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Abstract

For point sets A,B ∈ Rd, |A| = |B| = n, and for a parameter ε > 0, we present an algorithm
that computes, in O(npoly(log n, 1/ε)) time, a matching whose cost is within (1 + ε) of optimal perfect
matching with high probability; the previously best known algorithm takes Ω(n3/2) time. We approxi-
mate the Lp norm using a distance function, d(·, ·) based on a randomly shifted quad-tree. Our algorithm
iteratively generates an approximate minimum-cost augmenting path under d(·, ·) in time proportional to
the length of the path. We show that the total length of the augmenting paths generated by the algorithm
is O((n/ε) log n), implying that the running time of our algorithm is O(npoly(log n, 1/ε)).
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1 Introduction
For a weighted bipartite graph G(A,B) = (A ∪ B,E ⊆ A × B), |A| = |B| = n, let d(a, b) be the cost
of any edge (a, b) ∈ E. A perfect matching M ⊆ E is a set of edges such that every vertex a ∈ A ∪ B
is incident on exactly one edge of M . An optimal matching MOPT is a matching that minimizes the cost
w(MOPT) =

∑
(a,b)∈MOPT

d(a, b). For ε > 0, an ε-approximate matching is a matching M such that
w(M) ≤ (1 + ε)w(MOPT). In this paper, we consider the problem of computing ε-approximate matching
for the case in which A,B ⊂ Rd, G(A,B) = (A ∪B,A×B) is the complete bipartite graph and d(a, b) is
the distance between a and b under the Lp-metric.

Previous work. Optimal matching on weighted bipartite graphs with n vertices and m edges can be com-
puted using the Hungarian algorithm in O(n3) time [12]. For unweighted bipartite graphs, Hopcraft-Karp
show that a maximum-cardinality matching can be computed in time O(m

√
n) [7]. For the case where edge

costs are positive integers bounded by nO(1), Gabow and Tarjan show that the optimal matching can be com-
puted in O(m

√
n log n) time. The non-bipartite version of the matching problem, where given an arbitrary

weighted graph, we want to compute a matching of vertices such that the total cost of the corresponding
matching is minimized is also well-studied. Micali and Vazirani [11] give an O(m

√
n) time algorithm

for computing maximum cardinality matchings on unweighted graphs. For the case where edge weights
are bounded integers, Gabow and Tarjan [5] give a scaling algorithm for computing optimal non-bipartite
matching in time O(m

√
n log3/2 n). For unweighted regular bipartite graphs, Goel et al. [6] present an

O(n log n) algorithm for computing perfect matchings.
In the case where A,B ⊂ R2 and d(·, ·) is the L2 norm, Vaidya [15] shows that the optimal matching

on G(A,B) can be computed in time O(n2.5). Agarwal et al. [1] improve the running time of the algorithm
for computing optimal matching to O(n2+δ) where δ > 0 is an arbitrarily small constant. For A,B ⊂ Rd
and the L1 and L∞ norms, Vaidya [15] presents O(n2 logO(d) n) time algorithm for computing the optimal
matching. For the case where A,B ⊆ [∆]d are points from a bounded integer grid, Sharathkumar and
Agarwal [14] show that an optimal matching can be computed in O(n3/2 logd+O(1) n log ∆) time. It is
an open question whether a subquadratic algorithm exists for computing an optimal Euclidean bipartite
matching in R2, or even for L1, L∞-norms. In contrast, Varadarajan [16] presented an O(n3/2 polylog n)
algorithm for the non-bipartite case — this is surprising because the non-bipartite case is harder for general
graphs. See also [13, 9, 10].

For bipartite graphs on point sets A,B ⊂ R2 and for the L2 norm, Agarwal and Varadarajan [17]
show that an ε-approximate matching can be computed in O((n/ε)3/2 log5 n) time. In [14], Sharathku-
mar and Agarwal present an algorithm that computes an ε-approximate matching under Lp-norm in time
O(n3/2Φ(n) log(1/ε)); here Φ(n) is the query and update time of a dynamic weighted nearest-neighbor data
structure. In [2], Agarwal and Varadarajan present a Monte Carlo algorithm for computing an O(log(1/ε))-
approximate matching in time O(n1+ε). Building on the ideas of Agarwal and Varadarajan, Indyk [8]
presents an algorithm that estimates in O(n logO(1) n) time, with probability at least 1/2, a cost that is
at most O(1) times the cost of the optimal matching. It, however, does not return such a matching. All
these algorithms work for Lp-norms as well. It is an open question whether an ε-approximate matching
can be computed in near linear-time. Again, the non-bipartite case seems to be easier and an ε-approximate
euclidean matching of a set of points can be computed in near-linear time [3, 17].

Our Results. ForA,B ⊂ Rd, a parameter ε > 0, we present a Monte-Carlo algorithm that computes, with
high probability, an ε-approximate matching of A,B in O((n/εO(d)) polylog n) time under any Lp-norm.

Unlike previous algorithms, our algorithm does not explicitly conduct a primal-dual based search for
the shortest augmenting path. Instead, we present a data structure to directly computes shortest augmenting
path in an output sensitive manner. There are three key ingredients of our algorithm.
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• We use a randomly-shifted quad-tree Q based distance function dQ(·, ·) that ε-approximates the Lp-
norm. A similar distance function was introduced in [14]. The problem of computing ε-approximate
matching reduces to the problem of computing ε-approximate matching on dQ(·, ·) (Section 2).

• For a partial matching M , we provide a decomposition of the edges in M into certain clusters. The
two end points of all the edges in the cluster lie sufficiently close to each other and all of them have
the same dQ(·, ·) distance. On this clustering of edges, we introduce the notion of adjusted costs
of edges which is a charging scheme wherein we charge edges that are between clusters by a factor
εw(M∗)/6n, where w(M∗) is the cost of the optimal matching under dQ(·, ·). Doing so allows us to
bound the total length of the augmenting paths by O((n/ε) log n). Our charging scheme introduces
an error of ε.w(M∗). Gabow and Tarjan [4] used a similar charging scheme where they charge every
non-matching edge a cost of 1. Consequently, their charging scheme introduces an additive error
of n while the total length of all the augmenting paths produced by their algorithm is O(n log n)
(Sections 3, 4).

• We describe a data structure on Q, that maintains the current partial matching, produces augmenting
paths in an output sensisitve manner and updates the current matching quickly. (Section 5).

2 Approximating Lp-norm
A simple transformation, as the one discussed in [8], decomposes computing approximate matching ofA,B
to computing approximate matchings on several subsets {(A′1, B′1) . . . , (A′k, B

′
k)} with high probability.

