
1

Max-product for maximum weight matching:
convergence, correctness and LP duality

Mohsen Bayati Devavrat Shah Mayank Sharma

Abstract—Max-product “belief propagation” is an iterative,
message-passing algorithm for finding the maximum a posteriori
(MAP) assignment of a discrete probability distribution specified
by a graphical model. Despite the spectacular success of the
algorithm in many application areas such as iterative decoding
and combinatorial optimization which involve graphs with many
cycles, theoretical results about both the correctness and conver-
gence of the algorithm are known in few cases [10], [17], [19],
[22], [23], [24].
In this paper we will prove correctness and convergence of the

max-product for finding Maximum Weight Matching (MWM) in
bipartite graphs. Even though the underlying graph of the MWM
problem has many cycles, somewhat surprisingly we show that
the max-product algorithm converges to the correct MWM as
long as the MWM is unique. We provide a bound on the number
of required iterations and show that for a graph of size n, the
computational cost of the algorithm scales as O(n3), which is the
same as the computational cost of the best known algorithms for
finding the MWM.
We also provide an interesting relation between the dynamics

of the max-product algorithm and a well-known distributed algo-
rithm for solving the MWM, called auction algorithm proposed
by Bertsekas in the 1980s.

Index Terms—Auction algorithm, belief propagation, dis-
tributed optimization, linear programming, Markov random
fields, maximum weight matching, max-product algorithm, min-
sum algorithm, message-passing algorithms.

I. INTRODUCTION

Graphical models (GM) are a powerful method for repre-
senting and manipulating joint probability distributions. They
have found major applications in several different research
communities such as artificial intelligence [16], statistics [12],
error-correcting codes [8], [11], [17] and neural networks.
Two central problems in probabilistic inference over graphical
models are those of evaluating the marginal and maximum
a posteriori (MAP) probabilities, respectively. In general,
calculating the marginal or MAP probabilities for an ensemble
of random variables would require a complete specification of
the joint probability distribution. Further, the complexity of a
brute force calculation would be exponential in the size of the
ensemble. GMs assist in exploiting the dependency structure
between the random variables, allowing for the design of
efficient algorithms.
The belief propagation (BP) and max-product algorithms

[16] were proposed in order to compute, respectively, the

M. Bayati is currently with Microsoft research and while this work was
done he was at the department of EE at Stanford University; D. Shah
is with Department of EECS at MIT and M. Sharma is with IBM T.J.
Watson Research Center. Email: mohsenb@microsoft.com, devavrat@mit.edu,
mxsharma@us.ibm.com.

marginal and MAP probabilities efficiently. Comprehensive
surveys of various formulations of BP and its generalization,
the junction tree algorithm, can be found in [2], [24], [18]. BP-
based message-passing algorithms have been very successful
in the context of, for example, iterative decoding for turbo
codes, computer vision and finding satisfying assignments for
random k-SAT. The simplicity, wide scope of application and
experimental success of belief propagation has attracted a lot
of attention recently [2], [11], [15], [17], [25].
BP (or max-product) is known to converge to the correct

marginal (or MAP) probabilities on graphs with no cycles [16].
For graphs with a single cycle convergence and correctness of
BP are rigorously analyzed [1], [20]. For graphical models
with arbitrary underlying graphs, little is known about the
correctness of BP. Partial progress consists of [22] where the
correctness of BP for Gaussian GMs is proved, [10] where an
attenuated modification of BP is shown to work, [17] where
the iterative turbo decoding algorithm based on BP is shown to
work in the asymptotic regime with probabilistic guarantees,
and [23], [19] where fixed points of BP are shown to be locally
optimum. To the best of our knowledge, limited theoretical
progress has been made to resolve the question: when does
BP work on graphs with cycles?
Motivated by the objective of providing justification for the

success of BP on arbitrary graphs, we focus on the application
of BP to the well-known combinatorial optimization problem
of finding the Maximum Weight Matching (MWM) in a
bipartite graph, also known as the “Assignment Problem”. It
is standard to represent combinatorial optimization problems,
like finding the MWM, as calculating the MAP probability on
a suitably defined GM which encodes the data and constraints
of the optimization problem. Thus, the max-product algorithm
can be viewed at least as a heuristic for solving the problem.
In this paper, we study the performance of the max-product
algorithm as a method for finding the MWM on a weighted
complete bipartite graph.
Additionally, using the max-product algorithm for problems

like finding the MWM has the potential of being an exciting
application of BP in its own right. The assignment problem is
extremely well-studied algorithmically. Attempts to find better
MWM algorithms contributed to the development of the rich
theory of network flow algorithms [9], [13]. The assignment
problem has been studied in various contexts such as job-
assignment in manufacturing systems [9], switch scheduling
algorithms [14] and auction algorithms [7]. Recently, we used
the max-product algorithm effectively in high-speed switch
scheduling and wireless scheduling where the distributed na-
ture of the algorithm and its simplicity are very attractive for

2

implementation [5].

A. OUR RESULTS
The main result of this paper is to show that the max-product

algorithm for MWM always finds the correct solution, as long
as the solution is unique. Our proof is purely combinatorial and
uses only bipartite nature of the graph. We think that this result
and in particular our methods may lead to further insights in
understanding how BP algorithms work when applied to a
class of optimization problems.
The algorithm’s complexity scales as O(n3w∗/ε), where n

is the size of the graph, ε being the difference between weight
of the unique maximum weight matching and the second
maximum weight matching and w∗ being the maximal value
of edge weight. This is essentially the same as that of best
centralized algorithm (assuming w∗, ε constant) and the Auc-
tion algorithm proposed by Bertsekas. Somewhat interestingly,
we find that the dynamics of the auction algorithm and the
max-product algorithm are essentially the same and leads to
a precise relation between these two algorithms. The auction
algorithm with a relaxation method can find the maximum
weight matching (as well as good approximation solution)
even in the absence of unique solution. The above relation
between auction and max-product suggests a modification of
the max-product. We show that for this modification of max-
product, the fixed point of the algorithm implies a solution that
is good approximation solution and can lead to an MWMwhen
the parameters are chosen properly. In general, this suggests
a method to obtain (a deterministic) modification of the max-
product so as to be successful in the presence of multiple
solutions as well as work as an approximation. We believe
that this heuristic should be of interest for other optimization
problem.
Finally, we note that our results establish that the max-

product algorithm, which essentially operates with respect to
the dual formulation of the problem, finds the right answer.
This is in contrast to many unsuccessful distributed dual
algorithm (e.g. dual co-ordinate descent) and (successful)
primal-dual algorithm such as the auction algorithm.

