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Signature Methods for the Assignment Problem 
M. L. BALINSKI 

C.N.R.S., Laboratoire d'Econometrie de V'Ecole Polytechnique, Paris 
(Received November 1982; accepted March 1984) 

The "signature" of a dual feasible basis of the assignment problem is an 
n-vector whose ith component is the number of nonbasic activities of type 
(i, j). This paper uses signatures to describe a method for finding optimal 
assignments that terminates in at most (n -1 )(n - 2)/2 pivot steps and takes 
at most O(n3) work. 

"It is a kind of universal signature 
by which nature makes known to us 
the several species of her production." 

J. HARRIS (1775). 

BELIEVE it or not, yet another approach to the assignment problem! 
It is a dual simplex method in the following sense: each step goes 

from one dual feasible basis to a neighboring one. One variant is "purely" 
dual: it pays no attention to the primal problem, or to a "partial" 
assignment, so there is no to-do over "breakthrough" versus "nonbreak- 
through," or primal change versus dual change. Degeneracy is moot. The 
bookkeeping is thus simple, and the method easy to describe. At most 
(n - 1)(n - 2)/2 pivots or basis changes are required to solve the problem. 
It is of geometric although not of practical interest that this is better 
than the best previously known upper bound of n(n + 1)/2 steps, where 
each "step" represents a change either in the primal or the dual variables 
(see, e.g., Balinski and Gomory [1964], Munkres [1957]). The approach 
compares favorably both with Hung's [1983] recent primal simplex 
method for the assignment problem that generates at most n3 In A bases, 
where A is a constant that depends upon the costs, and with Roohy- 
Laleh's [1981] primal simplex method that generates at most 0(n3) bases 
(independent of the costs). 

There is, however, a cost to ignoring the primal problem: prior to its 
termination, the method may encounter a dual feasible basis that already 
admits an optimal assignment. A bit of additional accounting overcomes 
this difficulty. Doing it enables one to see that the method is a dual 
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simplex procedure: the objective of the dual problem is monotone non- 
decreasing. A stickler for detail might argue with this appellation, in that 
the variable that is chosen to enter the basis is not necessarily one that 
has a positive price (note that the dual objective is to be maximized); it 
may have a zero price. However, many variants of signature methods are 
possible, and I would expect that this detail can be overcome. A partic- 
ularly attractive variant uses the fundamental idea inductively, producing 
an optimal solution to the n-person problem from an optimal solution to 
the (n - 1)-person problem (Goldfarb [1983a]). 

The current standard for evaluating an algorithm is a worst case 
analysis of the number of arithmetic operations necessary to obtain a 
solution. For the assignment problem 0(n3) comparisons and additions 
is the best known bound to date (e.g., Edmonds and Karp [1972]). 
Cunningham [1983] and Goldfarb [1983b] have independently pointed 
out to me a trick in counting that shows the signature method is 0(n3). 
It is of interest to note that this is the first instance in which a simplex 
method has been found to be competitive with nonsimplex methods in 
terms of worst case analysis. In addition, the count for this dual simplex 
method compares favorably with the 0(n5) bound of Roohy-Laleh's 
primal simplex method. 

It is also of interest that, for the assignment problem, the "strongly 
feasible bases" of Cunningham [1976, 1979] and the "alternating bases" 
of Barr et al. [1977] are, in my terminology, nothing but bases whose 
signature is always (1, 2, 2, *. . , 2), where the 1 corresponds to the "root." 
Such bases are always primal feasible. Their methods seek a basis that, 
among all the bases having that signature, is dual feasible. Signature 
methods seek, among dual feasible bases, one that has that signature. 
The dual approach is better theoretically, in terms of number of pivots 
and worst case work (in the present state of knowledge), but as a matter 
of practical computational competitivity nothing definitive is yet known. 
The simplicity of the geometry of the dual polyhedron in comparison 
with that of the primal polyhedron (Balinski [1984], Balinski and Rus- 
sakoff [1984]) leads one to hope that the dual approach may prove to be 
good in practice as well. Signatures are the key to establishing these 
properties (Balinski [1983]). 