Here
⋃k
i=1A

′
i = A,

⋃k
i=1B

′
i = B and each pair of subsets A′i, B

′
i ⊆ [∆]2, |A′i| = |B′i| = ni, are point

sets from an integer grid with ∆ ≤ nO(1). In order to compute an approximate bipartite matching of
A,B in time O(npoly(log n, 1/ε)), it suffices that we present an O(nipoly(log ∆, 1/ε)) time algorithm for
computing approximate matching of point sets A′i, B

′
i. In the rest of the paper, we show that for A,B ⊆

[∆]2, |A| = |B| = n, there is an algorithm that computes an ε-approximate bipartite matching of A,B in
O(npoly(log ∆, 1/ε)) time. Next, we present our distance function dQ(·, ·) that approximates the Lp-norm.
We show that the ε-approximate matching under dQ(·, ·) is, in expectation, a good approximation of optimal
matching under the Lp norm.

For A,B ⊆ [∆]2, we choose integers i, j ∈ [0,∆] chosen uniformly at random and set G = [0, 2∆] ×
[0, 2∆] − (i, j). G is a randomly-shifted square that contains both A and B. We build a quad-tree Q of
height log2(2∆) = 1 + log2 ∆ on G — the root of Q is associated with G itself and the squares (cells)
associated with the children of a node are obtained by splitting the square associated with that node into
four equal squares. The nodes at height i induce a grid Gi in which each cell has a side length 2i. We
view Q as the sequence of grids G0, G1, . . .; the final grid Glog2 ∆+1 is G itself with a single cell. For two
points a ∈ A, b ∈ B we define dQ(a, b) as follows: For a constant c1 > 0, a parameter ε > 0, we set
j = dlog2(c1 log2 ∆/ε2)e and µ = 2j Let C be the cell of Q that is the least common ancestor of the leaves
containing a and b. Suppose C ∈ Gi. Let GC be a µ× µ grid that divides C into subcells — each subcell of
C has a length 2i−j . Let aC (resp. bC) be the center point of subcells of C that contain a (resp. b). We define
the representatives of (a, b), Rep(a, b), as the ordered pair (aC, bC). We set

dQ(a, b) = ||aCbC||p + 2i+1/µ,

here || · ||p is the distance in the Lp norm. In the following lemma, we show that dQ approximates the Lp
norm in the expected sense.

Lemma 1 For any pair a ∈ A, b ∈ B, dQ(a, b) ≥ ||ab||p. Furthermore, E[dQ(a, b)] ≤ (1 + ε/2)||ab||p.
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Figure 1. (i) For points a, b, d, e, the dotted line depicts the distance between aC , bC and (dC , eC). dQ(a, b) = ||aCbC || +
2`, dQ(d, e) = ||dCeC || + `. (ii) M = {(a1, b1), (a2, b2), (a3, b3), (a4, b4), (a5, b5), (a6, b6)}, KM = {({a1}, {b1}),
({a2, a3, a4}, {b2, b3, b4}), ({a5}, {b5}), ({a6}, {b6})}.

Proof: We prove the lemma for L1 norm; the proof easily extends to any Lp-norm. Let C ∈ Gi be the least
common ancestor of a and b. Let ξ1, ξ2 ∈ GC be the subcells that contain a and b, respectively. Since the
length of ξ1, ξ2 is 2i/µ, the distance between any pair a′ ∈ ξ1, b′ ∈ ξ2 is at most ||aCbC||1 + 2.2i/µ. Hence,
dQ(a, b) ≥ ||ab||1. Since ||aCbC||1 ≤ ||ab||1 + 2i+1/µ, we have dQ(a, b) ≤ ||ab||1 + 2i+2/µ. Therefore,

E[dQ(a, b)] ≤
log ∆+1∑
i=1

Pr[C ∈ Gi](||ab||1 + 2i+2/µ) ≤ ||ab||1 +

log ∆+1∑
i=1

Pr[C ∈ Gi](2i+2/µ).

C is the least common ancestor of a and b. Therefore, two different cells C1,C2 ∈ Gi−1 contain a and
b respectively, i.e., a ∈ C1, b ∈ C2. We have, Pr[C ∈ Gi] ≤ Pr[a ∈ C1, b ∈ C2]. Since Gi−1 is
shifted uniformly at random, the probability that a and b lie in different cells of Gi−1 is at most ||ab||/2i−1.
Therefore we have,

E[dQ(a, b)] ≤ ||ab||1+

log ∆+1∑
i=1

(||ab||1/2i−1)(2i+2/µ) = ||ab||1+8/µ

log ∆+1∑
i=1

||ab||1 ≤ ||ab||+8(log ∆+1)||ab||/µ

Putting c1 = 17 and µ = 17 log ∆/ε, we have E[dQ(a, b)] ≤ (1 + ε/2)||ab||1. �

Let M∗ and MOPT be the optimal bipartite matchings of A,B under dQ(·, ·) and Lp-norm. From
Lemma 1 and linearity of expectation, we obtain w(M∗) ≥ w(MOPT) and E[w(M∗)] ≤ (1+ε/2)w(MOPT).
It thus suffices to compute an ε-approximate matching under dQ(·, ·).

3 Clique Partition
For a partial matching M = {(a1, b1), (a2, b2) . . . , (ak, bk)} of A,B, let a free vertex be a vertex that
has not been matched. Let AF and BF be the vertices of A and B that are free. We partition the graph
G(A \AF , B \BF ) into bipartite cliques KM = {(A1, B1), (A2, B2), . . . (Ar, Br)} where

• For (a, b) ∈M , ∃j, a ∈ Aj , b ∈ Bj .

• al, am ∈ Aj and bl, bm ∈ Bj for some j if and only if Rep(al, bl) = Rep(am, bm).

For any a ∈ A, b ∈ B, suppose a ∈ Ai and b ∈ Bi. We refer to the edge (a, b) as a clique edge. All
other edges, including the edges incident on points in AF and BF are non-clique edges. Note that all edges
in the matching are clique edges.
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Let εw(M∗)/6n ≤ θ ≤ εw(M∗)/3n. Given such a θ our algorithm produces an ε-approximate matching
in O(npoly(log ∆, 1/ε)) time. There are various ways of obtaining θ. For a constant c that depends on
the norm and the dimension of the problem, the cost of the optimal matching is 1 ≤ w(M∗) ≤ cn∆.
For some sufficiently large constant c2, we execute c2npoly(log ∆, 1/ε) steps of our algorithm by setting
θ = θi = ε2i/6n for i ∈ [1, . . . , dlog2 cn∆e]. Of all the perfect matchings produced by the O(log n∆)
executions of our algorithm, we return the matching with the smallest cost. Since, at least one of our guesses
of θ is correct, we obtain an ε-approximate matching. In the rest of the paper, we work under the assumption
that we have the desired θ.

For a partial bipartite matching M and a corresponding clique partition KM , we define a modified cost
function ΦM (·, ·). Suppose M∗ is the optimal matching on A,B. For any a ∈ A, b ∈ B, the adjusted cost
of (a, b),

ΦM (a, b) =

{
dQ(a, b) if (a, b) is a clique edge,

dQ(a, b) + θ otherwise.

