NOTICE CONCERNING
COPYRIGHT RESTRICTIONS

The copyright law of the United States [Title 17, United
States Code] governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
reproduction is not to be used for any purpose other than
private study, scholarship, or research. If a user makes a
request for, or later uses, a photocopy or reproduction for
purposes in excess of “fair use” that use may be liable for
copyright infringement.

The institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law. No further
reproduction and distribution of this copy is permitted by
transmission or any other means.

AN EFFICIENT ALGORITHM FOR COLOURING THE
EDGES OF A GRAPH WITH A + 1 COLOURS*

ESHRAT ARJOMANDI

Department of Computer Science, York University, Downsview, Ontario

ABSTRACT

The edge colouring problem has received considerable attention from mathematicians
and computer scientists. The edges of a simple graph G can be coloured withA or A + 1
colours, where A is the maximum degree in G. Holyer has recently shown that A-edge-
colourability is NP-complete. In this paper we present a (O(min{|E|-{V], |V|-4 +
|E|-+/|V]-log|Vi]) edge colouring algorithm for general graphs which uses at most
A + 1 colours.

RESUME

Le probléme de colorer les arcs d’un graphe a été trés étudié par les mathématiciens et les
informaticiens. Les arcs d’un graphe simple G peuvent étre colorés avec A ot A + 1
couleurs, ou A est le degré maximum de G. Holyer a montré récemment que le probléme
de la colorabilité-A des arcs est NP-complet. Dans cet article nous présentons un algo-

rithme pour colorer les arcs en temps O(min{|E[- |V|, |V] - & + |E| - +/[V] - log [V]D)
pour un graphe quelconque utilisant au plus A 4 1 couleurs.

1 INTRODUCTION

An edge colouring of a graph G = (V, E), where 1 is the vertex set and
E is the edge set, is an assignment of colours to the edges of G such that
no two incident edges have the same colour. The edge chromatic number
x'(G) of a graph is the minimum number of colours that can be used in
colouring the edges of G. Clearly x'(G) > A, where A is the maximum
degree in G. Vizing!'? and Gupta''® independently proved the following
theorem.

Theorem 1.1
If G is simple, then A < x'(G) < A+ 1.
A proof of the above theorem may be found in Bondy and Murty.®
Many scheduling problems may be formulated as an edge colouring
problem. An example is the class-teacher timetable problem. Teacher
Ty 1 <1< m, teaches class C;, 1 < j < &, for P,; periods. We would
like to schedule a timetable with minimum number of time periods. This
problem can be represented by a bipartite graph G with bipartition

*Received 4 March 1980; revised 31 July 1980.

82
INFOR vol. 20, no. 2, May 1982

ALGORITHM FOR COLOURING EDGES OF A GRAPH 83

(T, C), where T = {Ty, ..., T}, C = {C, ..., Cx} and vertices T'; and
C, are joined by P;; edges. The problem of scheduling a timetable with
minimum number of time periods is equivalent to colouring the edges of
a bipartite multigraph G constructed as above with a minimum number
of colours (for more information on applications, the reader is referred
to Berge® and Bondy and Murty®).

Mathematicians have shown a great deal of interest in finding neces-
sary and/or sufficient conditions for a graph to be A or A 4 1 edge
colourable.'3® In general the question remains unanswered. However,
the question is answered for many families of graphs.?® For example,
it is known that bipartite graphs, complete graphs with even number of
nodes, and planar cubic graphs with edge connectivity >2 are A-colour-
able, whereas the edge chromatic number of regular graphs with an odd
number of nodes is A 4 1.

The problem of A-edge-colourability has received considerable atten-
tion from a computational complexity point of view. Many combina-
torial problems for which no polynomial time algorithms are known,
have proved to be either NP-complete or NP-hard.4-#191® IHolyer!®
has recently proved that cubic 3-edge-colourability is NP-complete.
From his result it immediately follows that general graph A-edge-
colourability is also NP-complete. Since it is unlikely to solve the NP-
complete problems in polynomial time, a common approach is to design
polynomial-time heuristic algorithms that generate approximate solu-
tions to these problems. For the node colouring problem it is shown(®
that coming close to x(G) with a fast algorithm is hard, where x(G) is
the chromatic number of G. Namely it is shown that, if for a constant
r < 2 and a constant d, there exists a polynomial time algorithm which
guarantees to use at most 7-x(G) + d colours, then there also exists a
polynomial time algorithm which guarantees to use exactly x(G) colours.

In this paper we shall show that the edges of a graph can be coloured
efficiently using A + 1 colours. Many algorithms have appeared in the
literature for the minimum edge colouring of bipartite graphs,(:7:3:11.12)
The best known bound for bipartite edge colouring is

O(min {|V|-|E], |E|- A-log |V], A-|V| + |E|- V| V]-log | V], | V]* log A})-®

A straightforward implementation of the proof of Vizing's theorem yields
an O(|E|-|V]|) algorithm for the general edge colouring problem using
A + 1 colours. In Section 2 of this paper we present an O (min{|V|-|E|,
A-|V| + |E|-+/|V]|-log |V]}) general edge colouring algorithm which
uses at most A + 1 colours.