Signature methods-despite this technical introduction-can be ex- 
plained and shown to work without recourse to duality, extreme points, 
and all that, so I will argue from first principles, and give a simple, self- 
contained account. 

1. SETTING THE STAGE 

An assignment problem is specified by an n by n matrix c = (cij): find 
a permutation of the column indices a that minimizes Ei ci1). Call the 
set of row indices R and the set of column indices C. 
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LEMMA 1. of solves c = (cij) if and only if it solves c' = (csy), c , = cij -u 
- vj for any choice of u = (ui), i E R, and v = (vj), j E C. 

Proof. Exactly one entry from each row and each column of the matrix 
must be chosen. Therefore, this transformation does not change the 
relative contributions of entries: it changes only the quantity to be 
minimized by the constant Ji ui + >. vj. 

Consider the following model. Let the set of n nodes R represent the 
rows of the matrix, the set of n nodes C represent the columns, and let 
T be any spanning tree of edges (i, j), i E R, j E C (Figure 1). T must 
contain exactly 2n - 1 edges. Given any T, unique values of ui and vj 
that solve the equations ui + vj = cij for (i, j) E T may be computed as 
follows: 

(i) Set u1 = 0; 
(ii) If (i, j) E T and i has value ui, deflne vj = cij - ui; 

if (i, j) E T and j has value vj, define ui = cij-vj. 

U U2 U3 U4 U5 

V1 V2 V3 V4 V5 

Figure 1. Spanning tree T. 

If, in addition, ui + vj cij for (i, j) 4 T, then u, v and its T = T(u, v) 
is said to be feasible. From now on, every mention of "tree" means 
"feasible spanning tree." 

THEOREM 1. If T(u, v) is a tree with some one row node i* of degree 1 
and the remaining rows of degree 2, then the permutation a- defined as 
follows solves the assignment problem: 

a0(*) = for (i*, j) E T(u, v) 

(i) = j, i $ i*, for (i, j) E T(u, v) the unique edge incident 
to i not on the path joining i to i*. 

Proof. v (i) : ar(h), for otherwise T(u, v) would contain a cycle; so a- is 
a permutation. a solves the problem c' = (cf;), c$ = - i - vj ?> 0 
because relative to c' its cost is 0, whereas any permutation has a 
nonnegative total cost relative to c'. But by the lemma, this means a- 
solves c as well. 

The signature of a tree T is the vector of its row node degrees 
a = (a,, * - *, an), ,i ai = 2n - 1, ai > 1. The method seeks a tree whose 
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signature contains exactly one 1 and otherwise 2's. It iterates from one 
tree T to another "neighboring" tree T', obtained by pivoting on an edge 
(k, 1) E T (Figure 2): Given (k, 1) E T(u, v), both k and 1 having degree 
at least 2, drop (k, 1). This cuts T into two distinct components: Tk, 
which contains k E R, and T', which contains 1 E C. Let 

6 = mincij -ui - vj; i E T, j E Tk} > , 
and (g, h) be some pair at which the minimum is achieved. Define 

T' = Tk U T U (g, h) ((g, h) is the "incoming" edge) and, 

ui' = uj + b, i E T, ui' =ui otherwise, 

vj' = vj - 6, j ECT, v;' = vj otherwise. 

a 2 0 because T is feasible; and the choice of a guarantees that T' is 
feasible as well. The signature a' of T' is the same as that of T except 
that ak' =ak -1 and ag' =ag + 1. 

T: a=(3,2,1 ,1,2) T: a= (3,1,1,1,3) 

k g 

h 

k g 

h / 

Tk TV 

Figure 2. Pivoting from T to T'. 