By definition, every edge in the matching M is a clique-edge. For a set of edges E ⊆ A×B, we define
ΦM (E) =

∑
(a,b)∈E ΦM (a, b). Therefore, ΦM (M) = w(M). Also, all edges in the same clique have the

same adjusted cost.
Given a matching M on G(A,B), an alternating path (or cycle) P is a simple path (resp. cycle) whose

edges are alternately in and not in M . We define the net cost of P , φM (P ) as

φM (P ) = ΦM (P \M)− ΦM (P ∩M).

An augmenting path P is an alternating path between two free vertices. We augment along P if we modify
M to M ′ as follows. From the matching M , we remove P ∩ M and add P \ M to produce M ′, i.e.,
M ′ = (M \P )∪ (P \M). An alternating path P is good if the total number of non-clique edges of P is at
least |P |/4, where |P | is the length, i.e., the number of edges in the alternating path. For a good augmenting
path P , the following lemma, whose proof is included in the appendix, establishes relationship between the
cost of matchings M , M ′ and the length of P with respect to φM (P ).

Lemma 2 For a matching M and a good augmenting path P , let M ′ be the matching after augmenting M
along P . Then

w(M ′)− w(M) + θ|P | ≥ φM (P ) ≥ w(M ′)− w(M) + θ|P |/4.

Our algorithm chooses smallest net-cost augmenting path P in each step. From the above lemma, if
P is good, then by minimizing the net-cost, we are implictly minimizing a function that also depends on
the length of P . A similar idea was used by Gabow and Tarjan [4] in their scaling algorithm where they
defined the weight (adjusted-cost) of every non-matching edge to be 1 plus the weight of the edge. By doing
so, they obtain a matching whose weight is within an additive error n from the optimal. In contrast, our
choice of θ ensures that we compute an ε-approximate matching. We will show that the total length of the
augmenting paths generated by our algorithm is O(n log n). The following lemma, whose proof is included
in the appendix, shows that there is always a minimum adjusted cost augmenting path that is also a good
path.

Lemma 3 For a matching M , KM , given any augmenting path P , there is a good augmenting path P ′ with
φM (P ) = φM (P ′).
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4 Algorithm
In this section, we present our algorithm. Our algorithm, at any stage, maintains a partial matching M that
satisfies the following invariant.

NON-NEGATIVE CYCLE INVARIANT For any alternating cycle C, φM (C) ≥ 0.

For a point set A,B and a partial matching M that satisfies the NON-NEGATIVE CYCLE INVARIANT

we present a data structure in Section 5 that supports the following two operations.

• FINDGAP(A,B,M) returns a good augmenting path P with the smallest net cost.

• AUGMENT(A,B, P,M) augments M along P .

Each of these operations take O(|P |poly(log ∆, 1/ε)) time. Using this data structure we compute a match-
ing as follows: The algorithm maintains a matching M and iteratively repeats the following until M is
perfect; initially M = ∅. The algorithm first finds an augmenting path using FINDGAP(A,B,M). Next, it
augments M along P using the AUGMENT(A,B, P,M) procedure.

We first bound the cost of the matching assuming the NON-NEGATIVE CYCLE INVARIANT, then ana-
lyze the running time, and finally prove the invariant.

Cost of the matching. In each iteration of our algorithm, augmentation increase the cardinality of the
matching by 1. Hence, our algorithm terminates in n iterations with a perfect matching. The next lemma
bounds the cost of the matching produced by our algorithm.

Lemma 4 Let M∗ be the optimal matching and let M be the perfect matching produced by our algorithm.
Then, w(M) ≤ (1 + ε/3)w(M∗).

Proof: Let M ′ = M ∩M∗. The union of M \M ′ and M∗ \M ′ is a set of vertex disjoint cycles C =
{C1, C2, . . . , Ck}. Each of these cycles is an alternating cycle with respect to M . From NON-NEGATIVE

CYCLE INVARIANT, we have
∑k

i=1 φM (Ci) ≥ 0 or

k∑
i=1

(ΦM (Ci \M)− ΦM (Ci ∩M)) ≥ 0.

For any edge (a, b) ∈ A×B, Φ(a, b) ≤ dQ(a, b) + θ. Since Ci \M ⊆M∗, |Ci \M | ≤ n and we get

k∑
i=1

( ∑
(a,b)∈Ci\M

dQ(a, b)−
∑

(a,b)∈Ci∩M

dQ(a, b)

)
+ nθ ≥ 0.

Adding and subtracting the cost of the edges in M ′, we have∑
Ci∈C

( ∑
(a,b)∈Ci\M

dQ(a, b)

)
+

∑
(a,b)∈M ′

dQ(a, b)−(
∑
Ci∈C

( ∑
(a,b)∈Ci∩M

dQ(a, b)

)
+

∑
(a,b)∈M ′

dQ(a, b)))+nθ ≥ 0.

By construction, M∗ is
⋃
Ci∈C(Ci \M) ∪M ′ and M is

⋃
Ci∈C(Ci ∩M) ∪M ′. Hence we have, w(M∗)−

w(M) + nθ ≥ 0. Since θ is at most εw(M∗)/3n, we get (1 + ε/3)w(M∗) − w(M) ≥ 0 or w(M) ≤
(1 + ε/3)w(M∗). �
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Running time. Each iteration of our algorithm requires one execution of FINDGAP and AUGMENT proce-
dures both of which run in O(|Pi|poly(log ∆, 1/ε)) time. Therefore the total running time of the algorithm
over all iterations is O(

∑n
i=1 |Pi|poly(log ∆, 1/ε)). Next, we show that since the augmenting path in each

iteration is a good path, we have
∑n

i=1 |Pi| = O(n lnn/ε) implying that the running time of our algorithm
is O(npoly(log ∆, 1/ε)).

Lemma 5
n∑
i=1

|Pi| ≤ (6n/ε) lnn.

Proof: Let Mi be the matching at the beginning of iteration i of our algorithm and let Pi be the good
augmenting path with minimum net cost returned in iteration i by the FINDGAP procedure. The union of
Mi with the optimal matching M∗ is a set of cycles {C1, C2, . . . Ck}, a set of edges M ′ = Mi ∩M∗ and a
set of n − i + 1 augmenting paths P ′ = {P ′1, . . . P ′n−i+1}. Since Pi is an augmenting path with minimum
net cost, it follows that

n−i+1∑
j=1

φMi(P
′
j) ≥ (n− i+ 1)φMi(Pi). (1)

But,

n−i+1∑
j=1

φMi(P
′
j) +

k∑
j=1

φMi(Cj) + ΦMi(M
′) ≤

n−i+1∑
j=1

(ΦMi(P
′
j \Mi)) +

k∑
j=1

ΦMi(Cj \Mi) + ΦMi(M
′)

≤
∑

(a,b)∈M∗
dQ(a, b) + nθ ≤ (1 + ε)w(M∗)

Since φMi(Cj) ≥ 0 and ΦMi(M
′) ≥ 0, we get

∑n−i+1
j=1 φMi(P

′
j) ≤ (1 + ε)w(M∗). From (1) it follows that

(n− i+1)φMi(Pi) ≤ (1+ε)w(M∗) or φMi(Pi) ≤ (1+ε)w(M∗)/(n− i+1). Summing over all iterations,

n∑
i=1

φMi(Pi) ≤ (1 + ε)w(M∗)

n∑
i=1

1/(n− i+ 1) ≤ (1 + ε)w(M∗) lnn. (2)

Since every augmenting path in the algorithm is a good path, from Lemma 2, we obtain φMi(Pi) ≥
w(Mi+1)−w(Mi)+θ|Pi|/4. Hence,

∑n
i=1 φMi(Pi) ≥ w(Mn+1)−w(M1)+θ

∑n
i=1 |Pi|/4. Since w(M1) = 0

and w(Mn+1) ≤ (1 + ε)w(M∗), we have

n∑
i=1

φMi(Pi) ≥ (1 + ε)w(M∗) + (εw(M∗)/cn)
n∑
i=1

|Pi|/4.

