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Abstract
For A,B ⊂ Rd, |A| + |B| = n, let a ∈ A have a
demand da ∈ Z+ and b ∈ B have a supply sb ∈ Z+,∑
a∈A da =

∑
b∈B sb = U and let d(·, ·) be a distance

function. Suppose the diameter of A ∪ B is ∆ under d(·, ·),
and ε > 0 is a parameter. We present an algorithm that
in O((n

√
U log2 n+U logU)Φ(n) log(∆U/ε)) time computes

a solution to the transportation problem on A,B which is
within an additive error ε from the optimal solution. Here
Φ(n) is the query and update time of a dynamic weighted
nearest neighbor data structure under distance function
d(·, ·). Note that the (1/ε) appears only in the log term.
As among various consequences we obtain,

• For A,B ⊂ Rd and for the case where d(·, ·) is a metric,
an ε-approximation algorithm for the transportation
problem in O((n

√
U log2 n + U logU)Φ(n) log(U/ε))

time.

• For A,B ⊂ [∆]d and the L1 and L∞ distance, exact
algorithm for computing an optimal bipartite matching
of A,B that runs in O(n3/2 logd+O(1) n log ∆) time.

• For A,B ⊂ [∆]2 and RMS distance, exact algorithm for
computing an optimal bipartite matching of A,B that
runs in O(n3/2+δ log ∆) time, for an arbitrarily small
constant δ > 0.

For point sets, A,B ⊂ [∆]d, for the Lp norm and
for 0 < α, β < 1, we present a randomized dynamic
data structure that maintains a partial solution to the
transportation problem under insertions and deletions of
points in which at least (1−α)U of the demands are satisfied
and whose cost is within (1 + β) of that of the optimal
(complete) solution to the transportation problem with high
probability. The insertion, deletion and update times are
O(poly(log(n∆)/αβ)), provided U = nO(1).

1 Introduction

Let A be a set of points in Rd, each a ∈ A with a
positive integral demand da and let B be a set of
points in Rd, each b ∈ B with a positive integral
supply sb such that

∑
a∈A da =

∑
b∈B sb = U ; set

|A| + |B| = n. Let d(·, ·) be a distance function. We
use G(A,B) to denote the complete bipartite graph
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(A ∪ B,A × B)1 with every edge (a, b) having a cost
d(a, b). We call a function σ : A × B → Z≥0 an as-
signment if

∑
b∈B σ(a, b) = da and

∑
a∈A σ(a, b) = sb.

The cost of σ is w(σ) =
∑
a∈A,b∈B σ(a, b)d(a, b).

The Hitchcock-Koopmans transportation problem,
or simply the transportation problem for brevity,
is to compute an assignment σOPT for A,B of
minimum possible cost. An assignment σ is called
ε-approximate if w(σ) ≤ (1 + ε)w(σOPT), and ε-close if
w(σ) ≤ w(σOPT) + ε. The bipartite matching problem is
a special case of the transportation problem in which
da = sb = 1 for all a ∈ A, b ∈ B. In this case an
assignment is called the perfect matching. Similarly
optimal, ε-approximate and ε-close matchings are
optimal, ε-approximate and ε-close assignments in
this special case. We study the problem of computing
optimal, ε-close and ε-approximate assignments to the
transportation problem.

Previous Work. Optimal assignments on
weighted bipartite graphs with n vertices can be
computed using the Hungarian algorithm in O(n3)
time [11]. For unweighted bipartite graphs with n
vertices and m edges, a maximum-cardinality match-
ing can be computed in time O(m

√
n) [8]. If edge

costs are positive integers bounded by nO(1), Gabow
and Tarjan [7] show that an optimal matching can
be computed in time O(n

√
m log n) and an optimal

assignment for the transportation problem in time
O((min(

√
U, n)m + U logU) log n). If A,B ⊂ R2 and

d(·, ·) is the L2 norm, Vaidya [14] shows that the
optimal matching on G(A,B) can be computed in time
O(n2.5). Atkinson and Vaidya [4] extend this approach
to an O(n2.5 logU) algorithm for the transportation
problem. Agarwal et al. [1] improve the running time
of the algorithms for matching and transportation
problems to O(n2+δ) and O(n2+δ logU), where δ > 0
is an arbitrarily small constant, respectively. For

1For notational simplicity, we assume that A ∩ B = ∅. Our
algorithm works even otherwise.



A,B ⊂ Rd and the L1 and L∞ norms, the running
times for the matching and transportation problems
can be improved to n2 logO(d) n and n2 logO(d) n logU ,
respectively [14, 4].

For arbitrary weighted bipartite graphs, there are
no known approximation algorithms that are more
efficient than the algorithm in [7]. For point sets
A,B ⊂ R2 and for the L2 norm, Agarwal and Varadara-
jan [15] show that an ε-approximate matching can be
computed in O((n/ε)3/2 log5 n) time. In [2], Agar-
wal and Varadarajan present a Monte Carlo algorithm
for computing an O(log(1/ε))-approximate matching in
time O(n1+ε). Building on the ideas of Agarwal and
Varadarajan, Indyk [9] presents an algorithm that esti-
mates in O(n polylog(n)) time, with probability at least
1/2, a cost that is at most O(1) times the cost of the
optimal matching. It, however, does not return such a
matching. See also [12].

For unweighted graphs, Onak and Rubinfield [10]
present a fully dynamic data structure that maintains,
for a large constant c, a 1/c-approximation of maximum
cardinality matching under insertions and deletions of
edges in O(log2 n) amortized time. Baswana et al. [5]
improve the amortized update time to O(log n) and
the approximation ratio to 1/2. For bipartite graphs
induced by a bounded integer grid [∆]d, there is a
streaming algorithm that maintains, under insertions
and deletions, a matching whose expected cost is at
most O(log ∆) times the cost of the optimal matching.
Andoni et al. [3] present a streaming algorithm that
maintains, in O(∆ε) space and update time, a cost
whose expected value is within O(1/ε) times the cost
of the optimal matching.

Our results. For A ⊆ Rd, |A| = n and with
every a ∈ A having a weight wa, suppose there is a
dynamic nearest-neighbor data structure under d(·, ·)
that allows insertion and deletion of points for a query
point q returns the weighted nearest neighbor, i.e. a
point p = argminp′∈A d(p′, q) − wp′ . Let Φ(n) be the
query and update time of such a data structure. We
assume that Φ(n) = Ω(log n). In this paper, we obtain
the following results.

• Suppose the diameter ofA∪B is ∆ under d(·, ·). For
any ε > 0, we present an algorithm that computes
an ε-close assignment in time O((n

√
U log2 n +

U logU)Φ(n) log(∆U/ε)). This algorithm implies
the following results:

– If A,B ⊂ Rd and d(·, ·) is a metric, then for
ε > 0 an ε-approximate assignment for A,B
can be computed in time O((n

√
U log2 n +

U logU)Φ(n) log(n/ε)). If d(·, ·) is L1, L2 or

L∞ norms and U ≤ n2−δ for some constant
δ > 0, then the running time of our algorithm
is o(n2). For the special case of matching,
d = 2 and d(·, ·) being the Lp norm, the
running time of this algorithm is similar to
that in [15] as a function of n, but the latter
has a factor 1/ε3/2 in its running time while
ours has log(1/ε).