B. ORGANIZATION
The rest of the paper is organized as follows. In Section II,

we provide the setup, define the Maximum Weight Matching
problem (or assignment problem) and describe a version of
max-product algorithm, the min-sum algorithm, for finding the
MWM. In this paper, we will use term max-product or min-
sum interchangeably for the same algorithm. Essentially, the
min-sum algorithm is obtained from max-product by replacing
its variable by their logarithms.
Section III states and proves the main result of this paper.

Section IV presents a simplification of the max-product algo-
rithm and evaluates its computational cost. Section V discusses
relation between the max-product algorithm and the celebrate
auction algorithm proposed by Bertsekas. The auction algo-
rithm essentially solves the dual of LP relaxation for matching
problem. Our result suggests possibility of deeper connection
between max-product and dual algorithm for optimization

problems. Finally, we discuss some implications of our results
in Section VI.

II. SETUP AND PROBLEM STATEMENT

In this section, we first define the problem of finding
the MWM in a weighted complete bipartite graph and then
describe the max-product BP algorithm for solving it.

A. MAXIMUM WEIGHT MATCHING

Consider an undirected weighted complete bipartite graph
Kn,n = (V1, V2, E), where V1 = {α1, . . . , αn}, V2 =
{β1, . . . , βn} and (αi, βj) ∈ E for 1 ≤ i, j ≤ n. Let each
edge (αi, βj) have weight wij ∈ R.
If π = {π(1), . . . , π(n)} is a permutation of {1, . . . , n}

then the collection of n edges {(α1, βπ(1)), . . . , (αn, βπ(n))}
is called a matching of Kn,n. We denote both the permutation
and the corresponding matching by π. The weight of matching
π, denoted by Wπ, is defined as

Wπ =
∑

1≤i≤n

wiπ(i).

Then, the Maximum Weight Matching (MWM), π∗, is the
matching such that

π∗ = argmaxπ Wπ.

Note 1. In this paper, we always assume that the weights are
such that the MWM is unique. In particular, if the weights
of the edges are independent, continuous random variables,
then with probability 1, the MWM is unique. Specifically, one
may make MWM unique by adding small independent random
noise to each of the weight.
Next, we model the problem of finding MWM as find-

ing a MAP assignment in a graphical model where the
joint probability distribution can be completely specified in
terms of the product of functions that depend on at most
two variables (nodes). For details about GMs, we urge the
reader to see [12]. Now, consider the following GM defined
on Kn,n: Let X1, . . . , Xn, Y1, . . . , Yn be random variables
corresponding to the vertices of Kn,n and taking values
from {1, 2, . . . , n}. Let their joint probability distribution,
p

(

X = (x1, . . . , xn);Y = (y1, . . . , yn)
)

, be of the form:

p
(

X, Y
)

=
1

Z

∏

i,j

ψαiβj (xi, yj)
∏

i

φαi(xi)φβi(yi), (1)

where the pairwise compatibility functions, ψ··(·, ·), are de-
fined as

ψαiβj(r, s) =







0 r = j and s #= i
0 r #= j and s = i
1 Otherwise

the potentials at the nodes, φ·(·), are defined as

φαi(r) = ewir , φβj (r) = ewrj , ∀ 1 ≤ i, j, r, s ≤ n,

and Z is the normalization constant. We note that the pair-wise
potential essentially ensures that the following two constraints

3

are satisfied for any (X, Y) with positive probability: (a) If
node αi is matched to node βj (i.e Xi = j), then node βj

must be match to node αi (i.e. Yj = i). (b) If node αi is
not matched to βj (i.e. Xi #= j), then node βj must not be
matched to node αi (i.e. Yj #= i). These two constraints encode
that the support of the above defined probability distribution
is on matchings only.
Claim 1: For the GM as defined above, the joint den-

sity p
(

X = (x1, . . . , xn), Y = (y1, . . . , yn)
)

is nonzero if
and only if πα(X) = {(α1, βx1

), (α2, βx2
), . . . , (αn, βxn)}

and πβ(Y) = {(αy1
, β1), (αy2

, β2), . . . , (αyn , βn)} are both
matchings and πα(X) = πβ(Y). Further, when nonzero, they
are equal to 1

Z
e2

P

i wixi .
When, p(X, Y) > 0, then the product of φ·(·)’s essentially
make the probability monotone function of the summation of
edge weights as part of the corresponding matching. Formally,
we state the following claim.
Claim 2: Let (X

∗
, Y

∗
) be such that

(X
∗
, Y

∗
) = arg max{p

(

X, Y
)

}.

Then, the corresponding πα(X
∗
) = πβ(Y

∗
) is the MWM in

Kn,n.
Claim 2 implies that finding the MWM is equivalent to

finding the maximum a posteriori (MAP) assignment on the
GM defined above. Thus, the standard max-product algorithm
can be used as an iterative strategy for finding the MWM.
In fact we show that this strategy yields the correct answer.
Before proceeding further, we provide an example of the above
defined GM for the ease of readability.
Example 1: Consider a complete bipartite graph with n =

2. The random variables Xi, i = 1, 2 corresponds to the
index of β node to which αi is connected under the GM.
Similarly, the random variable Yi, i = 1, 2 correspond to the
index of α node to which βi is connected. For example,
X1 = 1 means that α1 is connected to β1. The pair-
wise potential function ψ·· encodes matching constraints. For
example, (X1, X2; Y1, Y2) = (1, 2; 1, 2) corresponds to the
matching where α1 is connected to β1 and α2 is connected
to β2. This is encoded (and allowed) by ψ··: in this example,
ψα1β2

(X1, Y2) = ψα1β2
(1, 2) = 1, etc. On the other hand,

(X1, X2; Y1, Y2) = (1, 2; 2, 1) is not a matching as α1 con-
nects to β1 while β1 connects to α2. This is imposed by the
following: ψα1β1

(X1, Y1) = ψα1β1
(1, 2) = 0. We suggest

the reader to go through this example in further detail by
him/herself to get familiar with the above defined GM.

B. MIN-SUM ALGORITHM FOR Kn,n

The max-product and min-sum algorithms can be seen to be
equivalent. In this paper we will look at the min-sum version
for the GM defined above. The max-product version and its
equivalence to min-sum algorithm are given in [3]. Now, the
min-sum algorithm is described as follows.
Min-sum algorithm.

(1) LetMk
αi→βj

= [mk
αi→βj

(1), mk
αi→βj

(2), . . . , mk
αi→βj

(n)]t ∈
Rn×1 denote the messages passed from αi to βj in the

iteration k ≥ 0, for 1 ≤ i, j ≤ n. Similarly, Mk
βj→αi

is
the message vector passed from βj to αi in the iteration
k.