From the above equation and (2), we get (εw(M∗)/6n)
∑n

i=1 |Pi|/4 ≤ (1 + ε)w(M∗) lnn implying that∑n
i=1 |Pi| ≤ (6n/ε) lnn. �

Proof of invariant. We now show that the NON-NEGATIVE CYCLE INVARIANT of our algorithm holds
after each iteration. At the beginning of the algorithm, there are no matching edges and there are no alter-
nating cycles. Hence the invariant holds. Let us assume that the invariant holds after the first i− 1 iteration.
We show that the invariant holds at the end of iteration i.

An augmentation of Mi along Pi to produce Mi+1 can change the adjusted costs of all the edges on Pi
and the non-matching edges that are incident on some vertex of Pi. The adjusted cost of a non-matching
edge (a, b) changes only if one of the two matching edges incident on a and b change implying that a or b
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Figure 2. Pi = {b1, a1, b2, a2, b3, a3, b4, a4, b5, a5}, C = {b2, a7, b7, a8, b8, a4, b4, a6, b6, a2, b2} is a cycle with respect
to Mi+1;C decomposes into F = {b2, a7, b7, a8, b8, a4}, B = {a2, b6, a8, b4} and Pi ∩ C = {a2, b2}, {a4, b4}; NF =
{b2, a2, b3, a3, b4, a4}, NB = {a2, b3, a3, b4}.

appears on Pi. We call all the edges that are not in Pi and whose adjusted cost change as affected edges. Of
particular interest are affected edges whose adjusted cost reduce after an augmentation. We call such edges
reducing edges. We refer to any cycle C with φ(C) < 0 as a negative cycle. The proof of the algorithm
relies on the following lemma.

Lemma 6 Assuming that the invariant holds after i − 1 iterations, after the ith iteration, Any negative
alternating cycle must involve at least one edge of Pi ∩Mi+1.

Lemma 7 For any alternating cycle C, φMi+1(C) ≥ 0.

Proof: Let C be a negative alternating cycle with the smallest length formed after augmenting Mi along Pi.
Let Pi = 〈p1, p2, . . . , pk〉 in that order, where p1 ∈ B and pk ∈ A.

By Lemma 6, C contains at least one edge of Pi. A path is called forward path F if it is an alternating
path between some pm ∈ B and pj ∈ A, m < j and F ∩ Pi = {pm, pj}. Let PF = 〈pm . . . pj〉. A
backward path B is an alternating path between pm ∈ B and pj ∈ A, m > j and B ∩ Pi = {pm, pj}. Let
PB = 〈pj . . . pm〉. C can be decomposed into a set of forward paths F, a set of backward paths B, and a set
of subpaths in Pi ∩ C.

Suppose the total number of reducing edges in F is k1, the number of reducing edges in B is k2 and
the number of edges of Pi ∩ C that were non-clique before the augmentation is k. Then the following
inequalities, whose proof have been included in the appendix (Lemma 14) hold.

(i)
∑

F∈F φMi+1(F ) + k1θ ≥
∑

F∈F φMi(PF ).

(ii)
∑

B∈B φMi+1(B) + k2θ ≥ −
∑

B∈B φMi(PB).

(iii)
∑

P∈Pi∩C φMi+1(P ) ≥ −
∑

P∈Pi∩C φMi(P ∩ C) + kθ.

(iv) For a negative cycle of smallest length, k ≥ k1 + k2.

Since C is a cycle, if an edge of (a, b) ∈ Pi appears in j different PF ’s, then (a, b) has to appear j times
in paths PB and Pi ∩ C put together. Hence, adding equations (i), (ii) and (iii), we get

∑
F∈F φMi+1(F ) +∑

B∈B φMi+1(B) +
∑

P∈Pi∩C φMi+1(P ) + (k1 + k2 − k)θ ≥ 0. Since φ(C) =
∑

F∈F φMi+1(F ) +∑
B∈B φMi+1(B) +

∑
P∈Pi∩C φMi+1(P ) and k ≥ k1 + k2, we get φMi+1(C) ≥ 0. �

5 Data Structure
In this section we describe a data structure that, given point sets A,B and a matching M for which
NON-NEGATIVE CYCLE INVARIANT hold, supports FINDGAP and AUGMENT operations. We describe
a weighted directed graph −→G on A × B such that an alternating path with respect to M corresponds to a
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directed path in−→G . We formulate FINDGAP operation as finding a shortest path in−→G between free vertices.
In order to find such a path efficiently we heirarchically cluster the points ofA∪B using the quad-treeQ and
store a compressed graph of size O(poly(log ∆, 1/ε)) at each node of Q, and use them recursively to com-
pute a shortest path in −→G . The AUGMENT operation along a path P can change the compressed graphs in
O(|P | log ∆) nodes, each of which can be efficiently recomputed from the children in O(poly(log ∆, 1/ε))
time. We now describe the details.

Directed Graph and its properties. For A, B, a partial matching M and a corresponding clique decom-
position KM , let −→GM (A,B) be a graph where for each a ∈ A b ∈ B, if (a, b) is a non-clique edge then
there is a directed edge directed from b to a with a cost Φ(a, b). If M is obvious from the context we use−→
G to denote −→GM . Otherwise, for a clique edge, there is an edge (a, b) directed from a to b with a cost
−Φ(a, b). For any directed path P in −→G(A,B), let the cost of P , w(P ), be the sum of cost of all the edges
of P . Each free vertex of A is a sink in −→G , each free vertex of B is a source in −→G , and these are the only
source and sink vertices in −→G . A path in −→G alternates between clique and non-clique edges, but a clique
edge may not be a matching edge. The following two lemmas prove useful properties of paths in −→G .

Lemma 8 Given a directed path (cycle) P in −→G(A,B), there is an alternating path (cycle) P ′ in G(A,B)
where the cost of P , w(P ) = Φ(P ′) and |P ′| ≤ 3|P |.

Lemma 9 GivenA,B, a matchingM and a clique decomposition KM . Suppose for every alternating cycle
C, φM (C) ≥ 0. Then, for any alternating path P , there is a path P ′ in −→G(A,B) that for every clique in
KM , there is at most one edge of the clique in P ′. Furthermore, w(P ′) ≤ φM (P ).