– If A,B ⊂ [∆]d are sets of grid points and d(·, ·)
is L1 or L∞ norm, an optimal matching can be
computed in time O(n3/2 logd+O(1) n log ∆).
As far as we know, this is the first sub-
quadratic algorithm for the matching problem
under L1, L∞ norms even when points lie on
a bounded grid.

– If A,B ⊂ [∆]2 and d(·, ·) is the RMS2 dis-
tance, the above algorithm computes an opti-
mal matching in time O(n3/2+δ log ∆) for an
arbitrarily small constant δ > 0.

• If A,B ⊆ [∆]d and d(·, ·) is Lp norm, we
present a randomized dynamic data structure
of size n(log ∆ logU/(αβ))O(d) that maintains an
(α, β)-assignment σ such that

∑
b∈B σ(a, b) ≤ da,∑

a∈A σ(a, b) ≤ sb,
∑
a∈A,b∈B σ(a, b) ≥ (1 − α)U

and the cost of σ, w(σ), is at most (1 + β)w(σOPT)
with high probability. The update time of our data
structure is (log(n∆)/(αβ))O(d), provided U ≤
nO(1).

The rest of the paper is organized as follows. In
Section 2, we introduce basic definitions and give a brief
overview of the Gabow-Tarjan algorithm for computing
optimal bipartite matching. In Section 3, we describe
our algorithm for transportation problem. In Section 4,
we describe dynamic data structure that maintains an
(α, β)-assignment.

2 Preliminaries

Given a matching M on G(A,B), an alternating path
(or cycle) is a simple path (resp. cycle) whose edges are
alternately in and not in M . A free vertex is a vertex
that has not been matched. An augmenting path P is
an alternating path between two free vertices. We can
augment M by one edge along P if we remove P ∩M
from M and add P \M to M .

For every vertex v in G(A,B), let y(v) be its dual
weight. A 1-feasible matching consists of a matching M
and set of dual weights y(v) such that for every edge
between u ∈ A and v ∈ B we have

2Under the RMS distance, the distance between a and b is

||a− b||2 where ||a− b|| is the Euclidean distance between a and
b.



Algorithm ScaleMatch(A,B)

1: ∀u ∈ A ∪B, y(u)← 0,
∀(u, v) ∈ A×B, d′(u, v)← 0, M = ∅

2: for i = 1 to k do
3: ∀(u, v) ∈ E, d′(u, v)← 2d′(u, v)+(bi of d∗(u, v))
4: ∀t ∈ A ∪B, y(t)← 2y(t)− 1
5: (M,y) = Match(A,B, d′, y)
6: end for
7: return M

Algorithm Match(A,B, d′, y)

1: M = ∅
2: repeat
3: P = DFS(A,B, d′, y)
4: M =Augment(P)
5: ∀P ∈ P, ∀p ∈ P ∩B, y(p)← y(p)− 1
6: y ← HungarianSearch(A,B, d′, y)
7: until |M | = n
8: return M,y

Figure 1: Gabow-Tarjan matching algorithm.

y(u) + y(v) ≤ d(u, v) + 1,(2.1)

y(u) + y(v) = d(u, v) for (u, v) ∈M.(2.2)

The above conditions with the +1 removed from (2.1)
are identical to the dual feasibility conditions of the lin-
ear program corresponding to optimal bipartite match-
ing. A 1-optimal matching is a perfect matching that
is 1-feasible. The following lemma relates 1-optimal
matching to the optimal matching.

Lemma 2.1. [7] For a bipartite graph G(A,B) with
integer edge costs, let M be a 1-optimal matching
and MOPT be the optimal matching. Then, w(M) ≤
w(MOPT) + n.

For every a ∈ A, b ∈ B, let d∗(a, b) = (n+ 1)d(a, b).
Such a uniform scaling of edge costs does not change
the optimal matching on G. Lemma 2.1 implies that a
1-optimal matching of points in A,B with edge weights
d∗(·, ·) corresponds to an optimal matching with the
original edge weights d(·, ·). Now we briefly describe
the scaling algorithm (See Figure 1).

Each iteration of the loop is called a scale. For any
edge (u, v), let b1, b2 . . . bk be the binary representation
of d∗(u, v). In the ith iteration, the cost of an edge,
d′(u, v), corresponds to the most significant i bits of
d∗(u, v). An edge (u, v) 6∈ M is called admissible if
y(u) + y(v) = d′(u, v) + 1. An admissible graph is the
union of the set of admissible edges and edges in M .

Algorithm Match takes as input a complete bipar-
tite graph on A,B, with a cost function d′(·, ·), and a set
of dual weights y(v) for every point v ∈ A∪B. It returns
a 1-optimal matching. In each step, the algorithm finds
a maximal set P of vertex-disjoint augmenting paths in
the admissible graph by doing a depth first search. Then
the matching is augmented along every path P ∈ P in
the admissible graph. The dual weights are adjusted
in order to maintain 1-feasibility. Since the resulting
admissible graph does not have any augmenting paths,
the algorithm does a Hungarian Search by adjusting the
duals and finds an augmenting path.

Note at the beginning of each scale, the residual
costs of the edges, i.e., d′(u, v) − y(u) − y(v) ≥ −1
and the residual cost of the optimal matching is O(n).
Using the fact that in each iteration Hungarian search
increases the dual weight of every free vertex by at
least one, Gabow-Tarjan show that Algorithm Match
iterates only O(

√
n) times, and that the total length of

all the augmenting paths found it is O(n log n). Since
its each iteration runs in O(n2) time and it is invoked
O(log n) times by ScaleMatch, the overall running
time is O(n2.5 log n).

3 The Transportation Algorithm

For A,B ⊂ Rd, consider an instance of transportation
problem as defined in Section 1. Under the assumption
that the diameter of A∪B is bounded by ∆, we present
an algorithm for computing an ε-close assignment.
We assume ∆ is of the form 2i for some integer i
An instance of the transportation problem can be
converted to an instance of the bipartite matching
problem as follows. For every point b ∈ B (resp.
a ∈ A), let Sb (Sa) be a multiset of sb(resp da)
identical copies of b (resp. a). Let SA =

⋃
a∈A Sa and

SB =
⋃
b∈B Sb. Using the Gabow-Tarjan algorithm,

we describe an algorithim for computing an ε-close
matching on multisets SA, SB in time O((n

√
U log2 n+

U logU)Φ(n) log(U∆/ε)). Such an ε-close matching on
G(SA, SB) is an ε-close assignment on G(A,B).