(2) Initially k = 0 and set the messages as follows. Let

M0
αi→βj

= [m0
αi→βj

(1) . . . m0
αi→βj

(n)]t,

and

M0
βj→αi

= [m0
βj→αi

(1) . . . m0
βj→αi

(n)]t,

where

m0
αi→βj

(r) =

{

wij if r = i
0 otherwise (2)

m0
βi→αj

(r) =

{

wji if r = i
0 otherwise (3)

(3) For k ≥ 1, messages in iteration k are obtained from
messages of iteration k−1 recursively as follows: for all
αi, βj and all 1 ≤ q, p ≤ n,

mk
αi→βj

(q) = max
1≤p≤n

ψαiβj (p, q)





∑

$ %=j

mk−1
β!→αi

(p) + wip





mk
βj→αi

(p) = max
1≤q≤n

ψαiβj (p, q)





∑

$ %=i

mk−1
α!→βj

(q) + wqj





(4)

(4) Define the beliefs (n × 1 vectors) at nodes αi and βj ,
1 ≤ i, j ≤ n, in iteration k as follows: 1 ≤ r ≤ n,

bk
αi

(r) = wir +
∑

$

mk
β!→αi

(r),

bk
βj

(r) = wrj +
∑

$

mk
α!→βj

(r). (5)

(5) The estimated1 MWM at the end of iteration k is πk,
where πk(i) = argmax1≤j≤n{bk

αi
(j)}, for 1 ≤ i ≤ n.

(6) Repeat (3)-(5) till πk converges.

III. MAIN RESULT

Now we state and prove Theorem 1, which is the main
contribution of this paper. Before proceeding further, we need
the following definitions.
Definition 1: Let ε be the difference between the weights

of the MWM and the second maximum weight matching; i.e.

ε = Wπ∗ − max
π %=π∗

(Wπ).

Due to the uniqueness of the MWM, ε > 0. Also, define
w∗ = maxi,j(|wij |).
Theorem 1: For any weighted complete bipartite graph

Kn,n with unique maximum weight matching, the max-
product or min-sum algorithm when applied to the corre-
sponding GM as defined above, converges to the correct MAP
assignment or the MWM within (2nw∗

ε) iterations.

1Note that, as defined, πk need not be a matching. Theorem 1 shows that
for large enough k, πk is a matching and corresponds to the MWM.

4

α2 α3

β2

α1

(a) (b)

α2 α3 α2 α3

β1
β3

β2β1
β3

α1

α2 α3 α2 α3 α2 α3

β2 β3 β2 β3 β1 β3
β1 β3

β1 β2 β1 β2

Fig. 1. When n = 3 (a) is T 1
αi
and (b) is T 2

αi
.

A. PROOF OF THEOREM 1

We first present some useful notation and definitions. Con-
sider αi, 1 ≤ i ≤ n. Let T k

αi
be the level-k unrolled tree corre-

sponding to αi, defined as follows: T k
αi
is a weighted regular

rooted tree of height k+1 with every non-leaf having degree n.
All nodes have labels from the set {α1, . . . , αn, β1, . . . , βn}
according to the following recursive rule: (a) root has label
αi; (b) the n children of the root αi have labels β1, . . . , βn;
and (c) the children of each non-leaf node whose parent has
label αr (or βr) have labels β1, . . . , βr−1, βr+1, . . . , βn (or
α1, . . . , αr−1, αr+1, . . . , αn). The edge between nodes labeled
αi, βj in the tree is assigned weight wij for 1 ≤ i, j ≤ n.
Examples of such a tree for n = 3 are shown in the Figure 1.
Note 2. T k

αi
is often called the level-k computation tree at

node αi corresponding to the GM under consideration. The
computation tree in general is constructed by replicating the
pairwise compatibility functions ψαiβj (r, s) and potentials
φαi(r), φβj (s), while preserving the local connectivity of the
original graph. They are constructed so that the messages
received by node αi after k iterations in the actual graph are
equivalent to those that would be received by the root αi in the
computation tree, if the messages are passed up along the tree
from the leaves to the root. Computation tree has been used
in most of the previous work on analysis of the BP algorithm;
e.g. [8], [10], [20], [22], [23].
A collection Λ of edges in computation tree is called a T-

matching if it no two edges of Λ are adjacent in the tree (Λ is
a matching in the computation tree) and each non-leaf nodes
are endpoint of exactly one edge from Λ. Let tkαi

(r) be the
weight of maximum weight T-matching in T k

αi
which uses the

edge (αi, βr) at the root.
Now, we state two important lemmas that will lead to the

proof of Theorem 1. The first lemma presents an important
characterization of the min-sum algorithm while the second
lemma relates the maximum weight T-matching of the com-
putation tree and the MWM in Kn,n.
Lemma 1: At the end of the kth iteration of the min-sum

algorithm, the belief at node αi of Kn,n is precisely bk
αi

=
[2tkαi

(1) . . . 2tkαi
(n)]t.

Lemma 2: If π∗ is the MWM of graph Kn,n then for k >
2nw∗

ε
,

π∗(i) = argmax
r

{tkαi
(r)}.

That is, for k large enough, the maximum weight T-matching
in T k

αi
chooses the edge (αi, βπ∗(i)) at the root.

Theorem 1: Consider the min-sum algorithm. Let bk
αi

=
[bk

αi
(1), . . . , bk

αi
(n)]t. Recall that πk = (πk(i)) where πk(i) =

argmaxr{bk
αi

(r)}. Then, by Lemmas 1 and 2, for k > 2nw∗

ε ,
πk = π∗.
Next, we present the proofs of Lemmas 1 and 2 in that order.

Lemma 1: It is known [21] that under the min-sum
(or max-product) algorithm, the vector bk

αi
corresponds to the

correct max-marginals for the root αi of the MAP assignment
on the GM corresponding to T k

αi
. The pairwise compatibility

functions force the MAP assignment on this tree to be a T-
matching. Now, each edge has two endpoints and hence its
weight is counted twice in the weight of T-matching.
Next consider the jth entry of bk

αi
, bk

αi
(j). By definition, it

corresponds to the MAP assignment with the value of αi at
the root being j. That is, (αi, βj) edge is chosen in the tree
at the root. From the above discussion, bk

αi
(j) must be equal

to 2tkαi
(j).

Lemma 2 is the main step in proving Theorem 1 and its
proof covers more than one page. Before going into the details
of proof let us give a high level description of it. Consider
the computation tree (T k

αi
) rooted at vertex (αi) and look at

maximum weight T -matching on it. We assume that at the
root, maximum weight T -matching of T k

αi
does not choose

the correct edge (αi, βπ∗(i)). Then we use property of T -
matchings that each vertex is connected to exactly one of
its neighbors to construct a new T -matching on computation
tree. This new matching is going to have larger total weight if
depth of the computation tree is large enough. This last argu-
ment uses augmenting path based argument for this matching
problem. The above will contradict with the assumption that
decision at the root is incorrect, and proves Lemma 2.

