The time
used for a find operation remains to be constant. Altogether, the data structure
for union-find-deunion can be implemented such that the time used for at most m
find, n union and n deunion operations is O(m+ n log n).

After an extension step, the last MDFS can be continued instead of to start a
new MDFS. Next we shall describe an implementation of the computation of the
value δ and the update of the dual variables.

Since all M -free nodes i have the same dual weight, δ0 can be computed by the
consideration of any M -free node in constant time.

For the computation of δ1, we maintain a priority queue P1 which contains for
all [j, A] 6∈ AT with [j, B] 6∈ BT an item which points to a list containing exactly
the edges (i, j) with [i, B] ∈ BT of minimum reduced cost within all such edges,
if such an edge exists. The associated key with this item is the minimum reduced
cost of these edges. Furthermore, using an array of size n, we have direct access
to the list in P1 containing all edges with end node [j, A], if such an edge in P1
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exists. Note that each extension step decreases the keys of all items in the priority
queue by the current δ. It is useful to maintain the property that always the key
of all elements in P1 has to be decreased by the same amount. Hence, we maintain
the sum ∆1 of all dual changes done so far. If we add an edge (i, j) to the priority
queue then we define the modified reduced cost of the edge to be r(i, j) + ∆1. At
the moment when a node [i, B] enters BT , it is possible that we have to insert some
edges into P1. Hence, we update P1 with respect to [i, B] ∈ BT at that moment in
the following way:

For all edges (i, j) with [j, B] 6∈ BT and [j, A] 6∈ AT perform the following
update operations:

(1) If no element with respect to j is contained in the priority queue then we
create a list which contains the element (i, j) with modified reduced cost
r(i, j) + ∆1. We insert a new item which points to this list with associated
key r(i, j) + ∆1 into P1.

(2) If P1 contains an item which points to a list containing edges with end node
[j, A] with larger associated key than r(i, j) + ∆1 then delete all edges from
the list, insert the edge by ([i, B], [j, A])) into the list and decrease the key of
the item such that its value becomes r(i, j) + ∆1.

(3) If P1 contains an item which points to a list containing edges with end node
[j, A] with associated key r(i, j) + ∆1 then add the edge ([i, B], [j, A])) to the
list.

(4) In all other cases do nothing.

(5) If P1 contains some edges with respect to the node [i, A] then delete the
corresponding item and the list of edges to which this item points.

The number of deletions performed in Step 5 is bounded by the number of nodes in
VA. If δ = δ1, we have to delete at least one minimum key from P1. Altogether, the
total number of deletions is bounded by n. For the implementation of the priority
queue P1 we can use Fibonacci heaps [14] or strict Fibonacci heaps [10] such that
with respect to the computation of all δ1’s between two augmentations, the used
time is O(m+ n log n).

For the computation of all δ2’s, we maintain a priority queue P2 which contains
all edges (i, j) such that [i, B], [j, B] ∈ BT and r(i, j) > 0. Again, we can use
Fibonacci heaps or strict Fibonacci heaps for the realization of the priority queue.
Note that each extension step decreases all weights of the elements (i, j) in P2 with
the property that there is no current D[q,A] such that i, j ∈ D′[q.A] by 2δ where δ is
the value chosen for the current extension step. Analogously to the manipulation
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of P1, we maintain with respect to P2 the sum ∆2 of all dual changes done so far
with respect to edges in P2 and modify the weights in the appropriate manner. We
update P2 with respect to [i, B] ∈ BT at the moment when [i, B] is added to BT

in the following way:

• For all [j, B] ∈ BT with r(i, j) > 0 add the edge (i, j) with modified reduced
cost r(i, j) + ∆2 to the priority queue P2.

Since at most m edges are inserted, the used time is O(m).
For the computation of δ2, we have to find the smallest element (i, j) in P2

which has the property that there exists no current D[q,A] such that i, j ∈ D′[q,A].
We use the priority queue P2 and perform the following procedure:

(1) findmin;
(* Let (i, j) be the output of findmin.*)

(2) if there exists D[q,A] current with i, j ∈ D′[q,A]
then

deletemin;
goto (1)

else
δ2 := r(i, j)− δ2

fi.

If δ = δ2 then we have to delete at least one minimal element from the priority
queue P2. The number of deletemin operations performed during all computations
of δ2 between two augmentations is bounded by the number of edges in E. Alto-
gether, the number of deletions performed during the computation of δ2 is O(m).
Each deletion can be performed in O(log n) time. Hence, the total time used for
deletions is O(m log n). Altogether, with respect to the computation of all δ2’s
between two augmentations, the used time is O(m log n).

For the computation of all δ3’s, we maintain a priority queue P3 which contains
for all maximal Eq ∈ F with [q, B] 6∈ BT and [q, A] ∈ AT the value µ(Eq). We
use a heap, a Fibonacci heap or a strict Fibonacci heap for the realization of the
priority queue P3. Each extension step decreases all keys of the elements in P3.
The amount is two times the current δ. Hence, we can use the value ∆2 defined
above and modify the keys in the appropriate manner. We update P3 before the
computation of δ. We have to insert for all [q, A] ∈ VA such that Eq is maximal and
[q, A] was inserted into Texp after the last dual change and the last augmentation,
respectively but [q, B] 6∈ Texp the value µ(Eq) + ∆2. We have to delete for all [q, B]
which are inserted to Texp after the last dual change and the last augmentation,
respectively the corresponding value if in P3 such a value exists. Since the number
of dual changes between two augmentations is bounded by 3n and [q, B] ∈ Texp
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can only leave Texp because of an augmentation, the number of insertions and
deletions is at most 2n. If δ = δ3, we have to delete at least one minimal element
from P3. As observed above, the number of such deletions is bounded by n. If
there exists some sets Eq′ ⊂ Eq in F , some other edge sets in F become to be
maximal. Hence, we have to perform the deunion operation which corresponds
to the union operation performed with respect to the construction of Eq and to
insert the resulting maximal sets Eq′ of F with key µ(Eq′) + ∆2. As observed
above, the total number of such insertions is also bounded by n. Each deletion and
each insertion can be performed in O(log n) time. Altogether, with respect to the
computation of all δ3’s between two augmentations, the used time is O(n log n).

We have proved the following theorem.

Theorem 7 The primal-dual method can be implemented such that its time com-
plexity is O(nm log n).

To get an implementation of time complexity O(nm log n), we can use ordinary
heaps instead of Fibonacci heaps or strict Fibonacci heaps. Using Fibonacci heaps
or strict Fibonacci heaps, the value δ1 can be computed such that the used time
between two augmentations is O(m + n log n). To get an implementation of time
complexity O(n(m + n log n)) the only critical point is the computation of the
values δ2 such that the time used between two augmentations is bounded by
O(m + n log n). Gabow [18] has presented an implementation of Edmonds maxi-
mum weighted matching algorithm which uses complicated data structures at the
first SODA. The stated time complexity is O(n(m+ n log n)).

The description of some recent programs which implements Edmonds’ maxi-
mum weighted matching algorithm can be found in [9, 30, 26].
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