Let δ-scaled graph, Gδ(SA, SB), be the graph iden-
tical to G(SA, SB), except that the weight of every edge

(u, v) in Gδ is dδ(u, v) =
⌈
d(u,v)
δ

⌉
. Note that all the edge

weights in Gδ are integers. Lemma 3.1, whose proof is
similar to that of Lemma 2.1, shows that a 1-optimal
matching on Gδ, for δ ≤ ε/3U , is an ε-close matching
on G.

Lemma 3.1. Let M be a 1-optimal matching on
Gδ(SA, SB), where δ < ε/3U and let M∗ be the opti-
mal matching on G(SA, SB), then M is ε-close to M∗

in G(SA, SB).



In Figure 2, Algorithm ScaleMatch describes
the scaling routine of our algorithm. In each iteration
of ScaleMatch a 1-optimal matching of Gδ(SA, SB)
is computed using 1-OptimalMatch, which takes as
input the multisets SA and SB , scaling factor δ and
associated dual weights satisfying the 1-feasibility. For
efficiency reasons, SA, SB and a 1-feasible matching
M are represented compactly. We first describe the
compact representations of SA, SB and a 1-feasbile
matching M of SA, SB .

Compact representation of 1-feasible match-
ing. A compact representation K∗ of a multiset K ⊂
SA ∪ SB and associated dual weights is the set of
weighted pairs (v, y) where v ∈ K and y(v) = y; its
weight w(v, y) is the number of copies of v ∈ K that
have an associated dual weight y. We will refer to the
pairs in K∗ as tuples. A compact representation M of
a 1-feasible matching M is a set of edges on vertex sets
S∗A and S∗B . Any edge ((a, y), (b, y′)) ∈ M with weight
w((a, y), (b, y′)) = k if there are exactly k ≥ 1 edges in
M between copies of a with associated dual weight y
and copies of b with associated dual weight y′. We can
also view M as a bipartite graph with S∗A and S∗B as
vertex sets. A tuple (a, y) ∈ S∗A is a deficit tuple with
a deficit of w′(a, y) if there are exactly w′(a, y) ≥ 1 free
copies of a in SA with associated dual weight y. Sim-
ilarly (b, y′) ∈ S∗B is a surplus tuple with a surplus of
w′(b, y′) if there are exactly w′(b, y′) free copies of b in
SB with an associated dual weight y′. Let K∗1 and K∗2
be compact representations of multisets K1 and K2. We
can perform set operations on compact representation of
multisets. The compact representation K∗ = K∗1 ∪K∗2
of the union of two multisets K1 and K2 contains all
tuples (p, y) ∈ K∗1 ,K∗2 . If (p, y) appears in only one of
K∗1 and K∗2 , then its weight is the same as in that set;
otherwise, its weight is the sum of its weights in the
two sets. A compact representation K∗ = K∗1 − K∗2 ,
of set difference of two multisets K1,K2 contains tuples
(p, y) ∈ K∗1 . For each (p, y) ∈ K∗2 with a weight w, sup-
pose (p, y) ∈ K∗1 . We reduce the weight of (p, y) ∈ K∗
by w. If the new weight is not positive, we remove (p, y)
from K∗.

Overview of the algorithm. We describe the al-
gorithm for computing a 1-optimal matching. Algo-
rithm 1-OptimalMatch maintains on M and the dual
weights of SA and SB the following invariants.

(I1) M is a 1-feasible matching,

(I2) ∀v ∈ SA ∪ SB , y(v) is an integer,

(I3) |S∗A| ≤ 3n, |S∗B | ≤ n and |M| ≤ 4n.
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Figure 3: (i) A,B along with their demand and supply
values; (ii) SA, SB and a matching M ; (iii) compact
representation S∗A, S∗B and M.

.

(I4) The admissible graph on SA and SB does not
contain any alternating cycle.

Lines 3, 4, 5 of 1-OptimalMatch are identical to
Gabow-Tarjan algorithm. Line 5 augments the current
matching and constructs a new matching M ′, but its
compact representation M′ may violate (I3). In Line 6,
we compute another 1-feasible matching M such that M
is a forest and satisfies (I3). Such a forest representation
is crucial for efficient implementations of Lines 3 and
4. First, we describe how Lines 3, 4 and 6 are
implemented efficiently, then we prove the correctness
of the algorithm. For clarity, we first describe the steps
on multisets SA and SB , and then describe how to
implement them using their compact representations.

3.1 Implementing Hungarian Search Hungarian
search involves searching for an augmenting path in the
admissible graph. For each free vertex q ∈ SB , we
grow an alternating tree whose paths are alternating
paths starting at q. Each point in an alternating tree
is reachable from its root by an alternating path that
consists only of admissible edges. Let S (resp. T ) denote
the points of SB (resp. SA) that lie in some alternating
tree. In the beginning of Hungarian search, S is a set
of free vertices of SB and T = ∅. Let

α = min
pi∈SA−T,qj∈S

{dδ(pi, qj) + 1− y(pi)− y(pj)}.

At each step, the search takes one of the following
actions, depending on whether α = 0 or α > 0.

• Case 1: α > 0. The dual weight is updated as
follows. For each vertex pi ∈ T , y(pi) ← y(pi) − α
and for each qj ∈ S, y(qj)← y(qj) + α.

• Case 2: α = 0. Grow the alternating tree. Let
(pi, qj), pi ∈ SA−T, qj ∈ S be the admissible edge.



Algorithm ScaleMatch(A,B)

1: δ = ∆ ∀v ∈ SA ∪ SB y(v)← 0
2: repeat
3: (M, y)← 1-OptimalMatch(SA, SB , δ, y)
4: δ ← δ/2
5: ∀v ∈ SA ∪ SB y(v)← 2(y(v)− 1)
6: until δ ≤ ε/3U
7: return M

Algorithm 1-OptimalMatch(SA, SB , δ, y)

1: G← Gδ(SA, SB), M = ∅
2: repeat
3: y ← HungarianSearch(G, y)
4: P← DFS(G, y)
5: M′ ←Augment(P)
6: M←Acyclify(M′)
7: until M is perfect
8: return M, y

Figure 2: Our transportation algorithm.

If pi is unmatched, we have found an augmenting
path and the search ends. Otherwise, let (pi, qk) be
the corresponding edge in the matching. We add
(pi, qj) and (pi, qk) to the alternating tree.

The search repeats these steps until an augmenting
path is found. We now describe how this step is
performed using the compact representation of SA and
SB .