Proof: Let P be a path that passes through the vertices {a1, b1, a2, b2, . . . at, bt}. Let us assume that every
(aj , bj) is a clique edge. Let (Ai, Bi) ∈ KM , aj , ak ∈ Ai, bj , bk ∈ Bi be the clique such that (aj , bj)
and (ak, bk) appear in P . Without loss of generality, let us assume that (aj , bj) appears before (ak, bk)
in P . Let w(ak, bk) = w(aj , bj) = η. Observe that there is a directed edge (aj , bk) and (ak, bj) whose
cost is also η. Replacing (aj , bj) and (ak, bk) in P with (aj , bk) and (ak, bj) results in a path P ′ from
a1, . . . , aj , bk, . . . bt and a cycle C formed by the portion of P between bj and ak and the edge ak, bj . But
w(P ) = w(P ′) + w(C). Since w(C) ≥ 0, it follows that w(P ′) ≤ w(P ). �

These lemmas imply that the minimum-weight path between a source and sink can be transformed into a
good augmenting path of the same net cost. and that each augmenting path is a path in−→G . Hence FINDGAP
reduces to finding a minimum-weight path between a source and a sink of −→G that visits each clique at most
once.

Clustering nodes. For a cell C of the quad tree Q, let AC = A ∩ C and BC = B ∩ C. Similarly for a
subcell ξ ∈ GC, let Aξ = A∩ ξ and Bξ = B ∩ ξ. Given M = {(a1, b1), . . . , (ak, bk)} and a clique partition
KM = {(A1, B1), . . . , (Au, Bu)}, we cluster Aξ, Bξ as follows:

AFξ = AF ∩ ξ, BF
ξ = BF ∩ ξ, (free clusters).

AIξ = {ai ∈ Aξ \AF | bi ∈ BC}, BI
ξ = {bi ∈ Bξ \BF | ai ∈ AC}(internal clusters).

For each subcell η 6⊆ C of a proper ancestor of C in Q, we define

Aηξ = {ai ∈ Aξ \AF | bi ∈ Bη}, Bη
ξ = {bi ∈ Bξ \BF | ai ∈ Aη}(boundary clusters.)

AIξ ,B
I
ξ correspond to the matching edges that lie inside C, andAηξ ,Bη

ξ correspond to the matching edges
that cross the boundary of C and thus lie inside an ancestor of C. Note that the boundary clusters is empty
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for the root of Q.

XC = {BF
ξ , A

I
ξ , B

η
ξ | ξ ∈ GC}, YC = {AFξ , BI

ξ , A
η
ξ | ξ ∈ GC}.

Observing that for a fixed ξ there are poly(log ∆, 1/ε) boundary clusters — one for each subcell of an
ancestor of C — and there are poly(log ∆, 1/ε) subcells in GC, we obtain the following

Lemma 10 For any cell C of the quad-tree, |XC|, |YC| = O(poly(log ∆, 1/ε)).

For a cell C of Q, let C1, . . . ,C4, be its 4 children. Each subcell ξ ∈ GC has four children ξ1, ξ2, ξ3, ξ4,
in the grid GCi

if ξ lies inside Ci. The following inequalities are straightforward:

AFξ =
4⋃
i=1

AFξi , B
F
ξ =

4⋃
i=1

BF
ξi
, Aηξ =

4⋃
i=1

Aηξi , B
η
ξ =

4⋃
i=1

Bη
ξi
.

AIξ =
4⋃
i=1

(AIξi ∪ (
⋃
η⊂C

Aηξi)), BI
ξ =

4⋃
i=1

(BI
ξi
∪ (
⋃
η⊂C

Bη
ξi

)). (3)

In other words, each cluster of XC and YC can be represented as the union of clusters of the children of
C. For each such cluster X of C, let D(X) be the set of these clusters of its children.

Information at each node. For a cell C ∈ Q, let −→GC =
−→
GM (AC, BC) be the subgraph of −→G(A,B)

formed by the points AC, BC. For a pair (a, b) ∈ AC ×BC, let ΨC(a, b) be the cost of the shortest weighted
path from a to b in −→GC. For any pair of subsets X ⊆ AC, Y ⊆ BC, let ΨC(X,Y ) = mina∈X,b∈Y ΨC(a, b).

At each cell C ∈ Q, we store

ΨC(X,Y ) for all X,Y ∈ X× Y. (4)

Next, we show that if we have (4) at all children of a cell C ∈ Q, we can compute it for C in poly(log ∆, 1/ε),
and that given X,Y , we can compute the path in −→GC that visits each clique of KM at most once in time
O(kpoly(log ∆, 1/ε)), where k is the length of the path. We call these procedure ASCEND(C) and EX-
TRACTPATH(X,Y,C).

ASCEND procedure. Let C1,C2,C3,C4 be the four children of the cell C ∈ Q. We construct a weighted
directed graphHC = (VC, EC) where VC =

⋃4
i=1(XCi

∪YCi
). There are two sets of edges inHC: (i) internal

edges — between two clusters of the same Ci; (ii) boundary edges — between clusters of different children.
For a pair (X,Y ) ∈ XCi

×YCi
, we add an internal edge (X,Y ) with weight w(X,Y ) = ΨCi

(X,Y ). Next,
let (X,Y ) ∈ XCi

× YCj
, for i 6= j, suppose X ⊆ Aξ for some subcell ξ of Ci and Y ⊆ Bξ′ for some

subcell ξ′ of Cj ; the case when X ⊆ Bξ and Y ⊆ Aξ′ is symmetric. Note that ΦM (a, b) is the same for all
(a, b) ∈ X × Y , say σab. If X is a free or internal cluster, we add (Y,X) with a weight w(Y,X) = σab.
Suppose X and Y are boundary clusters Aηξ and Bη′

ξ′ , respectively. If η = ξ′ and η′ = ξ, i.e., Aηξ and Bη′

ξ′ lie
in the same clique of KM , we add the edge (X,Y ) with w(X,Y ) = −σab.

All the internal edges ofHC incident on some cluster Y ∈ YC are directed inwards and all internal edges
incident on X ∈ XCi

are directed outwards. Hence, any path can reach X only through a boundary edge
and any path that reaches Y can exit through a boundary edge. Hence every internal edge is succeeded and
preceeded by a boundary edge in any path P in HC.

For a cell C, let C1,C2,C3,C4 be its four children. Consider a shortest path π between any two clusters
of C in −→G(AC, BC). Suppose π enters and exits C1 mutliple times. Note that when π enters (resp. exits)
C1 through a non-clique edge, the edge is incident on (resp. origniating from) a point in AIξ (resp. BI

ξ (, for
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some ξ ∈ GC1 . Similarly, when π enters (resp. exits) through a clique edge, the edge has to be incident on
(resp. originating from) Aηξ (Bη

ξ ) where η ∈ GCi
, i 6= 1.