All graphs considered in this paper are simple. Definitions not given
here may be found in Harary.(®

84 ESHRAT ARJOMANDI

2 AN EbpGE COLOURING ALGORITHM

In this section an O(min{|E|-|V],|V]|-A + |E|-+/TV]-log [V]}) general
edge colouring algorithm which uses at most A 4+ 1 colours is presented.
A straightforward implementation of Vizing’s theorem yieldsan O (|E| - | V)
algorithm.

We first present an O(|E|-|V]|) algorithm based on Vizing’s theorem
which uses at most A 4 1 colours. Parts of this algorithm will be used to
develop the O(| V[A + [E|-+v/]V]-log |V]) algorithm. Consider an un-
coloured edge e = uw, in G. Since the degree of vy is at most A, there is a
colour ¢; missing at v,; colour e with ¢;. If ¢, is not present at u#, we have
managed to colour e without introducing a new colour. Now assume there
is an edge incident on % coloured ¢;. We now have two edges incident on
coloured c¢;. Procedure ‘‘Paint’’ either recolours a subset of the edges
incident on # such that every edge incident on u« has a distinct colour or
finds a sequence of vertices vo, vy, ¥2, ..., ¥y and a sequence of colours ¢, ¢»,
..., Ck+1 and an integer ¢, 1 < ¢ < k&, such that:

(i) v, 0 < 7 < &, is adjacent to u,
(ii) uwe has colour ¢;,
(iii) wuw; has colour ¢;, 1 < j < &,
(iv) colour ¢y, is not present atv,, 1 < j < %,
V) 1 =c¢c, 1 <t < k.

If £ > 1, colour ¢, is missing at both ; and #,_;. If £ = 1, colour ¢, is only
missing at #,. Procedure “Augment’’ is then used to recolour appropriate
parts of G such that every edge incident on « has a distinct colour.

Before presenting the edge colouring algorithm let us introduce some
terminology. An edge ¢ = uv is of type af if colour « is missing at vertex
and % 1s adjacent to two distinct vertices w £ v and @’ # v such that
either 8 is missing only at w and the edges ¢ = uv and uw’ are coloured
B or 8 is missing at both w and w’. P is called an af-path if the length of
P is maximal and the colours of edges on P alternate between « and 8. An
Euler partition is a partitioning of the edges of a graph G into open and
closed walks such that every node of odd (even) degree is at the end of
exactly one (zero) open walk.

We now present the procedures ‘“Paint’’ and ‘““Augment.”

Procedure Paint (e)

begin

1 t «— 0; comment: ¢ will stay zero if ‘“‘paint’’ successfully colours e.
comment: let 4,, v € V, be the list of missing colours at v. These
lists are constructed before ‘‘paint’ is called.

2 let e = uw,; let 8 be the first colour in A,;

&

&

3 let ¢; be the first colour in A4,,; delete ¢, from A4 ,,; colour ¢ with ¢;;
comment: to avoid searching 4,, v € V, we always select the first
colour in 4,.

4 if ¢, is not present at # then begin

delete ¢; from A,; return;
end
5 let uv; be the edge coloured ¢;; let B «— 1, T « false;
6 while (7T = false) do
if B is missing at v,
then begin
colour uw, with 8; if & > 1 then colour uv;, 1 <1 <
kE — 1, with ¢;yq;
update the lists of missing colours 4,,, 1 < 7 < &, as
follows: (a) delete 8 from 4, and 4,,
(b) delete ¢;41, 1 < 2 < kB — 1, from 4,,
(¢c)add e, 1 <7<k, to 4,,
comment: from now on we will not mention the
details of how the lists of missing colours are updated.
return;
end
let ¢xy1 be the first colour in 4,,;
if ¢, is not present at u
then begin
recolour uv;, 1 < j < &, with ¢,,1;
update the lists of missing colour 4,,,
1 < j < k, accordingly; return;
end
if o1 =c¢, 1 €t <k, then T — true;
else begin
k«—k 4+ 1; let uv, be the edge coloured ¢;

ALGORITHM FOR COLOURING EDGES OF A GRAPH 85

end
end
comment: ¢ isof type 8c,. We now have a sequence vy, vy, ..., U
of vertices and a sequence ¢, ¢, ..., ¢xy1 Of colours and an integer
t, 1 <t < k, such that properties (z) — (v) hold.
end paint;

The result of procedure “paint” is illustrated in figure 1. The numbers on
the edges are the colours assigned to the edges.

Theorem 2.1
Procedure “Paint’” uses time O(A).