We obtain compact representations S∗ and T ∗ of
S and T from M. For every surplus tuple (b, y) ∈ S∗B
with a surplus of w′(b, y), we add a tuple (b, y) with a
weight of w′(b, y) in S∗. T ∗ = ∅. Instead of explicitly
updating dual weights at each step, we use the following
approach suggested by Vaidya [14]. We maintain a
variable ω (initialized to 0). We implicitly maintain
the dual weights of vertices in S∗ and T ∗ as follows.
Namely we maintain the tuples (v, ŷ) ∈ S∗A ∪ S∗B . If
(v, ŷ) 6∈ S∗ ∪ T ∗, then ŷ = y(v). If (v, ŷ) ∈ T ∗, then
ŷ = y(v) + ω, and if (v, ŷ) ∈ S∗ then ŷ = y(v) − ω. At
any time during the search it can be shown that

α = min
(pi,ŷi)∈S∗A−T∗,(qj ,ŷj)∈S∗

{dδ(pi, qj)− ŷi− ŷj}−ω+ 1.

• Case 1: α > 0. Update ω ← ω + α (Note that we
do not update any tuples in S∗ ∪ T ∗).

• Case 2: α = 0. Grow the alternating tree. Let
((pi, ŷ), (qj , ŷ

′)), (pi, ŷ) ∈ S∗A − T ∗, (qj , ŷ′) ∈ S∗

be the edge for which α = 0. All copies of
pi ∈ SA − T with dual y form an admissible
edge with every copy qj ∈ S with dual y′. So,
we add (pi, ŷ + ω) to T ∗. Its weight in T ∗

is the same as the weight of (pi, y) in S∗A. If
(pi, y) is a deficit tuple, an augmenting path is
found and the search ends. Otherwise, let N∗ =
{(q1, ŷ1 − ω), . . . , (qk, ŷk − ω)} be the set of tuples
with which (pi, ŷ) has an edge in M and let each
(qh, ŷh) ∈ N∗ have a weight w((pi, ŷ), (qh, ŷh)). We
set S∗ ← N∗ ∪ S∗.

The search repeats these steps until an augmenting
path has been found.

Once the search for an augmenting path has ended,
we update S∗A, S∗B and M to reflect the true dual
weights. For each tuple (pi, ŷ) ∈ T ∗, (qj , ŷ

′) ∈ S∗,
we set (pi, y) ← (pi, ŷ − ω) and (qj , y) ← (qj , ŷ + ω).
The edges of M that were not in any alternating tree
do not change. Every edge ((p, ŷ), (q, ŷ′)) in M that is
in the alternating tree is now an edge between points
((p, ŷ − ω), (q, ŷ + ω)). The weights of these edges
remain the same. This completes the description of our
implementation of Hungarian Search.

During each step of the search, the value of α can be
computed by maintaining weighted bichromatic closest
pair between the sets S∗A − T ∗ and S∗ under dδ(·, ·).
When a tuple (p, ŷ) is added to T ∗, we delete the point
p with weight ŷ and when a tuple (p, ŷ) is added to S∗

we add p with a weight ŷ to the data structure. The
following lemma shows that to compute α it suffices to
compute a weighted closest pair under d(·, ·).

Lemma 3.2. Let ((p, ŷ), (q, ŷ′)) =

argmin(pi,ŷi)∈S∗A−T∗,(qj ,ŷj)∈S∗ {d(pi, qj)− δŷi − δŷj} .

Then α = {dδ(p, q)− ŷ − ŷ′} − ω + 1.

Proof. Since adding or multiplying a constant and tak-
ing a ceiling of a fraction does not affect the minimum,
we have ((p, ŷ), (q, ŷ′)) =

argmin
(pi,ŷi)∈S∗A−T∗,(qj ,ŷj)∈S∗

{d(pi, qj)− δ(ŷi + ŷj + ω − 1)} .

=

argmin
(pi,ŷi)∈S∗A−T∗,(qj ,ŷj)∈S∗

⌈
d(pi, qj)− δ(ŷi + ŷj + ω − 1)

δ

⌉
.

=

argmin
(pi,ŷi)∈S∗A−T∗,(qj ,ŷj)∈S∗

{⌈
d(pi, qj)

δ

⌉
− ŷi − ŷj

}
− ω+ 1.



The last equality follows from (I2) and the fact that ω
is an integer and thus all ŷ’s are integers. But, α =

min
(pi,ŷi)∈S∗A−T∗,(qj ,ŷj)∈S∗

{⌈
d(pi, qj)

δ

⌉
− ŷi − ŷj

}
− ω+ 1.

From the above two equations, it follows that,

α =

{⌈
d(p, q)

δ

⌉
− ŷ − ŷ′

}
− ω + 1.

Initializing S∗, T ∗, S∗A − T ∗ and S∗B − S∗ takes
O(|S∗A| + |S∗B |) = O(n) time. Growing the alternating
tree (when α = 0) involves adding each (p, y) ∈
S∗A, ((p, y), (q, y′)) ∈ M to the alternating tree at most
once. Thus Hungarian Search takes O(|S∗A|+|M|) steps,
which can be bounded by O(n) using (I3). Executing
each step requires us to compute a weighted bichromatic
closest pair. As shown by Eppstein [6], dynamic
weighted nearest neighbor data structure can be used
to maintain dynamic weighted bichromatic closest pair
for point sets in Rd. The update and query times
is O(Φ(n) log2 n). Hence, the total time taken by
Hungarian search is O(nΦ(n) log2 n). Finally, the time
taken to update S∗A, S

∗
B and M in order to reflect the

correct dual weight is O(S∗A + S∗B + |M|) = O(n).

3.2 Implementing Depth First Search We per-
form depth first search to find a maximal set of vertex
disjoint augmenting paths P as follows. An alternat-
ing path P is initiated from a free vertex of SB . The
search marks every visited vertex. At each step, the
last vertex on P is a vertex v of SB . We grow P by
scanning all admissible edges adjacent to v and finding
an edge (v, u) such that u is unmarked; (v, u) is added
to P . If u is free, P is an augmenting path, we add
P to P and start a new alternating path. Otherwise,
if u is matched to u′ ∈ SB , we add (u, u′) to the path
and continue with the search from u′. If no such u ex-
ists, then v and its predecessor in P are removed from
P . The search continues until a path has been initi-
ated from every free vertex in SB . This completes the
description of the depth first search. We now give an
efficient implementation of this procedure using M.

We maintain three sets C∗ ⊆ S∗A, Q∗ ⊆ S∗B
and L∗ ⊆ M, which correspond to the vertices of
SA ∪ SB and the edges of M that have not been
explored. By the depth first procedure initially C∗ =
S∗A, Q∗ = S∗B and L∗ = M. For a surplus tuple
(q1, y1) ∈ Q∗, we initiate a path P and reduce the
surplus of (q1, y1) in Q∗ by 1. Suppose currently P =
〈(q1, y1), (p1, y

′
1), (q2, y2) . . . , (pk, y

′
k), (qk, yk)〉. To grow

P , we compute

η(qk, yk) = min
(p,y)∈C∗

{dδ(qk, p) + 1− y − yk}.