For any pair of clusters of two siblings, say C1 and C2, i.e., X ∈ (XC1 ∪YC1) and Y1, Y2 ∈ (XC2 ∪YC2),
every pair of edges (x1, y1), (x2, y2) ∈ π, x1, x2 ∈ X and y1 ∈ Y1, y2 ∈ Y2 are such that w(x1, y1) =
w(x2, y1) and w(x1, y2) = w(x2, y2). Using arguments similar to Lemma 9, we can modify π to π′ such
that π′ enters or exits X at most once. By repeating this argument, we obtain a path π′ that enters or exits
every cluster of a child at most once. Such a path π′ maps to a simple path inHC — replace every maximally
connected subpath in C1 between any two entry and exit points by the corresponding internal edge between
the two clusters in HC.

For a pair of vertices z, z′ ∈ VC, let ΨC(z, z′) be the length of the shortest path in HC from z to z′. We
obtain the following Lemma 11, the proof of which is included in the appendix.

Lemma 11 For any (X,Y ) ∈ XC × YC, ΨC(X,Y ) = minX′∈D(X),Y ′∈D(Y ) ΨC(X ′, Y ′).

Since HC has no negative cycles, we can use Floyd-Warshall algorithm to compute all the ΨC-values
from HC in O(poly(log ∆, 1/ε)) time.

EXTRACTPATH procedure. Given z, z′ ∈ XC × YC, we construct a simple path from a vertex u ∈ z and
v ∈ z′ whose cost is ΨC(z, z′) and that visits each clique at most once as follows. We compute a shortest
path from z to z′ in the graph HC. Among all the shortest paths between z and z′, we choose the path with
the minimum number of edges. Let z = z0, z1, . . . , zu−1, zu = z′ be the computed path. By construction,
if (zi−1, zi) is an internal edge, then zi, zi+1 has to be a boundary edge. If (zi−1, zi) is an internal edge,
we recursively call the procedure in the corresponding child of C. Suppose a path πi with the endpoints
ui−1 ∈ zi−1 and ui ∈ zi are returned. If (zi+1, zi+2) is also internal edge and the path πi+2 with the
endpoints ui+1 ∈ zi+1, ui+2 ∈ zi+2 is returned, we connect πi and πi+1 by the boundary edge (ui, ui+1).
If (zi+1, zi+2) is also a boundary edge, we choose any point ui+1 ∈ zi+1 and add the edge (ui, ui+1). Let π
be the path construced by this procedure. Then

Lemma 12 The weight of π is ΨC(z, z′) and it visits each clique at most once.

Since π visits every clique atmost once, π is a simple and good augmenting path and the time taken by
the procedure is O(|π|poly(log ∆, 1/ε)).

Implementing FINDGAP. We find (X,Y ) = arg minξ1,ξ2∈GR
ΨR(BF

ξ1
, AFξI ), where R is the root of Q

using EXTRACTPATH(X,Y,R), we compute in time O(|P |poly(log ∆, 1/ε)) an augmenting path with the
smallest net-cost.

Implementing AUGMENT. ForA,B and a partial matchingM , Given a path P , the AUGMENT procedure
augments M along P . Let P visit points {p1, p2, . . . , pk} in that order. For each point visited by pi ∈ P ,
let C(pi) be the set of log ∆ + 1 ancestors of pi in Q. Let C =

⋃k
i=1 C(pi). We recursively update HC

values of all cells C ∈ C in a bottom-up fashion. The proof of correctness follows from Lemma 16 in the
appendix. Updating HC for each cell C ∈ C takes O(poly(log ∆, 1/ε) time. Hence, the total time taken by
the procedure is O(|P |poly(log ∆, 1/ε)). We thus conclude the following

Theorem 1 For point sets A,B ⊂ [∆]d and a parameter ε > 0, an ε-approximate matching of A,B can be
computed in time O(npoly(log ∆, 1/ε)) with high probability.

From the discussion in the beginning of Section 2, we obtain:

Theorem 2 For point sets A,B ⊂ Rd and a parameter ε > 0, an ε-approximate matching of A,B can be
computed in time O(npoly(log n, 1/ε)) with high probability.
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A Appendix
Proof of Lemma 2. Suppose P has t non-clique edges. Then, φM (P ) = ΦM (P \M)− ΦM (P ∩M) =∑

(a,b)∈P\M dQ(a, b)+tθ−
∑

(a,b)∈P∩M dQ(a, b). Adding and subtracting
∑

(a,b)∈M\P dQ(a, b) from above
we get,

φM (P ) =
∑

(a,b)∈M ′
dQ(a, b)−

∑
(a,b)∈M

dQ(a, b) + tθ = w(M ′)− w(M) + tθ.

Since P is a good path, |P | ≥ t ≥ |P |/4. Hence, we get

w(M ′)− w(M) + |P | ≥ φM (P ) ≥ w(M ′)− w(M) + |P |/4.
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Proof of Lemma 3. We construct P ′ from P as follows. Let {b0, a1, . . . , bm−1, am} be the set of vertices
visited by P in that order; here b0 ∈ B and ak ∈ A are free vertices. We decompose the edges in P into
a non-clique edges and a set of maximally connected sub-paths P such that for any subpath Pi ∈ P, every
edge of Pi lies in the same clique. Since, Pi is maximally connected, every Pi ∈ P is preceeded by a
non-clique edge. Also, each Pi ∈ P starts from some aj ∈ A, with (aj , bj) being a matching edge and ends
at some (ak, bk) ∈M . Suppose every |Pi| ≤ 3, then there is a non-clique edge in P for at most three clique
edges and hence P is good. Otherwise, suppose Pi ∈ P has a length greater than 3. Let Pi pass through the
vertices {aj , bj , aj+1, bj+1 . . . ak, bk}. Since Pi starts and ends with a matching edge, and since all edges in
the same clique have identical adjusted costs, we have φM (Pi) = −Φ(aj , bj). For every Pi ∈ P, we can
replace Pi with P ′i = {(aj , bj), (bj , ak), (ak, bk)} to obtain the path P ′. Since φM (Pi) = φM (P ′i ), the net
cost of P and P ′ are identical. Also, since |P ′i | ≤ 3 path P ′ is good.

Lemma 13 For any reducing edge (a, b), in the clique-partition corresponding to Mi+1, a and b are in the
same clique.

Proof: For any (a, b), there are only two possible adjusted costs, i.e., dQ(a, b) or dQ(a, b) + θ. Since, the
adjusted cost after augmentation has reduced, ΦMi+1(a, b) = dQ(a, b), implying a and b are in the same
clique in the clique partition corresponding to Mi+1. �

Proof of Lemma 6. Any negative cycle should involve at least one edge (a, b) such that ΦMi(a, b) 6=
ΦMi+1(a, b). Suppose (a, b) ∈ Pi, then if (a, b) is a non-matching edge then the alternating cycle should
contain both the matching edges incident on (a, b). Clearly both these edges are also in Pi. Hence there is
at least one edge of Pi ∩Mi+1 in C. On the other hand, suppose (a, b) is an affected edge that is not in Pi.
Clearly, both the matching edges incident on a and b are in C. Since every affected edge is incident on at
least one edge in Pi ∩Mi+1, Hence any such C would be incident on at least one edge in Pi ∩Mi+1.