2. THE PURELY DUAL METHOD 

Assume that every assignment i E R to j E C is admissable. If this is 
not the case (i.e., if there is "sparsity"), then for the purposes of this 
exposition make any inadmissible assignment admissable, but at a pro- 
hibitive cost M. (The algorithm can be modified to treat sparse networks 
more efficiently.) 

The method is entirely guided by the signatures. It begins at "level 
n - 1" and ends when "level 1" is reached. A tree is in level k if its 
signature has exactly k l's. 

The initial tree T(u, v) has signature (n, 1, * I*, 1). It is 

ul = O; vj = clj, j E C and (1, j) E T for every j E C; 
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and 
ui = minj(cij-clj), 1 i E R and (i, j) E T for one j 

that gives the minimum. 

The first level k tree T encountered has (by construction) the form 
(k + 1, 2, *..., 2, 1, *..., 1): the source row node s has degree k + 1, some 
k row nodes have degree 1, and the remaining n - k - 1 row nodes have 
degree 2 (Figure 3). Single out some row node of degree 1 and designate 
it as the target t for level k. Pivot on the edge (s, 1) of the path joining 
the source s to the target t. Call Q the set of row nodes of the component 
of T (s, 1) that contains t, and T' the new tree: s 4 Q and the degree 
of some node s' E Q is increased by 1. If (i) s' was of degree 1 in T, level 

S~~~~~~~~~~~~~S 

\t P 
P p 

SI' 

pI,, 

Figure 3. First three level 2 trees. (Source nodes s, target t, broken 
edges = incoming edges.) One more pivot terminates the procedure. 

k - 1 has been reached. If (ii) s' was of degree 2 in T, take s' as the 
source in T' and repeat, pivoting on (s', I') of the path joining s' to t. 
Call Q' the set of row nodes of the component T' (s', 1') that contains 
t, and T" the new tree. Q' C Q and s' 4 Q'. Therefore, case (ii) can 
occur at most n - k - 1 times before a case (i) occurs, so the method 
encounters at most n - k level k trees. Another way of giving the argument 
is by studying the changes in P, the set of column nodes of the component 
of the tree that does not contain the target t. P must grow at each step 
until the incoming edge encounters a row node of degree 1. 

THEOREM 2. The method terminates in at most (n - 1)(n - 2)/2 steps. 

Proof. The method encounters at most 1 level n - 1 tree; at most 2 
level n - 2 trees; ... ; at most n - 2 level 2 trees. 

The obvious way of obtaining a worst case count is to notice that each 
pivot step involves at most 0(n2) operations, since at most n2 compari- 
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sons are needed to find the value of 3. This count yields 0(n4) for the 
method. The much less obvious way pointed out to me by Cunningham 
[1983] and Goldfarb [1983b] is to notice that at most n2 comparisons are 
needed to compute the b's for all of the pivots of any one level. To see 
this, suppose a pivot with change a ? 0 is made from one tree to another 
within a level, with (u, v) transformed to (u', v'). Let Q be the set of 
row nodes of the component (with pivot edge removed) containing the 
target t in the first tree and Q' the corresponding set at the next tree, P 
the set of column nodes of the component not containing t in the first 
tree, and P' the corresponding set at the next tree. By construction, Q' 
C Q and P c P'. Since ui' = ui + a for every i E Q', an edge at which 
minlcij - ui'; j E PI is achieved does not change, and the value of the 
minimum is decreased by 6 for every i E Q'. The name of the column j 
E P at which the minimum is achieved and its value can therefore be 
stored "at" the node i E Q' and the only extra comparisons that are 
necessary to find the new minima for i E Q' over all of P' is to compute 
minIcij - uj'; i E Q') for each i E P' P. This can of course result in 
replacing a name and value at some i E Q'. But it means that column 
node j needs to be "scanned" only once within a level, and, therefore, at 
most n2 comparisons are necessary per level. Since there are at most n 
- 1 levels, this count yields 0(n3). 

THEOREM 3. The method requires at most 0(n3) comparisons and addi- 
tions. 