• Case 1: η(qk, yk) = 0. Let ((qk, yk), (pk, y
′
k)) be the

admissible edge. We add (pk, y
′
k) to the path P and

reduce the weight of (pk, y
′
k) in C∗ by 1. If (pk, y

′
k)

is a deficit tuple, then P is an augmenting path.
We add P to P and initiate a new path. On the
other hand, if (p, y′) is not a deficit tuple, then L∗

has an edge ((pk, y
′
k), (qk+1, yk+1)). We add (pk, y

′
k)

and (qk+1, yk+1) to P . We reduce the weight of
(qk+1, yk+1) in Q∗ and ((pk, y

′
k), (qk+1, yk+1)) in L∗

by 1 and continue our search.

• Case 2: η(qk, yk) > 0. There is no admissible edge
from (qk, yk). We remove (qk, yk) from Q∗ and all
edges incident on (qk, yk) from L∗. If there is an
edge ((pk−1, y

′
k−1), (q, y)) ∈ L∗, we add it to P and

continue. Otherwise, we remove (pk−1, y
′
k−1) from

C∗ and continue our search from (qk−1, yk−1).

The search stops when no surplus tuple is left in Q∗. At
each step of the procedure, we use a dynamic nearest-
neighbor data structure to compute η(qk, yk). As in
Lemma 3.2, we can show that if

(p, y) = argmin
(p′,y′)∈C∗

{d(qk, p
′)− δyk − δy′ + δ}

then
η(qk, yk) = dδ(qk, p) + 1− yk − y.

We can thus construct a weighted nearest-neighbor
query data structure on C∗ under d(·, ·) to compute
η(qk, yk). When a point is deleted from C∗, it is also
deleted from the data structure. Hence, finding η(qk, yk)
and updating the data structure takes Φ(n) time.

The following lemma will be critical to analyze the
running time of depth first search procedure.

Lemma 3.3. Let π be an alternating path constructed by
the search procedure. Then each tuple (v, y) ∈ S∗A ∪ S∗B
appears at most once in π.

Proof. Suppose two copies of (v, y) ∈ S∗B lie on π.
Let χ = 〈(v, y) = (v1, y1), (v2, y2) . . . , (vk, yk), (v, y)〉
be the portion of the alternating path of even
length between the two copies of (v, y). Suppose
((v1, y1), (v2, y2)), ((v3, y3), (v4, y4)), . . . , ((vk−1, yk−1),
(vk, yk)) are the matching edges of M. Let v1, v2, . . . , vk
be the copies of v1, . . . , vk with dual weights y1 . . . , yk
corresponding to these matching edges. Note that for
every non-matching edge ((vi, yi), (vi+1, yi+1)) in χ is
admissible. Furthermore, for every copy ṽi of vi with
dual weight yi and every copy ṽi+1 of vi+1 with dual
weight yi+1, the corresponding edge (ṽi, ṽi+1) is also
admissible. In particular ((vk, yk), (v1, y1)) is also ad-
missible implying that v1, v2, . . . , vk, v1 is an alternating
cycle in the admissible graph of SA, SB , which contra-
dicts (I4). Hence, the lemma is true.



The time spent by the search procedure on com-
puting a path initiated from a surplus tuple (v, y) ∈ S∗B
is proportional to the number of vertices visited by the
procedure plus the number of edges of L∗ deleted in
Case 2. By Lemma 3.3, each tuple is visited at most
once and futhermore every tuple not appearing on the
augmenting path from (v, y) is deleted from Q∗ or C∗.
Each tuple of Q∗ ∪ C∗ and each edge of L∗ is deleted
at most once. Hence, the total time spent by the proce-
dure in constructing P is O((|S∗A|+ |S∗B |+ |M|+µ)Φ(n))
where µ is the total length of all the augmenting paths
in P. By (I3), this quantity is O((n+ µ)Φ(n)).

3.3 Augmentation and Acyclify Now we describe
Lines 5 and 6 of the algorithm. Line 5 generates the
compact representation M′ of a new matching M ′ by
augmenting the current matching M and updating the
dual weights of every vertex u ∈ SB that appears in an
augmenting path P ∈ P. For every (b, y) ∈ S∗B ∩ P , we
reduce the weight of (b, y) by 1 and increase the weight
of (b, y − 1) by 1. If the weight of (b, y) becomes 0, we
delete it; similarly if there was no tuple (b, y − 1) in
S∗B we add it and set its weight to 1. Furthermore, we
add 1 to the weights on the new edges that enter the
matching and remove 1 from the edges that go out of
the matching.

The compact representation M′ of the new match-
ing has O(n + µ) edges, where µ =

∑
P∈P |P |. Next,

the Acyclify procedure converts this 1-feasible match-
ing M ′ and its compact representation M′ to another
1-feasible matching M ′′ and its compact representation
M′′ such that |M ′| = |M ′′| and M′′ does not have any
cycles, so |M′′| = O(n) We set M to M′′. We order the
edges of M′ in an arbitrary order. Let γ1, . . . , γu be the
resulting sequence of edges, and let w(γi) denote the
weight of γi in M′. For k ≤ u, let Γk = {γ1, . . . , γk}
and Gk = (S∗A ∪ S∗B ,Γk). We will maintain a subgraph
Fk = (S∗A∪S∗B ,Mk), where Mk ⊆ Γk and Fk is a forest.
For each γ ∈ Mk, we maintain a weight h(γ) ≥ 0 such
that

∀ξ ∈ S∗A,
∑

(ξ,η)∈Mk

h(ξ, η) =
∑

(ξ,η)∈Γk

w(ξ, η),(3.3)

∀η ∈ S∗B ,
∑

(ξ,η)∈Mk

h(ξ, η) =
∑

(ξ,η)∈Γk

w(ξ, η).(3.4)

In particular,
∑
γ∈Γk

w(γ) =
∑
γ∈Mk

h(γ). Then
Mu gives the comapact representation of the desired
matching M ′′ since Fu is a forest. We now describe how
to maintain Fk.

Initially, M0 = ∅. We compute Fk+1 from Fk as
follows. If Mk ∪ {γk+1} does not contain a cycle, we
set Mk+1 = Mk ∪ {γk+1} and h(γk+1) = w(γk+1).
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(b1, y
′
1) (b1, y

′
1)
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′
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′
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′
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′
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′
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Figure 4: (i) |M ′| = 17 and M has a cycle; (ii)|M ′′| = 17
and M′′ is acyclic.

Otherwise, it contains an even length cycle Σ and γk+1

is an edge in Σ. We set h(γk+1) = w(γk+1). We
compute the minimum-weight edge e of Σ, i.e. e =
argmine′∈Σ h(e′). We label the edges of Σ so that
Σ = 〈e = e1, e2, . . . , e2s〉. For 1 ≤ j ≤ s, we set
h(e2j−1)← h(e2j−1)−h(e) and h(e2j)← h(e2j) +h(e).
We set Mk+1 = Mk∪{γk+1}\{e}. By construction Fk+1

is a forest. Since the weight of alternating edges in Σ is
increased and decreased by h(e), it can be verified that
Fk+1 satisfies (3.3) and (3.4).

