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1. Introduction

The problem of finding a weighted matching in a graph has
been efficiently solved by Edmonds [7] - [9] and the resulting
algorithm is considered to be one of the most elegant computat-
ions in the field of combinatorial optimizatien. The currently
best implementations of Gabow [l and Lawler. {13 require O(n3) operations.
Why then would one be interested in heuristic solutions to this
problem? There are two main answers to this question. Firstly,
the weighted matching algorithm has been used as a subroutine in -
heuristics for the travelling salesman problem. See, for example
[2] and [5]. . These heuristics typically rum in 0(n2) time except
for the matching subroutine which degrades the computation to
0(n3)'time. Since we are obtaining an approximate solutiom to
the original problem in any event, a good heuristic solution to
.the matching problem obtained in 0(n2) time may be preferable.
This will allow many heuristic solutions to the original problem
to be tried for the same cost as the one heuristic selution using
the optimum mafching-algorithm.

A second reason for studying heuristics for this problem is
motivated by the following comment of Bradley [4]. He notes that
he knows of no commercial uses of the optimum matching algorithms
in the solution of various routing problems, although there are
many indications that heuristics are used [3]1, 4, [5. In this
case, the inherent programming complexity of the optimum
algorithms coupled with the general inaccessibilityof  commercial
codes is probably the cause.

In this paper we examine two greedy heuristics with running
times of O(nz) and'O(n2 log n) for the solution of the weighted
matching problem in complete graphs. Section 2 contains the
necessary definitions, a.description of the heuristics and an
analysis of their running times. Section 3 contains an analysis
of the average behaviour of the solutions obtained. Bounds on
the weight of the expected solution are given for very general

distributions for the O(nz) heuristic and exact values are
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obtained for the uniform and exponential distributions. The

O(n2 log n) heuristic is more complicated and bounds are present—
ed for the expected weight of a solution under the assumption of
uniform distribution of edge weights. Section 4 contains an
analysis of the worst case performance of the heuristics. A
modification is introduced to improve the performance of the
O(nz) heuristic. Under the assumption of non-negative edge
weights, it is shown that the worst case bounds on the 0(n2 log
n) heuristic are far superior for the maximization problem than

for the minimization problem.

2. The Heuristics

Let m = (3?) and let K, be the complete graph on 2n vertices

with noq—negative weights aig assigned to each of the m edges.

A set of edges is called a perfect matching in the graph if no
two edges share a common vertex. In this paper we will often
omit the adjective perfect. The problem is to find a matching of
either minimum or maximum weight. Since the applications dis-
cussed in section 1 require a minimum weight matching, we will
state the heuristics for this case. Obvious modifications will
convert them for the maximization problem. We now state two
heuristics for finding a minimum weight matching in X
Greedy I

Select a node i at random from the graph. Choose the edge (i,j)

2n°

of minimum weight adjacent to i and add it to the matching.
Deleté nodes i and j and all adjacent edges. Repeat until all
nodes have been matched.
Greedy II
Select the edge (i,j) of minimum weight from the graph and add it
to the matching. Delete nodes i and j and all adjacent edges.
Repeat until all nodes have been matched.

Greedy I can easily be implemeﬁted to run in O(nz) time.
The naive implementation of Greedy II requires 0(n3) time, which

can be reduced to 0(n2 log n) by first sorting all the edges.
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3. Analysis of the Average Performance

In this section we analyse the quality of the solutions
obtained by the heuristics when applied to graphs with random edge
weights. Indeed let F denote the distribution function of the

edge weights and let X X2, e Xm denote independent random

1,
variables each with distribution F and corresponding to a edge
weight in K2n' Let X(l), .:. R X(m).denote the order statistics,
so that

X(l) < X(Z) € ... %, X(m) -

Finally let Fm be the distribution function of X and let Gm be

(1)

the distribution function of X The reader wishing more

(m)”
information on this subject is referred to the excellent book by
David [6].