Lemma 2: Assume the contrary that for some k > 2nw∗

ε
,

π∗(i) #= argmax
r

tkαi
(r)

'
= î, for some i. (6)

Then, let î = π∗(i1) for i1 #= i. Let Λ be the T-matching on
T k

αi
whose weight is tkαi

(̂i). We will modify Λ and find Λ′

whose weight is more than Λ and which connects (αi, βπ∗(i))
at the root instead of (αi, βπ∗(i1)), thus contradicting with (6).
First note that the set of all edges of T k

αi
whose projection

in Kn,n belong to π∗ is a T-matching which we denote by
Π∗. Now consider paths P$, ' ≥ 0 in T k

αi
, that contain edges

from Π∗ and Λ alternatively defined as follows. Let αi0 =
root αi, i0 = i and P0 = (αi0) be a single vertex path. Let
P1 = (βπ∗(i0), αi0 , βπ∗(i1)), where i1 is such that αi0 = αi

is connected to βπ∗(i1) under Λ. For r ≥ 1, define P2r and
P2r+1 recursively as follows:

P2r = (αi−r , P2r−1, αir),

P2r+1 = (βπ∗(i−r), P2r, βπ∗(ir+1))

where αi−r is the node at level 2r to which the endpoint node
βπ∗(i−r+1) of path P2r−1 is connected to under Λ, and ir+1 is
such that αir at level 2r (part of P2r) is connected to βπ∗(ir+1)

under Λ. Note that, by definition, such paths P$ for 0 ≤ ' ≤ 2k
exist since the tree T k

αi
has k+1 levels and can support a path

of length at most 2k as defined above.

5

α1

α2

β2 β3

β1 β2
β3

α1
α3 α1 α3

α3

β2 β3

α1 α2 α1 α2

α2

β1 β3

α3

β1 β3

α2

β1 β2

α3

β1 β2

α1 α3 α1 α3
α1 α2 α1 α2 α1 α3 α1 α3 α1 α2 α1 α2

α1

α2

α3

β1

β2

β3

α1

α2

α3

β1

β2

β3

α1

α2

α3

β1

β2

β3

MWM

Start of Pk End of Pk

(a) (b) (c)

(d)

Fig. 2. Consider a graph with MWM shown in (a). Projection of the path
Pk for k = 4 as shown in (d) is decomposed to (b): path Q of length 4 and
(c): cycle C1 of length 4. The dashed edges belong to Λ while bold edges
belong to Π∗.

Example 2: The Figure 2(d) provides an example of such
a path. The corresponding bipartite graph has n = 3 with its
MWM shown in figure 2(a). The Figure 2(d) shows T 3

α1
, the

computation tree for node α1, till depth k + 1 = 4. A path,
P4, is highlighted with thick edges alternatively complete and
bold (edges fromΠ∗) and dashed (edges from Λ). In the figure,
P0 = (α1); P1 = (β1, α1, β2); P2 = (α2, β1, α1, β2, α2) =
(α3, P2, α2) and so on. Finally,

P4 = (α1, β2, α2, β1, α1, β2, α2, β3, α3) = C1 ∪ Q,

where C1 = (α1, β1, α2, β2, α1) is a cycle of length 4 (see
Figure 2(c)) and Q = (α1, β2, α2, β3, α3) is a path of length
4 (see Figure 2(b)).
Now consider the path Pk of length 2k. Its edges are

alternately partitioned into edges from Λ and edges Π∗. Let
us refer to the edges of Λ as the Λ-edges of Pk. Replacing the
Λ-edges of Pk with their complement in Pk (all Π∗ edges of
Pk) produces a new matching Λ′ in T k

αi
; this follows from the

way the paths are constructed. Note that Λ′ is exactly equal to
Λ on T k

αi
except along the path Pk where it uses edges from

Π∗.
Lemma 3: The weight of T-matching Λ′ is strictly higher

than that of Λ on tree T k
αi
.

This completes the proof of Lemma 2 since Lemma 3 shows
that Λ is not the maximum weight T-matching on T k

αi
, leading

to a contradiction.
Now, we provide the proof of Lemma 3.
Lemma 3: It suffices to show that the total weight of

the Λ-edges is less than the total weight of their complement
in Pk. Consider the projection P ′

k of Pk in the graph Kn,n.
P ′

k can be decomposed into a union of a set of simple cycles
{C1, C2, . . . , Cm} and at most one even length path Q of

length at most 2n. Since each simple cycle has at most 2n
vertices and the length of Pk is 2k,

m ≥
2k

2n
=

k

n
. (7)

Consider one of these simple cycles, say Cs. Construct the
matching π′ in Kn,n as follows: (i) For αl ∈ Cs, select edges
incident on αl that belong to Λ. Such edges exist by the
property of the path Pk that contains Cs. (ii) For αl /∈ Cs,
connect it according to π∗, that is, add the edge (αl, βπ∗(l)).
Now π′ #= π∗ by construction. Since the MWM is unique,

the definition of ε gives us

Wπ′ ≤ Wπ∗ − ε.

But, Wπ∗ − Wπ′ is exactly equal to the total weight of the
Π∗-edges of Cs, denoted by WΠ∗(Cs), minus the total weight
of the Λ-edges of Cs, denoted by WΛ(Cs) . Thus,

WΛ(Cs) − WΠ∗(Cs) = −(Wπ∗ − Wπ′)

≤ −ε. (8)

Since the path Q is of even length, either the first edge or the
last edge is an Λ-edge. Without loss of generality, assume it
is the last edge. Then, let

Q = (βπ∗(ij1), αij1
, βπ∗(ij2), . . . , βπ∗(ijl

), αijl
, βπ∗(ijl+1

)).

Now consider the cycle

C = (βπ∗(ij1), αij1
, βπ∗(ij2), . . . , βπ∗(ijl

), αijl
, βπ∗(ij1)).

Alternate edges of C are from the maximum weight matching
π∗. Hence, using the same argument as above, we obtain

WΛ(Q) − WΠ∗(Q) =
∑

1≤r≤l

wijr π∗(ijr+1
) −

∑

1≤r≤l

wijr π∗(ijr)

≤ −ε+ |wijl
π∗(ij1)| + |wijl

π∗(ijl+1
)|

≤ −ε+ 2w∗. (9)

From (7)-(9), we obtain that for T-matchings Λ′ and Λ in T k
αi
:

weight of Λ − weight of Λ′ ≤ −(m + 1)(ε) + 2w∗

≤ −
k

n
ε+ 2w∗

< 0. (10)

This completes the proof of Lemma 3.