At each step, we perform three operations on Fk:
(i) Check whether two vertices ξ ∈ S∗A and η ∈ S∗B
lie in the same connected component of Fk, (ii) given
a path π in Fk and a non-negative integer κ, increase
the weight of every odd edge and decrease the weight
of every even edge by κ, and (iii) insert/delete an edge.
Using the dynamic tree data structure by Sleator and
Tarjan [13], each of these operations can be performed
in O(log n) amortized time. Hence the total time spent
by the Acyclify procedure is O(µ log n).

Finally every edge ((u, y), (v, y′)) in M′, y + y′ =
dδ(u, v). Since M′′ ⊂ M′, we can conclude that every
edge in M′′ is feasible.

3.4 Proof of Correctness We now prove that in-
variants (I1), (I2), (I3) and (I4) hold.

The algorithm maintains 1-feasibility: Dual weights
are modified during the Hungarian Search and the
Augementation Step. By construction, Hungarian
Search preserves 1-feasibility. The augmentation step
only reduces the associated dual weight of points of SB
that lie on some augmenting path. Any reduction of
the dual weights of points in SB does not violate 1-
feasibility. Thus (I1) holds. Note that the cost of edges
in Gδ are integers. Initially each dual weight is set to
0, and each operation either adds or multiplies an in-
teger to it. Hence all dual weights are always integers,
proving (I2).

The next two lemmas prove (I3) and (I4).



Lemma 3.4. Each point b ∈ B has at most three tuples
(b, y1), (b, y2) (b, y3) in S∗B and each point a ∈ A has one
tuple (a, y) in S∗A.

Proof. First, we show that for any two copies
(b, y1), (b, y2) ∈ S∗B of b with y1 < y2, if (b, y1) is
matched, then y2 = y1 + 1. Suppose y2 > y1 + 1.
Let (a1, y

′
1) be the tuple that (b, y1) is matched to.

The feasibility condition (2.2) implies that y1 + y′1 =
dd(a1, b)/δe. Thus for the edge ((b, y2), (a1, y1)), we
have

y2 + y′1 > y1 + y′1 + 1 = dd(a1, b)/δe+ 1,

implying that ((b, y2), (a1, y
′
1)) is not 1-feasible and that

(I1) is violated.
The above argument implies that when Algo-

rithm 1-OptimalMatch returns a perfect matching,
there are at most two copies (b, y1), (b, y2) of each
vertex b ∈ B with y2 − y1 = 1. Line 4 of Algo-
rithm ScaleMatch doubles the difference between the
two copies. Hence, at the start of each scale, we have at
most two copies (b, y1) and b(y2). If there are two copies,
then y2 = y1 +2. Next, we show that during the compu-
tation of 1-optimal matching, there cannot be more than
three copies. Suppose during the course of the algorithm
there are four copies of b, ((b, y′1), (b, y′2), (b, y′3), (b, y′4)),
with y′1 < y′2 < y′3 < y′4, then y′4 ≥ y′1 + 3 and the above
argument implies that (b, y1) must be free. Let γ be
the sum of all the dual changes made by the Hungarian
search in this call of 1-OptimalMatch. By the de-
scription of Hungarian Search, every free vertex would
have undergone a dual change of γ. Since (b, y′1) is free,
y′1 ≥ y1 + γ, and y′4 ≤ y1 + γ + 2 ≤ y′1 + 2 which is a
contradiction of our assumption that y′1 + 2 < y′4.

Every vertex a ∈ A has exactly one tuple (a, y) ∈
S∗A. At the start of the algorithm, this is true. The
only place where points in SA undergo a dual change
is the Hungarian Search. But, our implementation of
Hungarian Search ensures that if one copy of (a, y) is
part of the alternating tree, then all copies are in the
alternating tree. Hence, no two copies will have different
dual weights.

|M| = O(n): This is true at the start of the algorithm.
The cardinality of M does not change during Hungarian
Search and Depth First Search. M is modified by the
Acyclify procedure. Since Acyclify generates a forest on
S∗A and S∗B , |M| ≤ |S∗A|+ |S∗B | ≤ 4n.

Lemma 3.5. There are no alternating cycles of admis-
sible edges generated by Algorithm 1-OptimalMatch.

Proof. Initially there are no matched edges. So, there
are no alternating cycles of admissible edges. Any

cycle can be created only when either the dual weights
change or the admissible graph changes. The dual
weights change during the Hungarian Search and the
Augmentation steps. Using arguments similar to the
one in [7], we show that Hungarian search (Line 3
of Algorithm 1-OptimalMatch) does not create an
alternating cycle. Suppose it creates a cycle C. There
are at least two edges e1, e2 in C such that one end point
of e1, e2 lies in the alternating tree and the other does
not lie in tree. By construction, both (e1, e2) are not in
the current matching. Since C is of even length, one of
e1, e2, say e1 is between a vertex a ∈ T and b ∈ SB −S.
But e1 cannot become admissible during the Hungarian
Search since the dual weight y(a) only reduces in the
search making (a, b) inadmissible.

Augmentation (Line 6 of Algorithm 1-
OptimalMatch) does not create alternating cycles.
Similar to Hungarian search, the dual weights y(b) for
b ∈ SB will always reduce, hence they cannot create
admissible edges.

Line 6 of Algorithm 1-OptimalMatch modifies
the edges in the matching and hence modifies the
admissible graph. Such a modification does not create
alternating cycles. Suppose it does. By construction
M′′ ⊆ M′. Hence, if M′′ has an alternating cycle then
M′ also has one, which is a contradiction.

The algorithm terminates with a 1-optimal match-
ing because Hungarian Search maintains 1-feasibility
and ensures the existance of at least one augmenting
path each step. The ith iteration of Algorithm 1-
OptimalMatch can be implemented in O((n log2 n +
|µi|)Φ(n) + |µi| log n) time, where µi is the length of
augmenting paths found by the depth first search pro-
cedure. Similar to the Gabow-Tarjan algorithm, in
each scale the residual costs of the edges corresponding
to the 1-optimal matching is O(n) and in each itera-
tion of Algorithm 1-OptimalMatch , the Hungarian
Search increases the dual weight of every unmatched tu-
ple by at least 1. Adapting the analysis in [7], we prove
that the number of iterations of 1-OptimalMatch is
O(
√
U) and

∑
i |µi| = O(U logU). Furthermore, the to-

tal number of times it is invoked O(log(U∆/ε)) times by
ScaleMatch. Putting everything together we obtain
the following.

Theorem 3.1. Let A,B ⊂ Rd, with |A| = |B| = n
and U being their total demand/supply, let d(., .) be
a cost function, and let the diameter of A ∪ B under
d(·, ·) be bounded by ∆. For any ε > 0, we can
compute an ε-close assignment in time O((n

√
U log2 n+

U logU)Φ(n) log(∆U/ε)), where Φ(n) is the query and
update times of a dynamic weighted nearest neighbor
data structure.



