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Abstract-It is shown how the classical mathematical theory of sphere packing can be used to obtain 
bounds for a greedy heuristic for the bounded euclidean matching problem. In the case of 2 dimensions, 
bounds are obtained directly. For higher dimensions, an appeal is made to known bounds for the sphere 
packing problem that have appeared in the mathematical literature. 

1. INTRODUCTION 
The Euclidean matching problem may be stated as follows: given n points in Euclidean space, 
find a minimum weight perfect matching, where the weights are given by the Euclidean 
distances between the points. For convenience, we assume it is even throughout the paper. We 
will consider the problem where the points are constrained to lie in some bounded region, which 
we will assume to be the unit hypercube. This special case occurs in two dimensions as a 
graphics problem[l], and in both 2 and 3 dimensions as a subproblem in Christofides’ heuristic 
for the travelling salesman problem[2]. Although there exist 0(n3) implementations of Edmonds’ 
optimal algorithm (see, e.g. [3]), we will analyze a faster GREEDY heuristic. The most obvious 
such heuristic is to repeatedly match the closest two unmatched vertices, resolving ties in an 
arbitrary fashion. This heuristic can be implemented in O(n* log n) time by computing all 
interpoint distances and by sorting these into increasing order. There are various methods of 
ensuring an expected running time of 0(n2) under very weak assumptions (see, e.g. [4]). 

Let GRE and OPT represent respectively the weight of the greedy and optimal solutions of 
an instance of the planar Euclidean matching problem. Reingold and Tarjan[l] have analyzed 
the worst case behaviour of this heuristic and have shown that, in worst case 

GRE=!nlW*1.5_1* 
OPT 3 

This case occurs when all the points lie on a straight line. In the situation where the points are 
known to lie in a bounded region, this example has the property that, as n gets large, OPT+0 
and GRE+constant. This leaves open the possibility that GREEDY may not perform too 
poorly in bounded regions. This is the topic that is addressed in this paper. 

In Section 2 we investigate the two dimensional problem. We obtain absolute worst case 
bounds on the behaviour of GREEDY in the unit square. These absolute bounds are of 
particular relevance to both of the applications mentioned above. The results obtained in this 
section are obtained directly, but may also be deduced from known results on packing circles 
into the unit square. This relationship is made precise in Section 3, where we use known sphere 
packing results to obtain bounds in all dimensions. The techniques illustrated appear to be 
useful in obtaining similar results for other geometric optimization problems. 

Analysis of matching heuristics has received attention in several recent papers. In [5], 
variants of the GREEDY heuristic are analyzed for the non-Euclidean case. Papadamitriou[6] 
has given a probabilistic analysis of the so-called “strip” method for the planar matching 
problem. See also Steele[7]. The most comprehensive analysis of heuristics for matching has 
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recently been performed by Supowit, Plaisted and Reingold[8]. Among their many results are a 
heuristic with a constant bound on the ratio GRElOPT and several O(n log n) heuristics for the 
bounded planar case. 

2,ANALYSISOFGREEDYINTHEUNITSQUARE 

Suppose that n points are placed in the unit square. It is clear that there must be an upper 
bound on the distance d, between the closest pair of points, and hence on the weight of the first 
edge selected by GREEDY. We begin by deducing such an upper bound. 

A planar tn’angulation T of the set of points is a maximal set of edges between the points 
such that no two edges intersect at an interior point. T contains one unbounded face, the other 
faces are all triangles. We first show how the number of triangles in T is dependent on the 
number of extreme points on the convex hull of the set of points. 
LEMMA 1 

Every triangulation T with K points on the convex hull contains 2n - K - 1 triangles. 
Proof. Let V, E and F denote respectively the number of vertices, edges and faces of T. 