Proof

86 ESHRAT ARJOMANDI
1‘
h
2 1
q g = V_I(c2=5)
t
P
u
e 2 [1 2
= = 3
. f VZ(C u VO m
3 (cy=1) 4 1
2 3 !
1 ¢ = va{cy=cy=1) n
a
b
Fic. 1.

Let us first introduce some data structures necessary for the efficient
implementation of ‘‘Paint.”” For each node v € V we maintain a list 4,
of missing colours at v. To allow efficient deletions and additions, linked
storage allocation is used to represent 4,,v € V.Since we are using A + 1
colours to colour G and the maximum degree in G is A, 4,,v € V, is non-
empty. Also, in order to be able to check the presence of a colour at a
vertex, we maintain an z by A + 1 vertex-colour incidence matrix N-Csuch
that (v, a)i s the edge, if any, incident on coloured a. Although throughout
this section we have suppressed explicit reference to the maintenance of
N-C, it is obvious that N~C should be updated every time an edge
changes colour. The updating of N-C does not change the time bounds.
In order to be able to perform the test in step 6.4 in constant time, we
construct a vector I of size A + 1 as follows:

by “Paint”” and uw; is coloured j.
I(4) =)0 there is no node v;, O < 7 <k, in the sequence of vertices
generated by ‘‘Paint’’ such that v, is coloured j.

s v, where v, is the vertex in the sequence of vertices generated

By using the above data structures it is easy to see that the procedure
“Paint” uses time 0(A). (For more details of the proof of timing, the
reader is referred to Arjomandi®.) Q.E.D.

5

el

ALGORITHM FOR COLOURING EDGES OF A GRAPH 87

If procedure “Paint’” does not succeed in colouring e = uv, such that
every edge incident on u has a distinct colour, procedure “‘Augment’’ is
then called. The procedure ““Augment’” uses the sequences of vertices
and colours generated by ‘‘Paint” and recolours appropriate parts of
G such that every edge has a distinct colour. This leads us to procedure
““Augment.”’

Procedure Augment (e)

begin

1 let e = wuvy;

2ift>1
comment: ¢ is a global variable and its value is determined in the
procedure ‘‘Paint.”

then begin
2.1 let Py and P,_; be two fc,-paths from v, and v,_; respec-
tively;
2.2 let P, = Pror P,_y, wherem = kort — 1, be the path that

does not end in # (if P, and P,_; both do not end in %, let
.szpl_l,m=t_1);

end
3 else begin
3.1 let Py and P, be two ¢;8-paths from u;
3.2 let P; be a Bcy-path from vy

comment: two of the paths Py, P, and P, may be identi-
cal, in which case the third path will be vertex disjoint from
the two identical ones and will not end in %. If P; is identical
to either Py or Py, then one of Py or P, (i.e. the one that is
identical to P;) ends in v; and the other one in a vertex
different from u.

3.3 if P, is identical to P, then let P,, = P, m = k;
else let P,, = Py, m = 0;

end
4 let P, end in vertex w; interchange the colours 8 and ¢, along P,,;
5 ifm>1

then begin
5.1 recolour ww, with B; recolour wv,, 1 <j < m — 1, with
Cit1;
end
6 update the lists of missing colours at %, w, and v;, 1 < 7z < m, accor-
dingly;

end Augment;
Consider the graph of figure 1. In this example t = 1, Py = Py, and

88 ESHRAT ARJOMANDI

h
2 1
q y
t
P
o 1 =
3 1
3
- f u VO m
d 2 5 1
C
2 1 4 n
a
1
b
Fic. 2.

the path P;: (vs — b — e — f — d — a) does not end in u. Figure 2
illustrates the result of procedure ‘‘Augment” for the graph of figure 1.

Theorem 2.2
Procedure “Augment’’ uses O(|V|) time.

Proof

Procedure ‘“Augment’’ constructs at most three paths. Since each path is

at most of length O(|V|), steps 1-4 are O(| V|). Steps 5 and 6 are O(4);

thus the overall complexity of “‘Augment’ is 0(| V). Q.E.D.
We now consider a procedure that uses ‘“Paint” and ‘“Augment’” and

colours the edges of a graph G using at most A + 1 colours.

Procedure edge-colour (G)
begin
1 let colours used for colouring G be represented by {1, 2, ..., A 4 1}.
2 Initialization: A,,v € V, the list of missing colours at vertex v is
initialized to contain {1, 2, ..., A + 1}.
3 while there is an uncoloured edge ¢ = uv do
paint (e);
if ¢ # 0 then Augment (e);
end
end Edge-Colour;

ALGORITHM FOR COLOURING EDGES OF A GRAPH 89

Theorem 2.3
The procedure “Edge-Colour”” uses O(|E|-|V]) time.