Variants of this simple method can be given. For instance, some 
different initial tree might be at hand (due, for example, to sparsity). 
Suppose the signature is level k. If k = 1, it is a solution. If k > 1, choose 
any row node i with degree greater than 2 as the source, any node of 
degree 1 as target, and apply the method without changing the target 
node until a tree of level k - 1 obtains. This transition to a new level 
must happen in at most n - k steps, and so, in at most En-2 (n -j) 
steps, a solution is found. 

Example 

Set ul = 0, v = (14, 18, 15, 10, 10) and compute ui = minj(cij - vj) 
giving: u = (0, -2, -2, -8, -3). 

14 18 15 10 10 
18 17 15 8 8 

c= 16 16 24 25 12 
19 10 8 14 11 
22 15 28 24 12 
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In Figure 4, the values of u, v are attached to each node. (i, j) E T 
implies ui + vj = cij. The source node is indicated by a circle, the target 
node by a triangle. The pivot edge (k, 1) is distinguished by being crossed 
by two lines. The ?6's single out the subtree T' whose u's and v's are 
changed in pivoting. The dashed line is the new incoming edge. In the 
final optimal tree, the heavy lines single out an optimal assignment. 

This problem required 4 pivots; the upper bound is 6. One could, of 
course, use column signatures instead of row signatures. In this case, the 
initial column signature is (1, 4, 1, 2, 1); consequently, at most 5 steps 
are necessary to terminate, using the column signatures as the guide. 

0 -2 -2+b -8+8 -3+8 0 -2 -1+8 -7+8 -2+8 

T1 T2 

14 18-s 15 10 10 14 781- 01 

0 -2 2+8 -4+8 1+8 0 -2 2 -4+8 1+8 

T3 T4 

14-t 14-s 12-s 10 10 14 14-S 12-s 10 10 

0 -2 2 -3 2 

T5 

14 13 11 10 10 

Figure 4. Successive trees of the algorithm for the example. 

3. ADJOINING PRIMAL ACCOUNTING 

To adjoin primal information to the dual solutions determined by the 
method, describe the possible permutations in the form: 

P= {x; Eixij= 1, Exij = 1, xij- 0 integeri E R,j E C}. 

Any x E P defines a permutation a by the following rule: xij = 1 implies 
u(i) =i. 

Let P denote P without the constraints xij ? 0. A tree T determines a 
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unique solution to {x EE P; xij = 0 for (i, j) 4 TI that can be found 
recursively. To each T of the purely dual method, adjoin its associated 
x. If x>- 0, it is an optimal assignment. 

Suppose x is associated with T and a pivot is made on (k, 1) to obtain 
T' with incoming edge (g, h). T U (g, h) determines a unique cycle that 
includes (k, 1) and (g, h). If (k, 1) is called odd, the next edge of the cycle 
even, and so forth, then (g, h) is odd. x' associated with T' is 

X '> = Xi- Xkl for (i, j) in the cycle and odd; 

x= Xi + Xkl for (i, j) in the cycle and even; and 

Xj =xij otherwise. 

Every pivot edge (k, 1) of the algorithm is chosen so that the row nodes 
of the component T' of T - (k, 1) that contains 1 all have degree 1 or 2. 
Any algorithm that adheres to this choice (which depends entirely on the 
signatures) pivots on an edge (k, 1) with associated Xkl C 0. For, suppose 
T' has n1 - 1 nodes of degree 1 and n2 of degree 2. Then it has n1 + n2 

T 3 

Figure 5. Optimal tree for the example. 

row nodes, n1 + 2n2 edges and so n2 + 1 column nodes. Now, if Xkl > 1- 

contrary to what is asserted-then, 

ni + n2 = x Xij; (i,j) GE Tl n2 

The equation comes from summing the xij over the row nodes, the 
inequality from summing them over the column nodes. But this outcome 
contradicts n1 2 1, and shows that every pivot is a dual simplex method 
choice (admittedly of a special kind): the "activity" (k, 1) that leaves the 
dual basis has a nonpositive value Xkl C 0. 