We include the unbounded face in F. Since T is a planar graph, Euler’s formula holds: 

V-EtF=2. (1) 

We count the pairs (e, f) where e is an edge of T and f is a triangular face. Every such face has 
3 edges so there are 3(F - 1) such pairs. On the other hand, each edge appears in two triangular 
faces, except for the K edges on the convex hull, which appear in only one face. Hence 

3(F- 1)=2E-K. (2) 

Combining (1) and (2) gives the required result. 
We may now obtain a bound on d,,. 

LEMMA 2 

d” +-&to(‘). 
n 

Proof. We first obtain two upper bounds on d, that depend on K. The first bound is: 

(3) 

where K is the number of points on the convex hull of the set of n points. This bound follows 
from the fact that the convex hull consists of K line segments, whose total length is at most 4 
because the convex hull lies in the unit square. The second bound is: 

4 
d,’ 5 v3(2n - K - 1)’ (4) 

This bound is obtained by taking a planar triangulation T of the points. By Lemma 1 this 
contains 2n - K - 1 triangles. Each triangle has all sides of length at least d,, and hence has 
area at least d,*v3/4. The triangles are non overlapping and fit into the unit square, hence 

(2n-K-1)tid,,% 
4 ’ 

and (4) follows. We equate the two r.h.s. of (3) and (4) to get a uniform bound independent of 
K. Setting 

16 4 
?@ = d3(2n - K - 1)’ 
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and solving for K in the resulting quadratic equation gives 
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K = - 4\/3 k V’ 148 + 322/3(n - 1)l = 2,,,(2t/3),, h + o(1) 
2 

The Lemma now follows upon substitution for K in (3). 
Since Lemma 2 gives us a worst case bound on d,, we may use it repeatedly to get a bound 

on GRE. 

THEOREM 1 

v2 GREsBVn+O(logn), V3 Q = 1.074.. , 

Proof. Using Lemma 2 and setting m = n/2 we obtain: 

5 
I 
,m d~f3x) t O(log m) 5 $j v’m + O(log m), 

thus the theorem follows. 
We now turn attention to constructing a bad example for GREEDY in the unit square. 

Consider the set of points in the plane defined by: 

L = {(x, y)l(x, y) = (2i, 0) + (j, q3j), for all integers i and j}. 

L is a lattice and is known to give the densest packing of the plane by unit circles (see [9]). We 
consider sublattices L, of L that are rectangular and contain 22n+’ points of L. We define L,, 
by: 

These lattices are illustrated in Fig. 1. It may be verified that L, does contain 22n+’ points of L. 
It may also be verified that L is the lattice corresponding to a tesselation of the plane with 
equilateral triangles of side length 2. Thus each point has 6 nearest neighbours and the 
operation of GREEDY on this example is ambiguous. For n 2 2, it is easily seen that L, may be 
decomposed into 2*“-* disjoint copies of the lattice L1. We suppose that GREEDY chooses the 
edges (2,0), (3, d3); (0,2V3), (1, d3); and (1,3t3), (3,3d3) of L,, as shown in Fig. 2. Further, 
we assume that GREEDY makes the corresponding choice in each of the disjoint copies of L1 
in L,. The net result is that 3.2*“-’ points are matched with each matching edge of length 2. This 
leaves a lattice of 22n-’ points that is isomorphic to L,_, but has each interpoint distance 
doubled. We now recursively apply GREEDY to this lattice in exactly the way that was 
outlined above. 

Let f, denote the weight of the GREEDY matching on L,. Then we have shown that: 

f,, = 3.2*“-’ + 2f,_,, n 2 1 

f() = 2. 

This recurrence may readily be solved to give 

f. = 3.2*” - 2”. 

Clearly, the optimal solution of the matching problem on L, will match each of the 22n+’ points 
to a nearest neighbour. If g, denotes the weight of the optimal matching, then 

2” = 22n+‘. 



254 D. AVIS 

L2 - 

6J5 

4fi 

‘8 \ 

nfi 

?* 

0 

‘Lr_ . 