Proof

Steps 1 and 2 require O(| V|- A). The loop at step 3 is executed |E| times
and the body of the loop is at most O(|V]), hence the complexity of
‘““Edge-Colour” is dominated by O(|E|-|V]). Q.E.D.

We now present an O(jV|- A+ |E|+/| V| log } V|} algorithm based on a
divide-and-conquer technique. This approach is similar to the approach
used in Gabow and Kariv® for colouring the edges of a bipartite graph.
The Euler partition is used to divide a graph G into two edge disjoint
subgraphs G, and G;. Now to obtain an edge colouring for G all we have
to do is colour G, and Gs. This process can be repeated until a graph with
maximum degree 1 is encountered.

An Euler partition may be found as follows. Select a start vertex of
odd degree. If no odd degree vertex exists, then select an even non-zero
degree vertex. Construct a walk from the start vertex by walking through
the graph from one vertex to another and deleting the edges as they are
traversed. Continue walking through the graph and deleting edges until a
vertex of degree zero is reached. When a vertex of degree zero is reached,
a walk of the Euler partition is completed. Now select a new start vertex
and repeat the process. Gabow” presents an O(|E| + |V]|) algorithm for
generating an Euler partition of a graph.

Consider an Euler partitioning of the edges of G. The following algorithm
divides G into G and G, by traversing each walk of the partition, placing
edges alternately in G, and G..

Procedure Euler-divide(G);

begin

1 make P an empty queue;

2 for each vertex v € V do

2.1 place all the odd closed Euler walks that begin and end in 2 in P

2.2 place the odd open walk (if it exists) that begins in v in P;
comment: in the Euler partition algorithm, each time a vertex
is selected as the start vertex of a new Euler walk. The start
vertex i1s the vertex that the walk begins in it. If the walk is
open, it will end in a vertex different from the start vertex. Hence
if the open walk ends in vertex v it will not be included in P when
the Euler walks for » are being included in P

2.3 place all the even closed paths that begin and end in v in P;

end
3 set1«—2,7—1;
4 while P # ®do

90 ESHRAT ARJOMANDI

4.1 consider p € P; delete p from P;
4.2 traverse p and place edges alternately in G; and Gy;
4.3 set ke—1, 1< j, j— k;
end

end Euler-divide;

It is easy to see that with proper data structures, the procedure
Euler-divide can be implemented in O (| E| 4 | V]). The following theorem
determines the maximum degree in G; and Ga,.

Theorem 2.4
The maximum degree in G; and G; is at most [A/2]+1.

Proof
We prove the theorem in two cases:
1 Aiseven.

Consider a vertex v of degree A. As was mentioned earlier, in an Euler
partition, even degree vertices are at the end of zero open walks. When
an even closed walk going through vertex v is traversed, the edges of this
path incident on v are distributed evenly between G, and G, (note that
the even closed path may contain many odd cycles that loop around z).
However, when an odd closed walk is traversed, if the first edge is in-
cluded in G1[Gs], then the last edge will also be included in G1[G:]. Let
be the number of edges incident on v from this Euler walk. Then G:[G.]
will get a/2 + 1 edges and G.[G:] will get /2 — 1 edges. Therefore, if
the number of odd closed walks going through » is odd, Gi[G.] will get
A/2 + 1edges incident on v and G,[G,] will get A/2 — 1 edges. Note that,
since in placing the first edge of each walk in one of the subgraphs we
alternate between G, and G, no subgraph will get more than A/2 + 1
edges.

2 Ais odd.

Consider a node v of degree A. Odd degree vertices are at the end of
exactly one open walk. Once again when an even closed walk that begins
and ends in v is traversed, the edges of this walk incident on v are dis-
tributed evenly between G; and G.. Let the number of odd closed walks
beginning and ending in v be a. Now consider two cases:

(i) « is even.

In this case the edges incident on v from these walks are distributed
evenly between G; and G,. Hence when the open walk beginning or
ending in v is traversed Gi[G.] will get at most two edges more than
G4[G1]. (Note: the open walk may contain odd cycles that loop around v.)
(ii) o is odd.

In this case, if 8 is the number of edges incident on v from these «
odd closed walks, 8/2 + 1 edges are included in one of the subgraphs and

r,

-

ALGORITHM FOR COLOURING EDGES OF A GRAPH 91

B/2 — 1 edges in the other one. Let G;[G,] be the subgraph that gets
B/2 + 1 edges. Let the number of edges incident on ¥ from the open walk
beginning or ending in ¢ by v (note: v is odd). Of these ¥ edges, {v/2]
edges may be included in Gi[G:). Thus the maximum degree in G,[G;]
may be at most [A/2] 4+ 1 and at least |A/2] — 1. Q.E.D.
We now present an edge colouring algorithm based on a divide and
conquer technique using the Euler partition,

Procedure Euler-colour(G);
begin
Level# «— Level# + 1;

comment: Level# is initialized to —1 before ‘““Euler-colour’ is
called. The role of Level# will be explained later. Delta is the maxi-
mum degree in the graph passed to ‘“Euler-colour.”” When “Euler-
colour"” is called for the first time Delta = A.