We note the following basic relations:

Fm(x)

P{smallest edge weight < %} = 1 - (l—F(x))m

P{largest edge weight £ x} = (F(x))™ .

il

G (x)

Let A2n be the random variable whose values are the weights
of matchings produced by Greedy I on R,n» vhen the edge weights
are chosen independently with distribution function F. Let B

2n
be the corresponding random variable for the maximization problem.

Theorem 3.1 E(AZn) = i£1-£» x F2i_l(dx) (1)
n % ,
E(an) = iél _fm x G2i_1(dx) . (2)

Proof: -We consider the minimization problem, the maximization.
problem is similar.  Greedy I picks a node at random and selects
the minimum weight adjacant edge. This weight has distribution

at iteration 1 and F in general at iteratiom i,

Fon-1 2n-23+1 7
since two edges are deleted from each unmatched node at each
iteration. The formula 1 follows. a
We consider two special cases: when the edge weights are
chosen according to uniform and exponential distributions. The

. . . . . th
harmonic series will be used in the analysis, the n term of

which is given by
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I R 1
Hn =1 + 5 + 3 + ... + a "

The approximate size of Hn is given by (See Knuth [|3a])

1
Hn—znn+y+0(n)
where v = .57721 ... is Fuler's constant.

Corollary 3.1 If F(x) = x , for 0<x<l , then E(A )

(2 D+Y+O(—),andE(B )=n—E(A )

Proof: A routine calculation shows that

1 1

1 _ k
é x Fk(dx) = bl and i x Gk(dx) = T
o, Do _ Hy
Hence E(Ay) = &y 21 =72 -
' _ (2i-1) _ 1
By = 481 215 =~ ¥ 95 " n - EGAy)

Corollary 3.2 1If F(x) =1 - e © , then

1, .1 3y 1
2n-1 2 Hn =3 n n + + %n 2 + 0(n)

E(AZn) = H 2

) n
EByn) = g2y a5

Proof: A simple calculation shows that

_xk-

kx )

Fk(x) =1-e . Gk(x) =(1-¢e
and hence

2 _1 1
6 x Fk(dx) =% Z Gk dx 11 Hk .

b
1l

Thus, applying theorem 3.1,
n

= n[n(2n-1) + vy -1] + 0(&n n)

S S 1 - _1y 1 LAY 1
E(Ayn) = 3E 2507 = Hypeq — 3 By g =20(20-1) - 5 tn n+3340()
=1 Y 1
=3 fn n + 35 + on 2 + 0(n) .
_ 2 _1 Hy1
EByn) = 3y Byyp =3 (o) Hy, - 2wt - %

n {¢n (2n~1) + y -1) + 0(&n n) .

The analysis for Greedy IT is more complicated.

This is

due to the fact that after each edge is chosen for the matching,

the distribution of the remaining edge weights changes. We will

restrict ourselves to a uniform distribution of edge weights.
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Let Czﬁ be the random variable whose values are the weights of

matchings produced by Greedy.II on K 0’ when the edge weights

2
are chosen independently with distribution F.

Theorem 3.2 If F(x) = x, for x in the range 0<x<1 , then

1nn- l—f E(C

-
A i ) <54 (a#l) + 1.

2t+2

We begin with two combinatorial lemmas. Consider the

sequence defined by (b .+ Da
— n‘ n

N TR B

2n
where b0 = 0 and a =, .
4k+1

e

Lemma 3.1  For every integer k, if n > then bn < n-k .

Proof: TFirst observe that if for some L bn < ny - k , then

bn < n-k for all n >n Indeed, in this case

0 -
bn “ < (no - k1) (1+an) - (no—k+l) < (no+1) -k .
0 1+a
n
4k+1 , .
Now suppose that bn >n~k for 1 <n<e . Then for n in this
range
b, =b_ +1- .Y b+ 1 -k
nt+l n 1-+an n 1+ (nt+1) (2nt+l)
Iterating,
D 4kl 1 1 n g
b <ol -Gk Sy M T3 g8 er TaEr 2
(i+1)
< atl —-% (n n -1) + k(1 - %? <n-k
. Gkl
forn= e . O

Lemma 3.2 For every integer n = 1,2,....

