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BY CLAUDE BERGE* 

PRINCETON UNIVERSITY 

Communicated by N. E. Steenrod, July 8, 1957 

(ntroduction.-Given an unoriented graph (or 1-dimensional regular complex), 
X be the set of all its vertices and U be the set of all its edges. When the graph 
finite, the following problems arise: 
Problem 1: A set A c X is said to be internally stable if x e A, y e A implies 
y) f U. The symbol IA I will denote the number of elements of A. Construct 

internally stable set A such that | A is maximum. 

Problem 2: A set B c X is said to be a cover if every edge of U is adjacent to 

least one vertex in B. Construct a cover with the minimum number of elements. 

Problem 3: A set of edges V c U is said to be a matching if two edges of V have 

vertex in common. Construct a matching with the maximum number of 

ments. 

A particular case of Problem 1 is the chess problem of Gauss: Put eight queens 
the board such that no one can take any other. In n-person game theory, if 

a graph of domination is symmetrical, a maximum internally stable set turns 

t to be a maximum solution (in the von Neumann-Morgenstern sense'), and the 

,re usual case can be solved by means of the Grundy functions.2 

Problem 2 is the set theoretic dual of Problem 1, since the complement of an 

ernally stable set is a cover, and conversely. Particular cases of Problem 3 are 
a problem of distinct representatives (P. Hall3) and the problem of Petersen 

. K6nig4). In the case where the graph is bipartite, Problem 3 has been solved 

algebraic methods by 0. Ore,5 and an efficient algorithm has been given by H. 

lhn.6 Unfortunately, the linear programming duality used by H. Kuhn no 

lger subsists when the graph is not bipartite. (Note that Problem 2 is the 

ear program dual to Problem 3 in the bipartite case.) In view of solving the 

leral case, this paper states two theorems: Theorem 1 gives a necessary and 

ficient condition for recognizing whether a matching is maximum and provides 

algorithm for Problem 3, while Theorem 2 yields an algorithm for Problems 

nd 2. 

The Theorems.--Consider a graph G = (X, U) with a matching Vo; if u e Vo 
shall say that edge u is strong, otherwise that u is weak. An alternating chain 

a chain which does not use the same edge twice and is such that for any two 

jacent edges one is strong and the other is weak. A vertex x which is not ad- 

ent to a strong edge is said to be neutral, the set of all neutral points being N. 

We shall also consider a graph G constructed from G by adding a vertex a and 

mnecting a to every neutral point with a strong edge. If there exists an alternat- 

chain from a to a vertex x, we shall picture an arrow on the last edge (z, x), 
'ected from z to x. A vertex x (f N) which is not adjacent to a directed edge is 

d to be inaccessible, the set of all inaccessible points being I. A vertex x (4 N) 

jacent to a weak edge directed to x and not to a strong edge directed to x is said 

be weak, the set of all weak points being W. A vertex x (e N) adjacent to a 

ong edge directed to x and not to a weak edge directed to x is said to be strong, 
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e set of all strong points being S. A vertex x (? N) adjacent to a strong edge 
'ected to x and to a weak edge directed to x is said to be medium, and the set of 
medium points will be designated by MI. 

LEMMA 1. Let Y be a connected component of the subgraph M; if a is inaccessible, 
're exists in G one strong edge adjacent to Y and directed to Y only; all other edges 
jacent to Y are weak and directed from Y only. Moreover, all vertices not in Y and 
mnected to Y by one edge are weak, and I Y| > 3. 
This is a theorem of T. Gallai;7 a shorter proof is given by Berge.' 
LEMMA 2. If a is inaccessible, S u N is internally stable. 

(Immediate.) 
LEMMA 3. If a is inaccessible, M = J and I = ?, then S u N is a maximum 

ternally stable set, W is a minimum cover, and Vo is a maximum matching. 
IF'rom Lemma 2, S u N is internally stable, hence W = X - (S u N) is a cover. 
)r every cover C and for every matching V, one has C > VI ; as i = - Vo|, 
e cover W is minimum and the natching Vo is maximum. 

LEMMA 4. Let Z be a connected component of the subgraph I; if a is inaccessible, 
edges adjacent to Z are weak and undirected; moreover, all vertices not in Z con- 

cted to Z by an edge are weak, and I Z > 2. 

(Immediate.) 
LEMMA 5. If I N < 1, Vo is a maximum matching. 

This follows from the fact that IX = 21 VoT + N . 

LEMMA 6. If A c X, let GA be the graph constructed from G by shrinking A into 

single vertex aA, having as adjacent edges the adjacent edges of A. If the original 
'ong edges constitute a maximum matching for the subgraph A, and for GA, then Va 
a maximum matching for G. 
This is easy to see by an induction ona the number of elements of A. 
THEOREM 1. A matching V is maximum if and only if there does not exist an 

ernating chain connecting a neutral point to another neutral point. 
If there existed an alternating chain W = (ua, 'u2. .., uk) connecting a neutral 
int a to a neutral point a' different from a, (V -- W) u (W - V) would be a 

atching with more elements than V, and V would not be maximum. 

Conversely, let us prove that, if such a chain does not exist, V is maximum; the 

oposition being obvious when the graph has one or two edges, we shall assume 
at the proposition is true for any graph having fewer tharn m edges, and we shall 
ove it for a graph G of m edges. One can assume that G is connected. 
From Lemma 5, one can assume I NI > 1; from Lemma 3, one can also assume 
at eitherM I 0 or I - 0. 
1. If JM - ?, let Y be a connected component of the subgraph M; the graph 
constructed from G by shrinkage satisfies the conditions of the theorem (Lemma 

; as it has at least one edge less than G, the strong edges constitute a maximum 
atching for Gy. On the other hand, the subgraph Y has only one neutral point 
emma 1) and therefore its strong edges constitute a maximum matching. Thus, 
)m Lemma 6, V0 is a maximum matching for G. 
2. If I ~ (, let Z be a connected component of subgraph I, and consider the 

aph Ga. The vertex az is a nieutral point, colnnected only with weak points. 
a alternating chain leads from a point of N to az. As Gz satisfies the conditions 
the theorem, Gz admits its strong edges as a, mraximurm matchiing. On the 



her hand, the subgraph Z, having no neutral points, admits its strong edges as a 

aximum matching; therefore, Vo is a maximum matching for G. 

THEOREM 2. Let Cy (resp. Cz) be any minimum cover for the subgraph generated 
a connected component Y of M (resp. Z of I). If there does not exist an alter- 

0ting chain connecting a neutral point to another neutral point, the set 

C = W u UCY u UCz 
Y Z 

a minimum cover for G.9 

Every vertex which is connected by an edge to a component Y is a weak point 
,emma 1); every vertex which is connected by an edge to a component Z is a 
aak point (Lemma 4). Therefore C is a cover for G. As C is a minimum cover 
r the graph G' deduced from G by removing all edges connecting a weak vertex 
a medium or inaccessible vertex (Lemma 3), C is also a minimum cover for G. 

Theorem 1 suggests the following procedure for solving Problem 3; Construct a 
aximal matching V, and determine whether there exists an alternating chain W 

nnecting two neutral points. (The procedure is known.) If such a chain exists, 
ange V into (V - W) u (W - V), and look again for a new alternating chain; 
such a chain does not exist, V is maximum. 
Theorem 2 gives an algorithm for Problem 2, hence for Problem 1. 
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