Lemma 14 Let Mi+1 be the matching formed after augmenting Mi along Pi. Let C be a any alternating
cycle formed after augmenting Mi. Suppose the total number of reducing edges in F is k1, the number of
reducing edges in B is k2 and the number of edges of Pi ∩ C that were non-clique before the augmentation
is k.Then,

(i)
∑

F∈F φMi+1(F ) + k1θ ≥
∑

F∈F φMi(PF ).

(ii)
∑

B∈B φMi+1(B) + k2θ ≥ −
∑

B∈B φMi(PB).

(iii)
∑

P∈Pi∩C φMi+1(P ) ≥ −
∑

P∈Pi∩C φMi(P ∩ C) + kθ.

(iv) For a negative cycle of smallest length, k ≥ k1 + k2.

Proof:

(i) Before augmentating along Pi, suppose for some F ∈ F, consider the two portion P ′ and P ′′ of paths
formed by removing PF from Pi. Concatenating P ′, F and P ′′, we obtain another augmenting path
P . Since Pi is the smallest augmenting path φMi(P ) ≥ φMi(Pi). This implies φMi(F ) ≥ ΦMi(PF )
or ∑

F∈F
φMi(F ) ≥

∑
F∈F

φMi(PF ). (5)

Since total number of reducing edges in F is k1 and since all other affected edges increase the adjusted
cost, we have

∑
F∈F φMi+1(F )+k1θ ≥

∑
F∈F φMi(F ). Combining this with (5), we have the desired

inequality of (i).
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(ii) Before augmentation, for B ∈ B, the union of B and PB is a cycle C. Since, φMi(C) ≥ 0, we have
φMi(B) + φMi(PB) ≥ 0 or ∑

B∈B
φMi(B) +

∑
B∈B

φMi(PB) ≥ 0. (6)

Since there are k2 reducing edges in B, we get
∑

B∈B φMi+1(B) + k2θ ≥
∑

B∈B φMi(B). From (6)
and the above equations, the desired inquality in (ii) follows.

(iii) For any set of alternating paths P in Pi ∩ C with a total of k non-clique edges,
∑

P∈P φMi(P ) =∑
P∈P

∑
(a,b)∈P\Mi

dQ(a, b) + kθ −
∑

P∈P
∑

(a,b)∈Mi∩P dQ(a, b)

−
∑
P∈P

φMi(P ) + kθ =
∑
P∈P

(
∑

(a,b)∈Mi∩P

dQ(a, b)−
∑

(a,b)∈P\Mi

dQ(a, b))

=
∑
P∈P

(
∑

(a,b)∈Mi+1\P

dQ(a, b)−
∑

(a,b)∈Mi+1∩P

dQ(a, b))

≤
∑
P∈P

φMi+1(P ).

(iv) Since C is a negative cycle with smallest length and since there are k1 + k2 reducing edges of C
incident on C ∩ {Pi ∩Mi+1}, from Lemma 15, it follows that there are at least k1 + k2 non-clique
edges in C ∩ {Pi ∩Mi+1}. Hence, k ≥ k1 + k2.

�

Lemma 15 Given a negative alternating cycle C with the smallest length, letE be the set of reducing edges
in C.

(i) Every edge of C ∩ {Mi+1 ∩ Pi} has at most one edge in E incident on it.

(ii) If (a, b) ∈ C ∩ {Mi+1 ∩ Pi} has a reducing edge incident a or b, then

ΦMi(a, b) = dQ(a, b) + θ.

Proof: We prove (i) by contradiction. Suppose there are two reducing edges (b′, a) and (b, a′) incident on
the same edge (a, b) ∈ C ∩ {Mi+1 ∩ Pi}. By Lemma 13 and the fact that a and b are a matching edge, it
follows that a′, a, b and b′ are in the same clique. In particular, a′, b′ are in the same clique. We can reduce C
to another cycle C ′ with the {(a′, b)(b, a)(a, b′)} replaced with a single edge (a′, b′). Since φ(C ′) = φ(C)
and |C ′| < |C|, we reach a contradiction of our assumption that C is a negative cycle with the smallest
number of edges.

Suppose there is a reducing edge (b′′, a) incident on a. By construction (a, b) 6∈ M . Let a be matched
to b′, b be matched to a′ and b′′ be matched to a′′ in M . Let us assume that ΦM (a, b) = dQ(a, b). This
implies that (a, b) is a clique edge and hence a, b, a′, b′ belong to the same clique in M . In particular,
Rep(a, b) = Rep(a′, b′). After augmentation, from Lemma 13 the edges (a, b), (a′′, b′′) are in the same
clique. Hence Rep(a, b) = Rep(a′′, b′′). This implies that Rep(a, b′) = Rep(a′′, b′′) implying that (a, b′′)
was a clique edge with respect to M . This contradicts our assumption that (a, b) is a reducing edge. �

13



Proof of Lemma 8. Let the path P visit vertices {a1, b1, a2, b2 . . . ak, bk} in that order. The path alternates
between clique and non-clique edges. Without loss of generality let us assume that the first edge (a1, b1)
of P is a non-clique edge. We construct P ′ as follows. Let P ′i be the alternating path that ends with a
matching edge and generated for the portion of the path P , Pi between a1 and ai. P ′i+1 can be constructed
from P ′i and Pi. Suppose (bi, ai+1), which is a clique edge is also a matching edge, then we add (ai, bi) and
(bi, ai+1) to P ′i to generate P ′i+1. On the other hand, if (bi, ai+1) which is a clique edge is not a matching
edge. Let bi be matched to a′ and ai+1 be matched to b′. a′, b′, ai+1 and bi are in the same clique. We
add N = {(ai, bi), (bi, a′), (a′, b′)(b′, ai+1)} to path P ′i to generate P ′i+1. φ(N) = w(ai, bi) + w(ai+1, bi).
Hence, φ(P ′i+1) = w(Pi+1).

We replace every clique edge in P with at most 3 edges in P . Hence |P ′| ≤ 3|P |.
Proof of Lemma 11. We prove by induction on height of C. Suppose for a cell C ∈ Q, let C1,C2,C3,C4

be its four children.
For any path P of −→G(AC, BC), a connected sub-path P of P in any child, say C1, is a connected region

of the path P in C1 such that every vertex of P is in C1. A maximally connected sub-path of P ′ in a child,
say C1, is a connected sub-path P in C1 that is not succeeded or preceeded in P ′ by any vertices that are in
C1. P can be represented compactly by replacing every maximally connected sub-path P̂ of P by a single
internal edge between the end points of P directed along P and with a cost w(P ). Note that, for any child
C1, a maximal connected subpath can exist only between pairs of nodes from any clusters X ∈ XC1 and
Y ∈ YC1 directed from X to Y . By definition, a maximally connected subpath any edge that succeeds or
preceeds it is a boundary edge. We refer to such a compact representation P ′ of P as a compact path.