0 

0 

a ---* 
I 
I 
I 
I 
I 

0 I 

I 
I 

I 

0 A 
I 
I 
I 
I 

. I 

I 
I 

I 

0 
+ 

I 
I 

0 I 

I 

I 

I 

0 c 
I 

I 

I 
1 I ! w 

2 .4 6 8 X 

Fig. 1. Sublattices L, and L2 of the lattice I_.. 

Hence we can compute the ratio of the GREEDY solution to the optimal solution: 

f”_3 1 
----n+I. 

g” 2 2 

Let us return to the problem of finding bad cases for GREEDY in the unit square, for sets of n 
points. We begin by scaling down the lattice L until n points fit inside the unit square. A 
straightforward argument shows that this can be done with interpoint distances of: 

Now the optimal solution will have weight 

OPT = 5. d,, = 2 + O(1) = 0.5372 . . . v/n +0(l). 

Thus by the preceding remarks, GREEDY will find a matching of weight: 

GRE=~~+0(1)=08059 
2-e/12 . *** 

d/n + O(1). 

A somewhat worse choice of lattice points of L can cause GREEDY to do even worse. The 
idea is similar to that described above, but the details are messy and are just sketched here. 
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Fig. 2. GREEDY matching after first phase. 

Consider the result of GREEDY matching lattice points (k, y) and (k + 2, y) of L for all k = 2 
or 5 (mod 6). Once these points are deleted from L, the remaining points again form a lattice 
isomorphic to L, but with interpoint distances increased by a factor of d3. Denote by h, the 
weight of the GREEDY matching formed by making the above choices recursively on a set of 
3” points of L. Then 2/3 of the points are matched at each stage, and h, satisfies 

3” + d3h,_,, ho = 0. 

h, = V3&;_ 1) + O(3”“). 

In this case we find that 

GRE = ,,33(;3 _ ,jOPT+W = v33(;3_ ,).$+0(l) 

= 0.8474 . . . d/n + O(1). 

This is the worst example of GREEDY in the unit square known to the author. 
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3. HIGHER DIMENSIONS 

In this section we make use of known results for sphere packing in Euclidean space. The 
material on this subject that is used in this section is drawn from the excellent monograph of 
Rogers [9]. 

Let Cd,, denote the hypercube in d dimensions of side s given by 

Cd,s = {(Xl, . . . , xd)(O 5 Xi 5 S, i = 1327 . . . 3 d}. 

The set P, = {ai E Cd,,11 5 i I n) represents a packing of n spheres of radius r into C& if the n 
open spheres of radius I with centres P, do not intersect and lie completely within C+. The 
packing density of P, in C,,S is denoted S(P,) and is given by: 

The packing density is a well studied quantity, although tight upper bounds for it appear to be 
only known for d = 2. The most useful result for our purposes is the following theorem due to 
Blichfeldt, a proof of which is given in [9]. 

Blichfeldt’s theorem 
For any packing P, of n spheres into Cd,,, 

(9 

We are looking for bounds on the minimum distance between n points in the unit 
hypercube. Let us denote this quantity by x = &d. From the definitions we see that n spheres 
of radius x/2 can be packed into the cube Cd,l+.& Therefore we can apply Blichfeldt’s theorem 
to show that 

The quantity on the left of (6) is the volume of n spheres of radius x/2. The quantity on the right 
is the maximum packing density multiplied by the volume of Cd.l+X,z. Solving (6) for x we obtain 

THEOREM 2 

x,,d 5 v/2 ($3’” + O($)’ 

Bounds for the total weight of the GREEDY solution in any dimension may be obtained 
from Theorem 2 in the same way as was demonstrated in Section 2 for d = 2. Note that the 
bound in Theorem 2 is not as sharp as that given in Lemma 2. The Ref. [9] contains a slightly 
sharper bound than (5) in the general case, and gives the strongest known bound for d = 3 as 

S(P,) 5 0.7797. . . . 

This gives the bound: 

x,,~ 5 1.256 . . . n-“3 + O(n-2’3), 

which is somewhat sharper than Theorem 2. 
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