IV. COMPLEXITY
In this section, we will analyze the complexity of the

min-sum algorithm described in Section II-B. Theorem 1
suggests that the number of iterations required to find MWM
is O

(

nw∗

ε

)

. Now, in each iteration of min-sum algorithm each
node sends a vector of size n (i.e. n numbers) to each of the
n nodes in the other partition. Thus, total number of messages
exchanged in each iteration are O(n2) with each message of
length n. Now, each node performs O(n) basic computational
operations (comparison, addition) to compute each element in
a message vector of size n. That is, each node performs O(n2)
computational operations to compute a message vector in each
iteration. Since each node sends n message vectors, the total

6

cost is O(n3) per node or O(n4) per iteration for all nodes.
Thus, total cost for O(nw∗/ε) iterations is O(n5w∗/ε).
Thus, for fixed w∗ and ε, the running time of algorithm

scales as O(n5). The known algorithms such as Edmond-
Karp’s algorithm [9] or Auction algorithm [7] have complexity
of O(n3). In what follows, we simplify the min-sum algorithm
so that overall running time of the algorithm becomes O(n3)
for fixed w∗ and ε. We make a note here that Edmond-Karp’s
algorithm is strongly polynomial (i.e. does not depend on w∗

and ε) while Auction algorithm’s complexity is O(n3w∗/ε).

A. SIMPLIFIED MIN-SUM ALGORITHM FOR Kn,n

We first present the algorithm and show that it is exactly the
same as min-sum algorithm. Later, we analyze the complexity
of the algorithm.
Simplified min-sum algorithm.

(1) Unlike min-sum algorithm, now each αi sends a number
to βj and vice-versa. Let the message from αi to βj in
iteration k be denoted as

m̂k
αi→βj

Similarly, the messages from βj to αi in iteration k be
denoted as

m̂k
βj→αi

(2) Initially k = 0 and set the messages as follows.

m̂0
αi→βj

= wij

Similarly,
m̂0

βj→αi
= wij

(3) For k ≥ 1, messages in iteration k are obtained from
messages of iteration k − 1 recursively as follows:

m̂k
αi→βj

= wij − max
$ %=j

m̂k−1
β!→αi

,

m̂k
βj→αi

= wij − max
$ %=i

m̂k−1
α!→βj

(11)

(4) The estimated MWM at the end of iteration k is πk,
where πk(i) = arg max1≤j≤n{m̂k

βj→αi
}, for 1 ≤ i ≤ n.

(5) Repeat (3)-(4) till πk converges.

Now, we state and prove the claim that relates the above
modified algorithm to the original min-sum algorithm.
Lemma 4: In min-sum algorithm adding an equal amount

to all coordinates of any message vector Mk
αi→βj

(similarly
Mk

βj→αi
) at anytime does not change the resulting estimated

matching πm for all k, m.
Proof: If a number is added to all coordinates ofMk

αi→βj

it is not hard to see from equation (4) and structure of
ψαiβj(·, ·) that other message and belief vectors will change
only up to an additive constant to their coordinates. Hence
these changes do not affect πm(i) = arg max1≤j≤n{bm

αi
(j)},

for 1 ≤ i ≤ n.
Lemma 5: The algorithms min-sum and simplified min-sum

produce identical estimated matchings πm at the end of every
iteration m.

Proof: Consider the min-sum algorithm. In particular,
consider a message vector Mk

αi→βj
in iteration k. First, we

claim that all for any given k ≥ 0, mk
αi→βj

(r), r #= i are the
same. That is, for r1 #= r2 and r1, r2 #= i,

mk
αi→βj

(r1) = mk
αi→βj

(r2).

For k = 0, this claim holds by definition. For k ≥ 1,
consider the definition of mk

αi→βj
(r), r #= i.

mk
αi→βj

(r) = max
1≤q≤n

ψαiβj (q, r)



wiq +
∑

$ %=j

mk−1
β!αi

(q)





= max
q %=j



wiq +
∑

$ %=j

mk−1
β!αi

(q)



 . (12)

The first equality follows from definition in min-sum algorithm
while second equality follows from property of ψαiβj (·, ·). The
equation (12) is independent of r(#= i). This proves the desired
claim.
The above stated property of min-sum algorithm immedi-

ately implies that the vector Mk
αi→βj

has only two distinct
values, one corresponding to mk

αi→βj
(i) and the other corre-

sponding to mk
αi→βj

(r), r #= i. Now subtract mk
αi→βj

(r), r #=
i from all coordinates of Mk

αi→βj
. Lemma 4 guarantees the

resulting matching πm for all m does not change. Performing
the same modification to all message vectors yields a modified
min-sum algorithm with the same outcome as Min-Sum. But
each message vector Mk

αi→βj
in this modified min-sum has

all coordinates equal to zero except the ith coordinate. Denote
these ith coordinates by m̃k

αi→βj
. Now equation (4) shows

these for all i, j, k numbers m̃k
αi→βj

satisfy the following
recursive equations:

m̃k
αi→βj

= wij − max
$ %=j

(m̃k−1
β!→αi

+ wi$),

m̃k
βj→αi

= wij − max
$ %=i

(m̃k−1
α!→βj

+ w$j) (13)

Similarly for new beliefs we have:

b̃k
αi

(r) = m̃k
βr→αi

+ wir ,

b̃k
βj

(s) = m̃k
αs→βj

+ wsj (14)

Now by adding wij to each side of (13) and dividing them

by 2 it can be seen from (11) that numbers
m̃k

αi→βj
+wij

2 and
m̂k

αi→βj
satisfy the same recursive equations. They also satisfy

the same initial conditions. As result for all i, j, k we have

m̂k
αi→βj

=
m̃k

αi→βj
+ wij

2
= b̃αi(j) (15)

and

m̂k
βj→αi

=
m̃k

βj→αi
+ wij

2
= b̃βj(i) (16)

This shows that the estimated matching computed at nodes
in modified min-sum and simplified min-sum algorithms are
exactly the same at each iteration which completes the proof
of Lemma 5.
Note 3. The simplified min-sum equations can also be derived
in a direct way by looking interpretation of the messages

7

{m̂k
αi→βj

}i,j,k in the computation tree. More specifically
consider the level-(k+1) computation tree rooted at αi, T k+1

αi
.

Also consider its subtree, T k
αi,βj

, that is built by adding the
edge (αi, βj) at the root of T k+1

αi
to graph of all descendants

of βj . One can show that the message m̂k
βj→αi

is equal to the
difference between weight of maximum weight T -matching in
T k

αi,βj
that uses the edge (αi, βj) at the root and weight of the

maximum weight T -matching in T k
αi,βj

that does not use that
edge. Now a simple induction gives us the update equations
(11).