]

b1 §

if Delta = 1
then do
colour all the edges in G using a new colour ¢;
for eachv € V do
if deg(v) =1
then 4,% «— empty;comment: Av¢ is the list of missing
colours at v in G;
else 4,% «¢;
end
end
else do
divide G into two edge-disjoint subgraphs G; and G using a
Euler partition and the Euler-divide procedure;
Euler-colour (G:); Euler-colour (G,);
for each v in G do
A4,%— 4,5 4,°%;
end
comment: G; and G, have no colour in common, hence
A,%1 N\ A,% = ®, Since linked storage allocation is used in
representing the lists of missing colours, the union operation
is performed in constant time.
let ¢ < the number of different colours used in colouring the
edges of G;
while ¢ > Delta + 1do

if Level# < log [(A/+/[V]/1log [V)]
then Recolour-One(G) ; else Recolour-two(G);
g—qg—1

92 ESHRAT ARJOMANDI

end
comment: the significance of the test

Levely < [log (A/ /‘/ 2)_l will become evident after
log | V]

we have discussed procedures ‘‘Recolour-one’” and ‘‘Recolour-
two.”
end

end Euler-colour;
Before discussing the procedures ‘‘Recolour-one” and ‘‘Recolour-two” we
study a computation of the “Euler-colour” procedure. Consider the par-
tition tree 7" of a graph G. The vertices of T are subgraphs of G passed to
Euler-colour and G is the root of 7. The leaves are subgraphs with
maximum degree 1. Every internal vertex is a subgraph with maximum
degree at least 2 and has two children in 7. In theorem 2.4 we showed that
the maximum degree in G, and G is [4/2] + 1. Consider a subgraph G,
at level i of the partition tree 7. The following inequalities hold.

[(A/2] — 2 < A; < [A/271 + 2. (2)

Level 7 of the partition tree has at most 2! vertices and 7" has at most
(logA] + 2 levels. The variable Level# in procedure ‘‘Euler-colour” is
the distance of a subgraph G; from the root in the partition tree of a
Graph G.

Let G, be a subgraph of maximum degree A; at level 4. Its two children
G4 and G,z at level 7 + 1 may have maximum degree Ay = [A,/2] + 1.
The edge colouring algorithm will colour the edges of G, and G2 using at
most A; + 5 colours. Procedures ‘‘Recolour-one” and “Recolour-two’’
are used to eliminate the redundant colours. To motivate the necessity
for “Recolouring-two”, let us assume that at step 7 of ‘‘Euler-colour”
we keep calling ‘“Recolour-one’’ to eliminate the redundant colours.
Namely the body of the loop at step 7 is replaced by (Recolour-one (G);

ge—gq—1).

Procedure Recolour-One(G);
1 Let the colour with the fewest edges have edge set M;
2 uncolour all the edges in M;
3 for each edge ¢ € M do
Paint (e);
if £ # 0;
then Augment (e);

*A vertex is at level 4 if it is at distance 7 from the root. The root is at level O.

ALGORITHM FOR COLOURING EDGES OF A GRAPH 93

end;
end Recolour-one;

Theorem 2.5
Procedure ‘‘Recolour-one’ uses O(|E[/A-|V]) time.

Proof

[t is easy to see that the cardinality of the set M is at most |E{/q, where

g is the number of different colours used in colouring G. As was mentioned

before, A +1 < ¢ < A 4 5. Procedures ‘Paint” and “Augment’’ re-

quire O(|V]) time, hence procedure ‘‘Recolour-one "is O (|E|/A-|V]).
Q.E.D.

Theorem 2.6

Procedure “‘Euler-colour,” with “Recolour-one” alone, gives an O(|E| - | V})

algorithm.

Proof
Consider the partition tree 7" of G. Procedure Euler-colour spends

22-.0(@/_2_"_ |V|)

A/2}

to recolour the subgraphs at level ¢ of 7. Hence the overall complexity
of Euler-colour, only using procedure ‘‘Recolour-one,” is

logAl42
Z 21'(_"2' .
A

i=0

1) = 0@)-0(1- 2]/

= 0| V)
Q.E.D.
One reason for inefficiency in ‘“Recolour-one’ is that the edges in M
are coloured one at a time and since two «f-paths may overlap, an edge
may unnecessarily change colour many times. To eliminate this ineffi-
ciency we like to be able to colour all the a8-type edges together. Let us
assume that we are given a set of aB-type edges (in procedure ‘‘Recolour-
two’" we shall see how a set of aB-type edges is determined). In order to
be able to colour the aB-type edges together, we construct a subgraph
Gas as follows:*

(1) all the edges ¢ = uw, of type af belong to Gug;

(2) for each e = uw, of type afB, procedure ‘“‘Paint’’ finds a sequence of
vertices vg, 9y, ..., 7 and a sequence of colours ¢y, ¢a, ..y Cpy1 =
¢, = B,and an integer ¢, 1 < ¢t < k. If t > 1, let P,, be an aB-path
starting at v,, m = k or { — 1, that does not end in «. If both

*Gabow ® uses a similar technique for colouring all the af-type edges together.