3.5 Applications If A,B ⊂ Rd and d(·, ·) is a metric
cost function, using Theorem 3.1, we show how to
compute an ε-approximate assignment on A,B. Let
T = 〈e1, e2, . . . en−1〉 be the minimum spanning tree
of A ∪ B labelled in decreasing order of their costs,
i.e., w(e1) ≥ w(e2) . . . ≥ w(en−1). Let Ci be the set
of connected components obtained by removing edges
{e1, . . . ei} from T . For any C ∈ Ci, let AC and BC be
the points of A and B that are in C. Now, we describe
our algorithm for computing ε-approximate assignment
of A,B.

First, we compute the smallest index j such that
there is a component C ∈ Cj with

∑
a∈AC

da ≥∑
b∈BC

sb. Next, we compute Ck where k < j is the
largest index with the property w(ek) ≥ w(ej)nU . Note
that since w(ej) < w(ek), each component C ∈ Ck has∑
a∈AC

da =
∑
b∈BC

sb. We compute, for each C ∈ Ck
an (εw(ei)/n)-close assignment σC of points AC , BC
under d(·, ·). We claim that σ =

⋃
C∈Ck

σC is an ε-
approximate assignment on A,B.

Correctness. By construction, there exists a com-
ponent C ∈ Cj such that

∑
a∈AC

da >
∑
b∈BC

sb.
Hence, at least one unit of demand in C is satisfied
by points in other components, the cost of which is at
least w(ej), implying that

w(σOPT) ≥ w(ej).

On the other hand, every component C ∈ Cj−1 has
equal demands and supply. Also, since d(·, ·) is a metric,
the diameter of AC ∪BC is at most w(ej)n. Hence, an
arbitrary assignment of demands and supply in each
component of Cj−1 will cost at most nUw(ej) implying
that

w(σOPT) ≤ w(ej)nU.

Using the fact that d(·, ·) is a metric, it can be
verified that for every component C ∈ Ck, the diameter
of AC ∪BC is at most n2Uw(ej). The smallest distance
between any pair of components C1, C2 ∈ Ck is at least
nUw(ej) ≥ w(σOPT). Hence, σOPT =

⋃
C∈Ck

σOPT(C)
where σOPT(C) is the optimal assignment of AC , BC
under d(·, ·). By construction,

w(σ) =
∑
C∈Ck

w(σC)

=
∑
C∈Ck

w(σOPT(C)) + εw(ej)/n

≤ w(σOPT) + εw(ej)

≤ (1 + ε)σOPT.

Using dynamic bichromatic closest pair data struc-
ture, we can compute T , Cj and Ck in O(nΦ(n) log3 n)

time. From Theorem 3.1, the total time taken for com-
puting σ is O((n

√
U log2 n+ U logU)Φ(n) log(U/ε)).

Theorem 3.2. Let A,B ⊂ Rd with |A| = |B| = n
and U being their total demand/supply, let d(·, ·) be
a metric cost function, and let ε > 0 be a parameter.
An ε-approximate assignment can be computed in time
O((n

√
U log2 n + U logU)Φ(n) log(U/ε)), where Φ(n)

is the query and update times of a dynamic weighted
nearest neighbor data structure on d(·, ·).

For point sets A,B ⊂ [∆]d, and let d(·, ·) be
the L1, L∞ and RMS distance functions. Since the
coordinates of every point in A and B are integers, it
follows that the cost of any matching in the L1, L∞ or
RMS is an integer. Hence any 1/2-close matching is
optimal. There are dynamic weighted nearest neighbor
data structures with O(logd n) query and update time
for the L1 and L∞ norms. From Theorem 3.1, it
follows that a 1/2-close matching can be computed

in time O(n3/2 logd+O(1) n log ∆). For d = 2 and
the RMS norm, there is a dynamic weighted nearest
neighbor data structure with O(nδ) query and update
time. Hence an optimal matching can be computed in
O(n3/2+δ log ∆) time.

Corollary 1. Let A,B ⊂ [∆]d. An optimal matching
of A and B under L1 or L∞ norm can be computed
in time O(n3/2 logd+O(1) n log ∆). If d = 2, then a
minimum-cost matching of A and B under the RMS
distance can be computed in time O(n3/2+δ log ∆) for
any arbitrarily small constant δ > 0.

Agarwal et al. [1] showed that there is a weighted
nearest neighbor data structure under any Lp-norm
with O(nδ) update time, for arbitrarily small constant
δ > 0.

Corollary 2. For any A,B ⊂ R2 and for any
ε > 0, an ε-approximate assignment of A,B un-
der any Lp norm can be computed in time O(n

√
U +

U logU)nδ logU/ε) for an arbitrarily small constant δ >
0.

4 Dynamic Data Structure for Transportation
Problem

Let A,B ⊆ [∆]d be two sets of points. Each point
a ∈ A has a positive integral demand da and each
point b ∈ B has a positive integral supply sb such
that

∑
a∈A da =

∑
b∈B sb = U . Let d(·, ·) be the Lp

norm. We assume that U ≤ Umax ≤ nO(1). For given
parameters 0 < α, β < 1, we describe a randomized
data structure that allows insertion and deletion of
points A and B and maintains an (α, β)-assignment
σ of A,B with high probability. The size of the data



structure is n(log(n∆)/(αβ))O(d) and the update time is
log(n∆)/(αβ))O(d). The updates are such that the total
demand and supply are always balanced. For simplicity,
we describe the data structure for d = 2 under the
L1 norm and we assume that the points in A ∪ B are
disjoint. We scale the input points by a factor of ∆, i.e.,
every coordinate is multiplied by ∆, so A,B ⊆ [∆2]2.

Before outlining our approach, we introduce a con-
cept, which will be crucial for our data structure. Sup-
pose we run the primal-dual algorithm on A and B,
under a distance function d(·, ·). The algorithm main-
tains a partial assignment σ and dual weights y such
that they satisfy the feasiblity condition

y(a) + y(b) ≤ d(a, b).

That is, y is a dual feasible solution. We call a vertex
a ∈ A a deficit vertex if

∑
b∈B σ(a, b) < da and b ∈ B

a surplus vertex if
∑
a∈A σ(a, b) < sb. We call such

a solution a θ-capacitated partial assignment (θ-CPA
for brevity), for a parameter θ > 0 if the following
conditions are satisfied.

(C1) y(b) ≤ θ/(αβ) for all b ∈ B and y(b) = θ/(αβ) if b
is a surplus vertex.

(C2) y(a) ≤ 0, for all a ∈ A and y(a) = 0 if a is a deficit
vertex.

The primal-dual algorithm can be adapted to com-
pute θ-CPA. Note that a θ-CPA trivially satisfies (4)
for an edge (a, b) with d(a, b) > θ/(αβ) which means
σ(a, b) = 0 for such an edge and thus it can be ignored
for computing θ-CPA.