The example in Figure 4 is solved in only two steps when the method 
incorporates primal accounting. Tree T3 contains an optimal solution 
(see Figure 5, where heavy edges denote xij = 1; otherwise xij = 0) even 
though neither the row nor the column signature is of the sought-for 
form. 

An alternative to doing the x-bookkeeping at each step is to check 
only the first level k tree for each k. Suppose T has signature (k + 1, 2, 
* **, 2, 1, - *, 1), with node s of degree k + 1 and associated x. If xjL- 0 
for all j, then x is optimal. For, let (s, h) be any edge with Xsh = 0 and 
consider the component Th of T - (s, h) that contains h. Each of the 
row nodes of Th has degree 1 or 2. By analysis similar to that in the 
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preceding paragraph, one can conclude that Th has exactly one node of 
degree 1. Lemma 1 then shows all x's of Th must be O's and l's. 

THEOREM 4. (n - 1)(n - 2)/2 is the best possible bound. 

Proof. There is at least one assignment problem c = (cij) for which the 
algorithm, beginning at a level n - 1 tree, necessarily takes this number 
of pivot steps before finding a tree that admits an assignment: namely, 
cij = (m - i)(j - 1). For, in this case, if i < h and j < k, it is impossible 
for both (i, k) and (h, j) to be in a tree T (Figure 6). If both did belong, 
then ui + Vk = (m - i)(k - 1) and Uh + vj = (m - h)(j - 1), and also ui + 
vj < (m - i)(j - 1) and Uh + Vk C (m - h)(k - 1). Therefore, 

(m - i)(k - 1) + (m - h)(j - 1) ' (m - i)(j - 1) + (m - h)(k - 1), 

U. 

vj Vk 

Figure 6. A "crossing" (i < h, j < k). 

U1 U2 U3 U4 u5 

V1 V2 V3 V4 V5 

Figure 7. A "no crossing" tree. 

a contradiction. It follows that the trees for this problem are only those 
that have "no crossings" (Figure 7). Therefore, each pivot from a tree 
with signature a to one with signature a' is an "adjacent transfer": ak' = 

ak -1 implies either a'+, = ak+1 + 1 or aL, = ak-i + 1. The tree "closest" 
to (n, 1, 1, *.., 1) that admits an assignment is (2, 2, *.., 2, 1). Its 
distance is (n - 1)(n - 2)/2, since this many adjacent transfers are 
necessary. Any nearer tree does not admit an assignment: T having 
signature a with a, - 3 does not; a1 = = ak = 2 and ak+1 > 3 does not. 

4. REMARKS 

The idea for this approach via signatures came from work on dual 
transportation polyhedra: 

Dm,n(c) = {u v; ui + vj < c,i ul = O}. 

Signatures-here m partitions (or n partitions) of m + n - 1-uniquely 
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characterize the feasible bases of nondegenerate Dm,n (c). This fact im- 
mediately implies that any Dm,n(c) has at most (m+n-2) extreme points; 
less directly, it implies that all nondegenerate Dmn(c) have exactly the 
same number of faces of all dimensions (Balinski and Russakoff). 

Every problem c has at least n trees T that admit an optimal assign- 
ment, one for each possible level 1 tree. The following three problems 
each have six trees in all. All six trees of c1 admit optimal assignments; 
four of c2 do; and three of c3. It seems that almost anything can happen. 

3 3 6 3 3 6 3 4 4 
c'= 4 1 6 c2= 3 2 4 c3= 3 2 5 

4 2 3 4 2 3 4 2 3 

The signature approach may also be used to show that the Hirsch 
conjecture is true for any Dm,n(c). That is, the diameter of the graph 
consisting of the extreme points and edges of the unbounded polyhedron 
Dm,n(C) is at most (m - 1)(n - 1) (Balinski [1984]). 
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