94 ESHRAT ARJOMANDI

A typical GaB
F1:. 3.

paths from v; and v,_; do not end in u, let P,, be the one starting
atv,_;,m =t — 1. Ift = 1, let Pyand P; be two Ba paths from .
Let P, be an af-path from ;. If P, is identical with Py, let P, =
P,, m = k, otherwise let P,, = Py, m = 0. The edges on P,, belong
to Gag. (Note: P, does not end in #.)

(3) if m > 1, then the edges uv;, 1 < j < m, also belong to Gag;

(4) if P,, ends in »;/, where v,/ is a node in the sequence of vertices
v, 0y, ooy ¥4, ..., v, generated for an aB-type edge ¢/ = u'vy’, then
the edges #'v/, 1 < ¢ < j, belong to Gag.

ALGORITHM FOR COLOURING EDGES OF A GRAPH 95

A typical Gag is shown in figure 3. Let us first evaluate the cost of con-
structing Gas. Let Eg(E,) be the number of edges coloured 8(«) on all the
af-paths considered during the construction of Gs. Let E,3 be the number
of af-type edges. If an ap-path is of odd length, then the number of edges
coloured a on this path is one more than the edges coloured 8. Therefore
E, < Eg + Eqs. For each edge e = uv, of type af, G, may contain at
most A edges incident on #. Hence the cost of constructing Geg is
O(A-E,s + Eg). Note that procedure “Recolour-two’’ is called for sub-
graphs at higher levels in the computation tree. These subgraphs have
smaller maximum degrees, hence there are more missing colours at each
node and consequently for a particular pair of colours (a, 8), it is likely
to have more ap-type edges.
We now present the procedure ‘‘Recolour-two.”

Procedure Recolour-two(G),
begin
1 let the colour with the fewest edges have edge set A ;
2 uncolour all the edges in M; p «— |M];
3 while p = 0do
4 for each colour a do

for each edge ¢ in M do

if « is missing at one end vertex of ¢

then begin
5.1 let e = uw,, where « is missing at «;
5.2 Paint {e);
5.3 iftr=20

then begin
comment: ‘“‘Paint”’ has succeeded
to colour e. p—p — 1; M —M —{e},
end
end
end
6 for each colour g # a do
if there is an edge of type af
then begin
6.1 construct a Gas subgraph; colour-all (Gas);
end
end
end
end
end Recolour-two;

96

ESHRAT ARJOMANDI

Before discussing the complexity of ‘‘Recolour-two,” let us introduce the
procedure ‘‘colour-all.” Procedure “colour-all’ attempts to colour as
many af-type edges in G,g as possible.

Procedure colour-all(Gag);

begin

1 let N be the set of aB-type edges in Geg;
2 for each ¢ = uvy in N do

2.1

2.2
2.3

2.4
2.5
2.6

2.7

2.8

consider the a8-path P, for e generated during the construction
of Gaﬁ;
let v be the end vertex of P, and wv the last edge on Py;
if (v = u'), where ¢/ = /vy is a deleted edge from N
then do
comment: anedgee’ = u'y, is deleted from N for two
reasons:

(a) an aB-path ended in #’ and ¢’ changed type,
hence ¢ is still incident on two edges
coloured the same;

(b) a subset of edges incident on %’ are re-
coloured and every edge incident on #' has
a distinct colour. In this case colours @ and
B are both present at #’.

Note that exactly one aB-path may end in vertex « and
change the type of the edge ¢ = u'vy’ (see step 2.9
below). Hence if P, ends in » and the edge &' = u'v/
is deleted from N, it must be that case (b) above is true.
Therefore we can not interchange colours along P,, and
e should not be considered in this call of ‘““colour-all.”
N« N — {e}; go to 2.11;

end

interchange colours along P,,;

if m > 1 then recolour uv;, 1 €< 21 < m — 1, with ¢; + 1;

update the lists of missing colours at #, v, and v;, 1 < 7 < m,

accordingly;

p—p—1;,N—N—le}; M— M — {e};

comment: M is the set of all uncoloured edges in G. M

is constructed in the procedure ‘‘recolour-two’ before

““colour-all”’ is called. p is the cardinality of the set M.

if (v = w') and (w = v’ or vy’), where ¢ = u'vy’ is an edge

in N

then begin

ALGORITHM FOR COLOURING EDGES OF A GRAPH 97

comment: ;' and »,’ are the first two nodes on the
sequence of vertices vy, v/, ..., v, generated for ¢ =
w'vy’. Note that since ¢’ is of type a8, wv must have had
colour 8 before we interchanged colours along P,, (recall
properties (i)—(v) listed earlier in this section). After
colours o and 8 are interchanged along P,, in step 2.4,
every edge incident on #' will have a distinct colour. v
and w are defined in step 2.2 above.