Given HC, we show the following:
(i) For every directed path (resp. cycle) P in HC, we first show there is a path (resp. cycle) P ′ in−→

G(AC, BC) such thatw(P ) = w(P ′). We construct P ′ from P as follows. For every internal edge (X,Y ) ∈
XCi
× YCi

in P , let x ∈ X and y ∈ Y be such that ΨCi
(x, y) = ΨCi

(X,Y ) = w(X,Y ). Let P (X,Y )
be this shortest directed path between x and y. We replace every internal edge with P (X,Y ). Suppose a
boundary edge connects two internal edges (X1, Y1) and (X2, Y2), we simply replace the boundary edge
with the corresponding end points of the path P (X1, Y1) and P (X2, Y2) to obtain the directed path P ′.
If two consecutive boundary edges are incident on the same cluster, we choose an arbitrary point from
the cluster to obtain the corresponding edges in P ′. Since every edge in −→G(AC, BC) that is between two
clusters connected by a boundary edge have the same weight and direction as the boundary edge, we have
w(P ′) = w(P ). Since there are no negative cycles in −→G(AC, BC), it follows that there are no negative
cycles in HC.

(ii) ΨC(X,Y ) ≤ minX′∈D(X),Y ′∈D(Y ) ΨC(X ′, Y ′). We first show that for any X ∈ XCi
, Y ∈ YCj

,
i 6= j, ΨC(X,Y ) = ΨC(X,Y ). For X ∈ XCi

, Y ∈ YCj
, i 6= j, let P be a path from some x ∈ X and y ∈ Y

such that ΨC(x, y) = ΨC(X,Y ). From Lemma 9, we can assume that P is a directed path that visits every
clique at most once. Let P ′ be the compact path corresponding to P . We modify P ′ to another compact
path P ′′ such that w(P ′′) ≤ w(P ′) and P ′′ visits every cluster in VC at most once. To construct such a P ′′,
we show that if P ′ visits the same cluster X ∈ VC twice, i.e., two non-adjacent edges of P ′ are incident on
X , then we can obtain another path whose weight is at most the weight of P ′ and X is visited at most once.
Clearly, All edges incident on points in BF

ξ are outgoing. Hence no path can visit BF
ξ twice. Similarly, all

edges incident on AFξ are incoming; hence X is not a free cluster. By construction, P ′ visits every clique at
most once implying that no boundary cluster is visited twice by P ′ cannot visit any boundary cluster twice.
Therefore, X is not a boundary cluster. Suppose X is an internal cluster, say X = AIξ for some ξ ∈ GC1

(The argument for BI
ξ is symmetric.) Since X is visited twice, there are at least two non-clique boundary

edges incident on X . Let the edges be (b, a) and (b′, a′). Without loss of generality, let us assume that (b, a)
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appears before (b′, a′) in P ′. P ′ visits vertices {x, . . . , b, a, . . . , b′, a′, . . . , y} in that order. Since a, a′ are in
the same cluster, w(b, a′) = w(b, a) and w(b′, a′) = w(b′, a). We remove (b, a), (b′, a′) and add (b′, a) and
(b, a′). This creates a cycle C, consisting of the portion of P between b, a′ and the edge (a′b) and a path
P̃ consisting of the portion of P ′ between x and a followed by edge (a, b′) and the portion of P ′ between
b′ and y. Since w(C) ≥ 0, we obtain P̃ whose cost is at most the cost of P and P̃ visits BI

ξ atmost once.
Repeating the argument for every cluster that is visited twice, we obtain P ′′.

Given P ′′, we can construct a simple path in HC by replacing every internal edge of P ′′ with the corre-
sponding internal edge of HC. Hence (ii) holds.

From (ii) and the subset relationship of (3), the desired inequality follows.

Proof of Lemma 12. We prove by induction on the height of the cell C. Assume, that for the internal edge
(zi−1, zi), a directed path with cost w(zi−1, zi) is returned. We replace the internal edge (zi−1, zi) with
the path without any increase in cost. Furthermore, since every internal edge is preceeded and succeeded
by a boundary edge. For any two clusters X,Y ∈ XCi

× YCj
, i 6= j, every edge between any two points

x ∈ X and y ∈ Y have identical in weight and direction. Hence, the choice of ui−1 and ui does not alter the
weights of the boundary edges. From Lemma 11, we know that the cost of the shortest path in HC is equal
to ΨC(z, z′). Therefore, the constructed path is a directed path in −→G(AC, BC) with a weight ΨC(z, z′).

Next, we argue that this path visits every clique at most once. By induction hypotheses, this is true for
all the paths recursively generated for the internal edges. π does not visit any boundary clique twice, since
otherwise, using arguments similar to Lemma 9, we can eliminate a cycle thereby reducing the length of the
shortest path. This results in a contradiction since our algorithm chooses the shortest path with the smallest
length. Next, we show that no internal clique is visited twice. Suppose there is a clique (Ai, Bi) ∈ KM that
is visited twice by the path. Since the paths corresponding to the internal edges visit every clique at most
once, (Ak, Bk) must be visited by the paths corresponding to two different internal edges. Let al, am ∈ Ak
and bl, bm ∈ Bk, be the corresponding points visited by these paths. Without loss of generality, let us assume
that (al, bl) appears before (am, bm) in the path of z, z′. Suppose (zi−1, zi) and (zj−1, zj) are the two internal
edges and let the paths corresponding to them be {ui−1 . . . al, bl, . . . ui} and {uj−1 . . . , am, bm, . . . , uj}.
Since (al, bl) and (am, bm) belong to the same clique, we have w(al, bl) = w(am, bm) = w(al, bm) =
w(am, bl). Hence, we can remove (am, bm) and (al, bl) and add (al, bm) and (am, bl). This creates a vertex
disjoint cycle C = {bl . . . , ui . . . , uj , . . . am, bl and a path P = {. . . , ui−1 . . . al, bm, . . . , uj , . . .}. Since
w(C) ≥ 0, we have w(P ) is at most the cost of the path between z and z′. Furthermore, the portion between
ui−1, uj is a directed path between clusters zi−1 and zj . This implies that the internal edge (zi−1, zi) and
(zj−1, zj) can be replaced by zi−1, zj . Thus there is another path with the same cost and a smaller length
resulting in a contradiction.

Lemma 16 For an augmenting path P and a matching M , let C be a non-empty quad tree cell such that⋃k
i=1 pi ∩ C = ∅. Then, augmenting along P will not change HC.

Proof: HC changes only if any point in AC or BC changes its cluster or any edge in −→G(AC, BC) changes its
weight. Clusters are defined on points being matched inside, outside C or being unmatched. Therefore, a
point changes its cluster only if the edge it is matched to changes. Since C does not contain any point of P ,
no point inAC∪BC change their cluster. The cost of any edge in−→G(AC, BC) changes after an augmentation
only if the edge is incident on some vertex of P . Since no vertex of P is in C, no edge of −→G(AC, BC)
changes its weight. �
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