B. COMPLEXITY OF SIMPLIFIED MIN-SUM
The Lemma 5 and Theorem 1 immediately imply that the

simplified min-sum, like min-sum, converges after O
(

nw∗

ε

)

iterations. As described above, the simplified min-sum algo-
rithm requires total O(n2) messages per iteration. Thus, for
fixed w∗ and ε the algorithm requires total O(n3) messages
to be exchanged.
Now, we consider the number of computational operations

done by each node in an iteration. From the description of
simplified min-sum algorithm, it may seem that each node
will require to do O(n) work for sending each message and
thus O(n2) work overall at one node. But, we present a
simple method that shows each node can compute message
for all of its n neighbors with O(n) computational operation
(comparison, addition/subtraction). This will result in O(n2)

overall computation per iteration. Thus, it will take O
(

n3w∗

ε

)

computation in O
(

nw∗

ε

)

iterations. This will result in total

complexity of O
(

n3w∗

ε

)

in terms of overall messages as well
as computation operations.
Here we describe an algorithm to compute messages

m̂k
α1→βj

, 1 ≤ j ≤ n using received messages m̂k−1
βj→α1

, 1 ≤
j ≤ n. This is the same algorithm that all αi, 1 ≤ i ≤ n, and
βj , 1 ≤ j ≤ n, need to employ. Now, define

i1 = argmax1≤j≤nm̂k−1
βj→α1

i2 = argmax1≤j≤n,j %=i1
m̂k−1

βj→α1

Mx1 = m̂k−1
βi1→α1

Mx2 = m̂k−1
βi2→α1

Then, from (11) we obtain

m̂k
α1→βi1

= w1i1 −Mx2,

m̂k
α1→βj

= w1j −Mx1 for j #= i1. (17)

We see that computing all messages m̂k
α1→βj

takes O(n)
operations. From (17), it takes node α1 O(n) computations
to find i1, i2,Mx1,Mx2, then it takes O(1) computation to
compute each of the m̂k

α1→βj
, 1 ≤ j ≤ n. That is, total O(n)

operations for computing all messages m̂k
α1→βj

, 1 ≤ j ≤ n.
Thus, we have established that each node αi, 1 ≤ i ≤ n,

and βj , 1 ≤ j ≤ n, need to perform O(n) computation to
compute all of its messages in a given iteration. That is, the
total computation cost per iteration is O(n2). In summary,
Theorem 1, Lemma 5 and discussion of this Section IV-B
immediately yield the following result.

Theorem 2: The simplified min-sum algorithm finds the
Maximum Weight Matching in O

(

nw∗

ε

)

iterations with total

computation cost of O
(

n3w∗

ε

)

and O
(

n3w∗

ε

)

total number
of message exchanges.

V. AUCTION AND MIN-SUM
In this section, we will first recall the auction algorithm [7]

and then describe its relation to the min-sum algorithm.

A. AUCTION ALGORITHM FOR MWM
The Auction algorithm finds the MWM via an “auction”:

all αi become buyers and all βj become objects. Let pj denote
the price of βj and wij be the value of object βj for buyer
αi. The net benefit of an assignment or matching π is defined
as

n
∑

i=1

(

wiπ(i) − pπ(i)

)

.

The goal is to find π∗ that maximizes this net benefit. It is clear
that for any set of prices p1, . . . , pn, the MWM maximizes the
net benefit. The auction algorithm is an iterative method for
finding the optimal prices and an assignment that maximizes
the net benefit (and is therefore the MWM).
Auction algorithm.

◦ Initialize the assignment S = ∅, the set of unassigned
buyers I = {α1, . . . , αn}, and prices pj = 0 for all j.

◦ The algorithm runs in two phases, which are repeated
until S is a complete matching.

◦ Phase 1: Bidding.
For all αi ∈ I ,
(1) Find benefit maximizing βj . Let,

ji = argmaxj{wij − pj}, vi = max
j

{wij − pj},

and ui = max
j %=ji

{wij − pj}. (18)

(2) Compute the ”bid” of buyer αi, denoted by bαi→βji

as follows: given a fixed positive constant δ,

bαi→βji
= wiji − ui + δ.

◦ Phase 2: Assignment.
For each object βj ,
(3) Let P (j) be the set of buyers from which βj received

a bid. If P (j) #= ∅, increase pj to the highest bid,

pj = max
αi∈P (j)

bαi→βj .

(4) Remove the maximum bidder αij from I and add
(αij , βj) to S. If (αk, βj) ∈ S, k #= ij , then put αk

back in I .

Theorem 3 ([6]): If 0 < δ < ε/n, then the assignment S
converges to the MWM in O(nw∗/ε) iterations with running
time O(n3w∗/ε) (where ε and w∗ are as defined earlier).

8

B. CONNECTING MIN-SUM AND AUCTION
The similarity between equations (17) and (18) suggests

a connection between the min-sum and auction algorithms.
In auction algorithm the equations for calculation of the
bids are exactly similar to those for updating messages in
simplified min-sum algorithm. But when updating the prices,
maximum is taken over all incoming bids which is different
from dynamics of simplified min-sum equations. Moreover in
auction algorithm bidders do not bid at any iteration and do not
bid to every object but in simplified min-sum each vertex sends
a message to all of its neighbors at any iteration. Based on
these similarities and difference we made modifications to both
simplified min-sum and auction algorithm which are called
min-sum auction I and min-sum auction II, respectively. We
will show that these versions are equivalent and derive some
of their key properties. Here we consider the naı̈ve auction
algorithm (when δ = 0) and deal with the case δ > 0 in the
next section.
Min-sum auction I

(1) Each αi sends a number to βj and vice-versa.
Let the messages in iteration k be denoted as
m̃k

αi→βj
, m̃k

βj→αi
∈ R.

(2) Initialize k = 0 and set m̃0
βj→αi

= 0.
(3) For k ≥ 1, update messages as follows:

m̃k
αi→βj

= wij − max
$ %=j

{wi$ − m̃k−1
β!→αi

},

m̃k
βj→αi

=
n

max
$=1

m̃k
α!→βj

, (19)

(4) The estimated MWM at the end of iteration k is
the set of edges πk =

{

(αij , βj)
}

where ij =
argmax1≤$≤n(m̃k

α!→βj
) and m̃k

αij
→βj

≥ m̃k−1
βj→αi

.
(5) Repeat (3)-(4) till πk is a complete matching.

Min-sum auction II.

◦ Initialize the assignment S = ∅ and prices pj = 0 for all
j.

◦ The algorithm runs in two phases, which are repeated
until S is a complete matching.

◦ Phase 1: Bidding.
For all αi,
(1) Find βj that maximizes the benefit. Let,

ji = argmaxj{wij − pj}, vi = max
j

{wij − pj},

and ui = max
j %=ji

{wij − pj}. (20)

(2) Compute the ”bid” of buyer αi, denoted by bαi→βj :

bαi→βji
= wiji−ui, and bαi→βj = wij−vi, j #= ji.