N—N—{e|; M— M- {};
p—p—1;go0to2.11;

end
2.9 if (v = #') and (w # vy’ or v,’), where & = 'ty is an edge
then begin

comment: An «f path ends in #’, hence after colours
are interchanged along this path, a will no longer be
missing at #. Thus ¢’ changes type and the edges u'vy
and u'v," are still coloured the same. Therefore ¢’ can
not be considered in this call of “‘colour-all.”

N« N — {e'}; go to 2.11;

end

2.10

if (v = 9;/) and (v, is adjacent to node #’, where &’ =
#'vy’ isan edge in N) and (v, is a node in the sequence
of nodesvy’, v/, ..., v/, generated for ¢').

then begin

end
2.11 end
end colour-all;

Theorem 2.7

recolour # v; with «a;

comment: procedure “Paint’’ guarantees thata is pres-
ent at all the vertices in the sequence of v/, v/, ...,
v/, generated for ¢'. Therefore when P, endsin v/, it
must end in an edge coloured «, hence after colours
are interchanged along P,,a will now be missing at v,’.
recolour v/, 1 < i< j— 1, with ¢yq1; pe—p —1;
M— M — {e};N— N — {e}; update the lists of mis-
sing colours at #’ and »,/, 1 < 7 < j, accordingly;

Procedure ‘“‘colour-all” uses O(Es + A-E,3) time.

Proof

98 ESHRAT ARJOMANDI

To help comprehend the algorithm, we make the following remarks.
Consider an edge ¢ = uv, in N and the af-path associated with it in
Gas. Note that the edges uvy and uw; are coloured the same. Hence if the
colour of uy, and uv, is B8, then two aB-paths may end in u. Let the two
aB-paths that end in # be the paths associated with two af-type edges
e; and e;. Assume e;{e;) is selected before ¢ at step 2 of ‘“colour-all.”
When the colours along the af-path associated with ei(e;) are inter-
changed, one of the 8-coloured edges incident on u changes colour to «.
Thus every edge incident on # now has a distinct colour, hence e is
removed from N. When the path associated with es(e;) is considered, we
can not interchange colours along this path, since by doing so # will be
incident with two edges coloured the same.

Now assume the colour of uv, and uw; is not 3, then only one «8-path
may end in «. If that path is considered before the path associated with
e, then e changes type and can not be considered in this call of “colour-
all.”

For the proof of timing, note that throughout the procedure “colour-
all"" every edge of G.s is considered exactly once; hence the complexity
of ““colour-all’’ is dominated by O(A:E.s + Ejs). Q.E.D.

We now prove the complexity of the procedure “Recolour-two.”

Theorem 2.8
Procedure ‘‘Recolour-two’ uses time O(|E|- A-log | V|).

Proof

To prove the time bound we first mention the data structures necessary
for the efficient implementation of ‘‘Recolour-two.”” The algorithm main-
tains a list of missing colours for each vertex. We also maintain a vertex-
colour incidence matric N~C. This matrix is described in the proof of
theorem 2.1. For each pair of distinct colours « and B, where « is fixed,
a list of aB-type edges is constructed. These lists may be constructed by
adding a statement after step 5.3 and are also used in step 6.1 for the
construction of Gus. The construction of these lists does not change the
time bound.

We now prove that the loops at steps 5 and 6 are O(|E|) (it is easy to
see that steps 1-2 are O(|#M|). The body of the loop at step 5is O(A) and
| M| is at most O(|E|/A), hence the loop at step 5 is O(|E|). The com-
plexity of the loop at step 6 is

; O(Es 4+ A+ E.p).

Procedure ‘“‘colour-all’’ is called for each colour 8 # « and the edges

ALGORITHM FOR COLOURING EDGES OF A GRAPH 99

coloured 8 have not changed colour since the beginning of the loop at
step 6. Thus) _sF.s < |M|. Hence:

2 50(Fs + A-Eus) < O(E| + A-|M]) < O((E)).

Therefore the total time for the loops at steps 5 and 6 is O (| E|). The loop
at step 4 is executed O(A) times, therefore the body of the loop at step 3
is O(A-|E|).

All that remains to be proved is that the loop at step 3 is executed
O(log | V]) times. To prove this we show that each execution of the loop
at step 3 eliminates half of the edges in M.

Assume during an execution of the loop at step 3, edge ¢ = wuw, remains
in M. Edge e may remain in M for the following reasons: (1) e was
assigned a type af and an af-path ended in u; (2) colour v was missing
at one end of ¢ and a y8-path ended in « after the execution of the loop
at step 4 for 8 and before its execution for v. In either case we can associ-
ate with each edge which remains in M, an edge that is deleted from A.