1
bn+1 >n - 2 n n.

Proof: From the definition of bn »

b, /7 21-54nl.

Proceeding inductively,
n - 1/2 fnn+ 1l

(n+2) (2n+3) + 1

1
bn+2 > n - 2 fnn+1-

1
1 ) +‘f fnn+1
ntl (0n+2) (2n+3)+1

Z

(nt1) —-% (¢n n +
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> (oH1) --% tn (okl) . =)

Proof of theorem. Let on(y)‘be a function defined for y in the
range [0,1] whose value is the expected weight of the matching

found by Greedy II on K n when the edge weights are chosen

2
independently and uniformly in the range [y, 1]. Thus E(CZn) =
f2n(0)' A simple computation shows that the density function g

for the minimum of a independent and uniformly distributed random
a(l—-x)a—1
(1-y)#

0 .
At iteration one, Greedy II picks the minimum of ( ;) random

variables on fy,l] is given by g(x) = , when 0gy<l .

variables uniformly distributed on [0,1]. Suppose that this edge
has weight x. Then the remaining edge weights are uniformly and
independently distributed on [x,1]. Those considerations lead to

the recursion:
—an 1 an—l
£, 42 = (I-¥) § [x+ £, )]a (1-x) dx , O<y<l
n=20,1,2,...
n+2

wﬁere fo(y) = 0 and a =( 2 )

We are interested in determining tight bounds for f2n+2(y).
To this end we begin by showing that, for suitable constants bn

and c, >
fzn(y) = bn y + c, - (3)

Indeed, assume inductively that (2) holds. We note that the mean
of the distribution given by g(x) is
1 - y)_a fl X a (1—x)a_-1 dx =1+ ay .
y 1+a
Hence,

a1 an_l
f2n+2(y) = (1-y) § (cn+(bn+l)X) a, (1-x) dx

<, + (bn+l) 1+ ay

1+ a *
b s (bn+l)an and o = (arl + 1) c, + bn + 1
n i1+ a b 1+a ‘
n n
Observe that bn+1 + cn+1 = bn + cn +1=...=n+1+ bo + S

i

n+1.
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This can also be seen by noting that bn + c, = on(l)’ which is
just the expected size of a @atching given all edges have weight
one, which is obviously n .

Therefore we obtain the formula

Cntl ntl - (bn+1)an
1+a :
n
. . . 4kt
Applying lemma 3.1, for any integer k, setting n = e
yields:
(n_k+1)an n-k+l _ fn4 1
f2n+2 (0 = Cn+l>n+1— —]'_q?a—l-n—:k-*-l-i—an z 4 " &
For the upper bound, we employ lemma 3.2 to obtain:
7 (n - 1/2 tgn{n-1)a
f (0) = ¢ < (nt+l) - n
n
‘ 1, . n+1/2 ¢n (n-1) _ 1 1
<1+ 2 2n’ (o 1)7+ 1+ a <1+ 5 2n (n-1) + 5
1 .
<1 +—2' n (ntl) .

4. Worst Case Analysis

Ideally, a good heuristic will produce solutioms that are
guaranteed to be within a constant factor of the optimum
solution. TFor the weighted matching problem, however, this is
likely to be a difficult task. Indeed, such a heuristic would
have to solve the unweighted perfect matching problem for graphs.
Here one is given an arbitrary graph G on 2n nodes and is asked
te find a perfect matching. We can convert this problem into a .
weighted matching problem by embedding G into~K2n by assigning
weights of one to edges of G and some large positive constant M
to the other edges. Now unless the heuristic finds the perfect
matching, the weight of the solution found will be at least M/n
times greater than the optimal solution. Actually both heuristics
can find a "pessimum", or worst possible solution, as figure 4.1
shows.

- We now give a modification to Greedy I to guarantee a
solution that in worst case is not much more than the average

weight of a matching. By the latter we mean the average weight
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of the set of all perfect matchings. Ianzn » this is easily seen

to be n times the average edge weight.

Largest Node Sum Rule

1. For each node i, compute the sum w, of the weights of all

i
adjacent edges.