◦ Phase 2: Assignment.
For each object βj ,
(3) Set price pj to the highest bid, pj = maxαi bαi→βj .
(4) Reset S = ∅. Then, for each j add the pair (αij , βj)

to S if bαji
→βj ≥ pj , where αij is a buyer attaining

the maximum in step (3).

Theorem 4: The algorithms min-sum auction I and II are
equivalent.

Proof: Let bk
αi→βj

and pk
j denote the bids and prices at

the end of iteration k in algorithm min-sum auction II. Now,
identify bk

αi→βj
with m̃k

αi→βj
and pk

j with m̃k
βj→αi

. Then it is
immediate that min-sum auction II becomes identical to min-
sum auction I. This completes the proof of Theorem 4.
Next we will prove that if the min-sum auction algorithm

terminates (we omit reference to I or II), it finds the correct
maximum weight matching. As we will see, the proof uses
standard arguments (see [7] for example).
Theorem 5: Let σ be the termination matching of the min-

sum auction I (or II). Then it is the MWM, i.e. σ = π∗.
Proof: The proof follows by establishing that at termi-

nation, the messages of min-sum auction form the optimal
solution for the dual of the MWM problem and σ is the
corresponding optimal solution to the primal, i.e. MWM. To
do so, we first state the dual of the MWM problem

min
n

∑

i=1

ri +
n

∑

j=1

pj

subject to ri + pj ≥ wij . (21)

Let (r∗, p∗) be the optimal solution to the above stated dual
problem and let π∗ solve the primal MWM problem. Then,
the standard complimentary slackness conditions are:

r∗i + p∗π∗(i) = wiπ∗(i). (22)

Thus, (r∗, p∗, π∗) are the optimal dual-primal solution for the
MWM problem if and only if (a) π∗ is a matching, (b) (r∗, p∗)
satisfy (21), and (c) the triple satisfies (22). To complete the
proof we will prove the existence of r∗, p∗ such that (r∗, p∗, σ)
satisfy (a), (b) and (c).
To this end, first note that σ is a matching by the termination

condition of the algorithm; thus, condition (a)is satisfied. We’ll
consider the min-sum auction II algorithm for the purpose of
the proof. Suppose the algorithm terminates at some iteration
k. Let pk−1

j and pk
j be the prices of βj in iterations k− 1 and

k respectively. Since all βjs are matched at the termination,
from step (4) of the min-sum auction II, we obtain

pk
j ≥ pk−1

j , ∀j. (23)

At termination (iteration k), αi is matched with βσ(i) or βj

is matched with ασ−1(j). By the definition of the min-sum
auction II algorithm,

pk
j = wσ−1(j)j − max

$ %=j

[

wσ−1(j)$ − pk−1
$

]

. (24)

From (23) and (24), we obtain that

wσ−1(j)j − pk
j ≥ max

$ %=j

[

wσ−1(j)$ − pk
$

]

. (25)

Define, r∗i = wiσ(i) − pk
σ(i) and p∗j = pk

j . Then, from (25)
(r∗, p∗) satisfy the dual feasibility, that is (21). Further, by
definition they satisfy the complimentary slackness condition
(22). Thus, the triple (r∗, p∗, σ) satisfies (a), (b) and (c) as
required. Hence, the algorithm min-sum auction II produces
the MWM, i.e. σ = π∗.

9

The min-sum auction II algorithm looks very similar to the
auction algorithm and inherits some of its properties. However,
it also inherits some properties of the min-sum algorithm. This
causes it to behave differently from the auction algorithm.
The proof of convergence of auction algorithm relies on two
properties of the auctioning mechanism: (a) the prices are
always non-decreasing and (b) the number of matched objects
is always non-decreasing. By design, (a) and (b) can be shown
to hold for the auction algorithm. However, it is not clear if
(a) and (b) are true for min-sum auction. In what follows, we
state the result that prices are eventually non-decreasing in
the min-sum auction algorithm; however it seems difficult to
establish a statement similar to (b) for the min-sum algorithm
as of now.
Theorem 6: If π∗ is unique then in the min-sum auc-

tion II algorithm, prices eventually increase. That is, ∀k ∈
Z+; ∃ T > k s.t. ∀t ≥ T ; pt

j > pk
j , 1 ≤ j ≤ n

Proof: Proof of Theorem (6) is essentially based on (i) the
equivalence between the min-sum auction algorithms I and II,
and (ii) arguments very similar to the ones used in the proof
of Lemma 2 , where we relate prices with the computation
tree.
Our simulations suggests that in the absence of the condition

“m̃k
αij

→βj
≥ m̃k−1

βj→αi
” from step (4) of min-sum auction I,

the algorithm always terminates and finds the MWM as long
as it is unique. This along with Theorem 6 leads us to the
following conjecture.
Conjecture 1: If π∗ is unique then the min-sum auction

I terminates in a finite number of iterations if condition
“m̃k

αij
→βj

≥ m̃k−1
βj→αi

” is removed from step (4).

C. RELATION TO δ-RELAXATION
In the previous section, we established a relation between

the min-sum and auction (with δ = 0) algorithms. In [7], [6]
the author extends the auction algorithm to obtain guaranteed
convergence in a finite number of iterations via a δ-relaxation
for some δ > 0. At termination the δ-relaxed algorithm
produces a triple (r∗, p∗, π∗) such that (a1) π∗ is a matching,
(b1) (r∗, p∗) satisfy (21) and (c1) the following modified
complimentary slackness conditions are satisfied:

r∗i + p∗π∗(i) ≤ wiπ∗(i) + δ. (26)

The conditions (c1) are referred to as δ-CS conditions in [7].
This modification is reflected in the description of the auction
algorithm where we have added δ to each bid in step (2).
We established the relation between min-sum and auction for
δ = 0 in the previous section. Here we make a note that
for every δ > 0, the similar relation holds. To see this, we
consider min-sum auction I and II where the bid computation
is modified as follows: modify step (3) of min-sum auction I
as m̃k

αi→βj
= wij −max$ %=j{wi$ − m̃k−1

β!→αi
}+ δ, and modify

step (2) of min-sum auction II as bαi→βji
= wiji − ui +

δ, and bαi→βj = wij − vi + δ, j #= ji. For these modified
algorithms, we obtain the following result using arguments
very similar to the ones used in Theorem 5.
Theorem 7: For δ > 0, let σ be the matching obtained from

the modified min-sum auction algorithm I (or II). Then, wσ ≥
wπ∗ − nδ (i.e. σ is within nδ of the MWM).

D. IMPLICATIONS
The relation between min-sum and auction resulted in

equivalent algorithms min-sum auction I and II. The further
modification of the min-sum auction I (or II) based on the
δ-relaxation method allows for designing (deterministic) dis-
tributed algorithm that works even in the presence of non-
unique MWM (Theorem 7). This suggests a method for
designing modification of min-sum or max-product for general
optimization problem so as to work in presence of non-unique
solution. Further, the min-sum auction I algorithm by design
is dual unlike the auction being primal-dual. This may be of
interest in optimization methods on its own.