Q.E.D.
Theorem 3.7
Procedure “Euler-colour’ runs in time 0(A-|V| 4 |E|+/| V]| log | V]).

Proof
Consider the partition tree T of G. Let # = [log A] + 2. The complexity
of steps 1-3 and 5-6 is determined by:

§2f0(|EiJ 4+ |V]) = O(E| - log A+ A-|V]).

As was mentioned earlier, the edges of a subgraph G; at level 2 with maxi-
mum degree A; may be coloured with as many as A; + 5 colours. There-
fore for any subgraph in the partition tree, the loop at step 7 is executed
at most 4 times. Now let us ascertain the complexity of the body of the
loop at step 7.

Consider a subgraph G, with |E,| edges and maximum degree A, at
level 1. |E;| and A, satisfy relations (1) and (2) presented earlier. If

i < [log (A/ /EN

then procedure ‘‘Recolour-one’’ is called. Let

1= oo/ /)

The overall complexity of ‘“Euler-colour” for levels 7, 1 < & is

k

5ot o(BLAYL) < omn/T7TIOE T

i=0

100 ESHRAT ARJOMANDI

) oo [(s /)

then procedure ‘‘Recolour-two’ is called. The overall complexity for
levelsz, k <1< his

h h A
Y. O(|E:|a:log |V]) = |E|log |V] 1; 0(527) :

i=k+1 il

> s [(s/ 4/ 20T

immediately follows that

3] <[/

2 log |V

From

By using this inequality

Blog v 3 o) < 210 714/ ;5 35 0(%)
1 \2% log |V 2

i=k+ k1

= 0(|EWTV]1og [V]).

Thus the overall complexity of the algorithm is
O(A-|V| + |E[+/|V]-log | V]).
4 CONCLUDING REMARKS

Holyer'® has recently shown that A-edge-colourability is NP-complete.
Hence it is unlikely to design a polynomial time algorithm which guaran-
tees to use optimal number of colours. In this paper we presented a
general O(|V]-A 4+ [E|+/]V]|log |V]|) edge colouring algorithm which

uses at most A + 1 colours.

REFERENCES

(1) E. Arjomandi, ‘“An efficient algorithm for colouring the edges of a graph with
A + 1 Colours,” Dept. of Computer Science, York University, Tech. Rep. 1, 1980.

(2) C. Berge, Graphs and hypergraphs. Amsterdam: North Holland Press, 1976.

(3) J.A. Bondy and U.S.R. Murty, Graph Theory with Applications. Macmillan, 1976.

(4) S.A. Cook, The complexity of theorem-proving procedures,” Proc. Third Ann.
AcM Symp. on the Theory of Computing, 1970, 151-158.

(5) D. de Werra, “‘On some combinatorial problems arising in Scheduling,” INFOR,
vol. 8, 1970, 165-175.

(6) P.Erdos and R.J. Wilson, “‘On the chromatic index of almost all graphs,” J. Comb.
Theory, Series B, 1977, no. 23, 255-257.

(7) H.N. Gabow, “Using Euler partitions to edge colour bipartite multigraphs,”
Int. J. Comput. Infor. Sci., vol. 5, no. 4, 1976, 345-355.

ALGORITHM FOR COLOURING EDGES OF A GRAPH 101

(8) H.N. Gabow and O. Kariv, “Algorithms for edge colouring bipartite graphs,”
Proc. Tenth Ann. acM Symp. Theory of Computing, 1978, 184-192.
(9) M.R. Garey and D.S. Johnson, ““The complexity of near-optimal graph colouring,"
JACM, vol. 23, no. 1, 1976, 43-49.
(10) M.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory
of NP-Completeness. San Francisco, cA: Freeman, 1978.
(11) T. Gonzalez and S. Sahni, “Open shop scheduling to minimize finish time,”]J.
AcM, vol. 23, no. 4, 1976, 665-679.
(12) C.C. Gotlieb, “The construction of class-teacher time-tables,” Proc. IF1P Congress
62, Munich. Amsterdam: North-Holland, 1963, 73-77.
(13) R.P. Gupta, “The chromatic index and the degree of a graph,” Notices Am.
Math, Soc., 1966, no. 13, abstract 66T-429,
(14) F. Harary, Graph theory. Reading, Ma: Addison-Wesley, 1969.
(15) I. Holyer, ““Cubic 3-edge-colourability is NP-complete.” Private communication.
(16) R.M. Karp, “On the computational complexity of combinatorial problems,”
Networks, vol. 5, 1975, 45-68.
(17) V.G. Vizing, “On an estimate of the chromatic class of a p-graph,” {Russian)
Diskret. Analiz., 1964, no. 3, 25-30.