Lemma 4.1. Let A,B be an instance of the transporta-
tion problem under d(·, ·) and let σOPT be an optimal
assignment. If θ is a parameter such that

θU(1/β − 1) ≤ w(σOPT) ≤ θU/β,

then a θ-CPA of A,B is an (α, β)-assignment.

Proof. Let σ be a θ-CPA and let y be the corresponding
dual weights of points in A∪B. For each a ∈ A, let d′a =∑
b∈B σ(a, b) and for each b ∈ B, let s′b =

∑
a∈A σ(a, b).

The primal-dual algorithm ensures that

(4.5)
∑
a∈A

d′ay(a) +
∑
b∈B

s′by(b) ≥ 0.

Let F =
∑
b∈B sb−s′b. Since y is a dual feasible solution,∑

a∈A
day(a) +

∑
b∈B

sby(b) ≤ w(σOPT) ≤ Uθ/β.

Using (4.5) and conditions (C1) and (C2), we obtain
that ∑

b∈B

(sb − s′b) · θ/(αβ) ≤ Uθ/β.

Hence, F ≤ αU , implying that σ is an (α, β)-
assignment.

Lemma 4.1 shows that computing an (α, β)-
assignment is equivalent to computing a θ-CPA if we
know w(σOPT) approximately. Let

Θ = {θi = (1 + β)iU∆ | 1 ≤ i ≤ dlog1+β ∆e}.

Here is the outline of the algorithm: We approx-
imate the L1-norm with a quad-tree based distance
function dQ(·, ·) and maintain (α, β)-assignment under
dQ(·, ·). Using Lemma 4.1, we reduce this problem to
computing a θ-CPA. Since we do not know w(σOPT), we
maintain a θi-CPA for each θi ∈ Θ. Among all θi-CPA’s
that satisfy (1 − α) fraction of the demand, we return
the one with the smallest cost. In order to maintain a
θ-CPA efficiently, we approximate dQ(·, ·) by a coarser
distance function η(·, ·) which further approximates the
distance between points that are sufficiently close. We
also observe that edges of length greater than 2θ/(αβ)
between points in A and B do not play any role in com-
puting a θ-CPA, so we ignore them. This allows us to
decompose A,B into a family of subsets of small size so
that the θ-CPA can be computed in each subset inde-
pendently. We now describe the algorithm in detail.

Quad-tree distance. Recall that A,B ⊆ [∆2]2.
We choose two random integers i, j ∈ [0,∆2] and set
G = [0, 2∆2] × [0, 2∆2] − (i, j). G is a randomly-
shifted square that contains both A and B. We build
a quad-tree Q of height log2(2∆2) = 1 + 2 log2 ∆ on
G — the root of Q is associated with G itself and the
squares (cells) associated with the children of a node are
obtained by splitting the square associated with that
node into four equal squares. The nodes at height i
induce a grid Gi in which each cell has a side length
2i. We view Q as the sequence of grids G0, G1, . . .; the
final grid is G itself with a single cell. For two points
a ∈ A, b ∈ B we define dQ(a, b) as follows: Set

µ = log2 ∆/(8β2).

Let C be cell of Q corresponding to the least common
ancestor of the leaves of Q containing a and b. We
partition C into a µ× µ grid KC — each subcell in KC

has side length 2i/µ. Let aC (resp. bC) be the center
point of cells of KC that contain a (resp. b). We set

dQ(a, b) = ||aCbC ||1,

here || · || is the distance in the L1 norm.



The following lemma, whose proof is omitted, shows
that dQ approximates L1-norm in the expected sense.

Lemma 4.2. For any pair a ∈ A, b ∈ B,

(1− β)||ab||1 ≤ E[dQ(a, b)] ≤ (1 + β)||ab||1.

An immediate corollary of the lemma is the follow-
ing:

Corollary 3. Let σ∗Q, σ
∗
1 be optimal assignments for

A,B under dQ(·, ·) and L1-norms. Then,

(1− β)w(σ∗1) ≤ E[w(σ∗Q)] ≤ (1 + β)w(σ∗1).

Computing a θ-CPA. We now describe an algo-
rithm for computing a θ-CPA of A,B under dQ(·, ·). We
define a new distance function

η(a, b) =

{
dQ(a, b) if dQ(a, b) ≥ θ,

θ otherwise.

Next, we collapse the points of A (or B) that
are very close to each other into a single point. Let
j = j(θ) = blog2 θ/(16µ)c, i.e., j is the hightest level
such that the sidelength of cells in Gj is at most
θ/16µ = θβ2/(2 log2 ∆). For each cell c ∈ Gj , we
make two copies ac and bc of its center point. The
demand of ac is dc =

∑
a∈A∩C da and the supply of

bc is sc =
∑
b∈B∩C sb. Set A = {ac | c ∈ Gj} and

B = {bc | c ∈ Gj}.

Lemma 4.3. Let σ∗η be the optimal assignment for A,

B under η(·, ·). If θU(1/β − 1) ≤ w(σ∗Q) ≤ θU/β, then

w(σ∗Q) ≤ w(σ∗η) ≤ (1 + β)w(σ∗Q).

Next, we decompose the problem of computing a
θ-CPA for A,B into smaller subproblems. Let k =
k(θ) = dlog2(θµ/(αβ))e, i.e., k is the lowest level such
that the side lengths of cells in Gk is at least θµ/(αβ).
For each cell ξ ∈ Gk, set Aξ = A ∩ ξ and Bξ = B ∩ ξ.
|Aξ| = |Bξ| = O(µ4/(α2β2)) = O(log4 ∆/(β10α2)). Let
σξ be a θ-CPA for Aξ, Bξ and let y(u) be the dual
weights for points u ∈ Aξ ∪ Bξ. Set σ =

⋃
ξ∈Gk

σξ and

let y be the dual weights of points in A ∪B.

Lemma 4.4. σ, y is a θ-CPA for A,B under η(·, ·).

Proof. By construction, each point in A,B satisfies (C1)
and (C2), so it suffices to prove that y(a)+y(b) ≤ η(a, b)
for all a ∈ A, b ∈ B. If a and b lie in the same cell τ of
Gk then (4 holds because στ , y is a θ-CPA for Aτ , Bτ .
So assume that they lie in different cells of Gk. Then

their least common ancestor is at height at least k + 1
Therefore,

dQ(a, b) ≥ 2k+1/µ = 2θµ/(αβ) · 1/µ = 2θ/(αβ).

Hence η(a, b) = 2θ/(αβ) > θ/(αβ). By (C1) and (C2),
we obtain y(a) + y(b) ≤ θ/(αβ) < η(a, b) as desired.
Hence, σ, y is a θ-CPA.

Putting everything together, we obtain

Theorem 4.1. Let A,B ⊂ [∆]d and for 0 < α, β < 1,
there is a randomized fully dynamic data structure that
maintains an (α, β)-assignment with high probability
under insertions and deletions of points. The size of the
data structure is n(log(n∆)/(αβ))O(d) and the update
time is (log(∆n)/(αβ))O(d) provided U = nO(1).
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