VI. DISCUSSION AND CONCLUSION
In this paper, we proved that the max-product algorithm

converges to the desirable fixed point in the context of finding
the MWM for a bipartite graph, even in the presence of loops.
This result has a twofold impact. First, it will possibly open
avenues for a demystification of the max-product algorithm.
Second, the same approach may provably work for other
combinatorial optimization problems and possibly lead to
better algorithms.
Using the regularity of the structure of the problem, we

managed to simplify the max-product algorithm. In the sim-
plified algorithm each node needs to perform O(n) addition-
subtraction operations in each iteration. Since O(n) iterations
are required in the worst case, for finite w∗ and ε, the algorithm
requiresO(n3) operations at the most. This is comparable with
the best known MWM algorithm. Furthermore, the distributed
nature of the max-product algorithm makes it particularly
suitable for networking applications like switch scheduling
where scalability is a necessary property.
The relation that we established between the auction algo-

rithm and the min-sum algorithm is tantalizing. It suggests
method to design modification of max-product algorithm for
general optimization problem that may work even in the
presence of non-unique solution.
Future work will consist of trying to extend our result to

finding the MWM in a general graph, as our current arguments
do not carry over2. Also, we would like to obtain tighter
bounds on the running time of the algorithm since simulation
studies show that the algorithm runs much faster on average
than the worst case bound obtained in this paper.

ACKNOWLEDGMENT
The authors would like to thank the anonymous referees for

their helpful comments. While working on this paper D. Shah
was supported by NSF CAREER grant CNS-0546590.

REFERENCES
[1] S. M. Aji, G. B. Horn and R. J. McEliece, “On the Convergence of

Iterative Decoding on Graphs with a Single Cycle,” in Proc. IEEE Int.
Symp. Information Theory, 1998, p. 276.

[2] S. M. Aji and R. J. McEliece, “The Generalized Distributive Law,” IEEE
Trans. Inform. Theory, Vol. 46, pp. 325-343, 2000.

2A key fact in the proof of lemma 3 was the property that bipartite graphs
do not have odd cycles.

10

[3] M. Bayati, D. Shah and M. Sharma, “Max Weight Matching via Max
Product Belief Propagation,” IEEE ISIT, 2005.

[4] M. Bayati, D. Shah and M. Sharma, “A simpler max-product maximum
weight matching algorithm and the auction algorithm,” IEEE ISIT, 2006.

[5] M. Bayati, B. Prabhakar, D. Shah and M. Sharma, “Iterative scheduling
algorithm,” IEEE Infocom, 2007.

[6] D. P. Bertsekas, “Auction Algorithms for Network Flow Problems: A
Tutorial Introduction,” Computational Optimization and Applications,
Vol. 1, pp. 7-66, 1992

[7] D. Bertsekas and J. Tsitsiklis, “Parallel and Distributed Computation:
Numerical Methods,” Englewood Cliffs NJ: Prentice Hall, 1989.

[8] R. G. Gallager, “Low Density Parity Check Codes,” Cambridge, MA:
MIT Press, 1963.

[9] J. Edmonds and R. Karp, “Theoretical Improvements in Algorithmic
Efficiency for Network Flow Problems,” Jour. of the ACM, Vol. 19,
pp 248-264, 1972.

[10] B.J. Frey, R. Koetter, “Exact inference using the attenuated max-product
algorithm”, Advanced Mean Field Methods: Theory and Practice, ed.
Manfred Opper and David Saad, MIT Press, 2000.

[11] G. B. Horn, “Iterative Decoding and Pseudocodewords,” Ph.D. disserta-
tion, Department of Electrical Engineering, CalTech, Pasadena, CA, 1999.

[12] S. Lauritzen, “Graphical models,” Oxford University Press, 1996.
[13] E. Lawler, “Combinatorial Optimization: Networks and Matroids”, Holt,

Rinehart and Winston, New York, 1976.
[14] N. McKeown, V. Anantharam and J. Walrand, “Achieving 100 %

Throughput in an Input-Queued Switch,” Infocom, Vol. 1, pp 296-302,
1996.

[15] M. Mezard, G. Parisi and R. Zecchina “Analytic and algorithmic solution
of random satisfiability problems,” Science, 297,812, 2002.

[16] J. Pearl, “Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference,” San Francisco, CA: Morgan Kaufmann, 1988.

[17] T. Richardson and R. Urbanke, “The Capacity of Low-Density Parity
Check Codes under Message-Passing Decoding,” IEEE Trans. Info.
Theory, Vol. 47, pp 599-618, 2001.

[18] M. Wainwright, M. Jordan, “Graphical models, exponential families, and
variational inference,” Dept. of Stat., University of Cal., Berkeley, CA,
Tech. Report, 2003.

[19] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky, ”Tree Consistency
and Bounds on the Performance of the Max–Product Algorithm and its
Generalizations”, Statistics and Computing, 14, 2004.

[20] Y. Weiss, “Correctness of local probability propagation in graphical
models with loops,” Neural Comput., Vol. 12, pp. 1-42, 2000.

[21] Y. Weiss, “Belief propagation and revision in networks with loops,” MIT
AI Lab., Tech. Rep. 1616, 1997.

[22] Y. Weiss and W. Freeman, “Correctness of belief propagation in Gaus-
sian graphical models of arbitrary topology,” Neural Comput., Vol. 13,
Issue 10, pp 2173-2200, 2001.

[23] Y. Weiss and W. T. Freeman, ”On the Optimality of Solutions of the
Max–Product Belief–Propagation Algorithm in Arbitrary Graphs”, IEEE
Trans. Info. Theory, 47: 2, 2001.

[24] J. Yedidia, W. Freeman and Y. Weiss, “Understanding Belief Propagation
and its Generalizations,” Mitsubishi Elect. Res. Lab., TR-2001-22, 2000.

[25] J. Yedidia, W. Freeman and Y. Weiss, “Generalized Belief Propagation,”
Mitsubishi Elect. Res. Lab., TR-2000-26, 2000.

Mohsen Bayati received a BSc and an MSc in mathematics from Sharif
University of Technology in 2000 and from Stanford University in 2003. He
also received a PhD in electrical engineering in 2007 from Stanford University
where his PhD thesis was supervised by Professors Balaji Prabhakar and
Amin Saberi. He is now with the theory group at Microsoft research. His
research interests include applications of combinatorics, probability theory and
statistical physics in designing high performance algorithms for real world
problems. These problems arise in different fields including: combinatorial
optimization, computational biology, network algorithms and coding theory.