2. Scan the nodes in order of decreasing node sum.
The idea is to try to locate at an early stage, nodes that

are adjacent to heavily weighted edges, to reduce the possibility
*

of having to use these edges at later iterations. Let A2n denote

the weight of the matching found by Greedy I using the largest

node sum rule, when applied to K, with edge weights aij . Let a

2n
be the average edge weight, so that na is the average weight of a

matching.
Theorem 4.1
* — 1 -

AZn < 2na (H2n—l - E-Hn_l) = pa (n n + 37‘+ 2%n 2) + 0(@) .
Proof: Assume that the nodes have been numbered so that wl > Wé
> iee 2 Wzn . Then, Y

* n i
A on = 481 mooidl (4
th

since the i™" node picked can have node sum at most LA and
Greedy I picks the minimum weight of the 2n - 2i + 1 adjacent

edges. For a given average edge weight @ , the right hand side

of (4) is maximized when Wy T W, = ... =w o= (2n - 1) 3 and
Vbl T Ynd2 Tt T Yo, = 0 -
Therefore we obtain
% n
A I < 2na (H 1y ),

on Y1 3812101 2n-1 ~ 2 Pp-1

and the theorem follows. V " _ 0

It is clear that the largest node sum rule can be implement-
ed in O(nzj operations.

We conclude this section with the somewhat surprising
observation that Greedy II has a reasonably good worst case bound
for the problem of finding a maximen weight matching in Koo with
non-negative edge weights. Let M, be the weight of the matching

2n
*
found by Greedy IT and let M 0 be the weight of the optimal

2
solution.
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==== - Greedy Sclutiom

| - Optimal Solutiom

Figure 4.1

=== - Possible Greedy II Solution

M4=1
* =
Mz 2

Figure 4.2
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1%
an 22 Moy -

Proof: Let x be the weight of the first edgé (i,j) that is sel- .

Theorem 4.2 M

ected by Greedy II, so that x is in fact an edge of maximum weight
in K2n - Now when (i,3j) and all incident edges are deleted, at
most two edges of the optimal matching may be removed. Further,
the sum of their weights cannot exceed 2x. The other n-2 or more
edges of the optimal matching are candidates for selection at the
next iteration of Greedy II. The argument may be repeated for
each of the first ™/2 iterations of Greedy II. Since all edge
weights are non-negative, the theorem is proved. a
The assymmetry introduced by the assumption of non-negative
edge weights makes the bound possible for maximization problem,
whereas we have seen that no such bound exists for the minimiz-

1 _*
M 4 *

ation problem. Figure 4.2 shows an example of when M, = 2

5. Conclusions and Extensions

This work was motivated by the need to find a "good" match-
ing in a weighted graph in 0(n2) operations. Selim Akl [2] points
out that local improvement of a matching is possible within this
time bound. He calls a matching 2-optimal if for every two match-
ing edges (i,3j) and (k,2) ,

ij 38 ° %ig + ajk) )

+ < mi ., + a,
a;, +a, < min (a1k a
This is the matching equivalent of a similar notion that has been
used in heuristics for the travelling salesman problem for some

time. See, for example, Lin [17].

If two edges do not satisfy this condition, the appropriate
interchange is made. 2-optimality may be tested in O(nz) oper-
ations and may be implemented -as a second .'phase'’ .on- the matching.
obtained by a greedy heuristic.

Empirical studies of how these procedures work as subroutines
for travelling salesman heuristics is currently being conducted.

These results will be reported in [2].
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In conclusion, we mention a very interesting paper of
Angluin and Valiant [16]. 1In it they describe and analyze a
heuristic for finding a perfect matching in an arbitrary unweight- .
ed graph. This heuristic runs with probability tending to one in
0{(n log n) time on a random graph and finds a solution with
probability 1 - O(n*a), where o is a positiverconstant. This
analysis is based on the theory of matchings in random graphs
developed by Erdls and Renyi [10]. The heuristic is not based on

 the "greedy" principle, but rather builds up a matching using.a
random selection procedure and a form of local search to improve

on the partial matchings.
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