
EECS 440 System Design of a Search Engine
Winter 2021

Lecture 2: Search engine basics

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

1

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Agenda

1. Course details.
2. HW1 MostPositiveSubsequence().
3. History of the web.
4. Search basics.
5. Your project.

Agenda

1. Course details.
2. HW1 MostPositiveSubsequence().
3. History of the web.
4. Search basics.
5. Your project.

details

1. HW2 is posted, asks that you create a Gantt chart
for a plan to apply to graduate school, due Sunday.

2. Please download and install GanttProject
https://www.ganttproject.biz/ in preparation for
next lecture on project planning.

4. Who needs a team? Is the speed dating helpful?
5. Questions on group photos?

https://www.ganttproject.biz/

Agenda

1. Course details.
2. HW1 MostPositiveSubsequence().
3. History of the web.
4. Search basics.
5. Your project.

Homework

Write a C++ function that can scan a sequence of N
integers in an array A, returning the sum and the left
and right indices of the most positive subsequence.
For example, for the sequence

{ -1, 3, 5, 6, -2, -4, 1, 7, -15, 12, 7, -5 }
the best sum = 20, left = 1, right = 10.

Homework

Was it ambiguous?
Anything not specified?

Homework

Was it ambiguous? Yes.
Anything not specified?
1. What happens if a null sequence is given?
2. What if all the numbers are negative or zero?
3. Does it have to be the shortest sequence?
4. What if two sequences are identical?
5. Does performance matter?

Early iterations
In earlier iterations there was even more ambiguity. I
only gave a few examples of what the program should
print.
Some students did everything in main.
If they broke it out as a separate procedure, some passed
pointers to the bestL and bestR, some passed by
reference.
Some created structs or classes to hold results.
Some printed in the procedure, some in main.
Some broke things out into separate .cpp and .h files,
some did not.

What you saw
You saw a less ambiguous problem, to make it suitable for autograding.

Rules you were asked to discover:

1. 1. Since an empty argv was treated as a usage error, you were free
to assert n > 0 in your MostPositiveSubsequence() function.

2. If all the elements are negative, the result is the single least
negative element.

3. If two subsequences have identical sums, the shortest, leftmost is
preferred.

4. Also, performance does matter. You had to be within 20% of my
benchmark.

Why shortest first?

Consider this as a signal processing problem, of picking
the peak.
Two common characteristics of signals are that they
may have harmonics and they may repeat.

11

12

What should you choose?

-20

-15

-10

-5

0

5

10

15

20

13

What should you choose?

-20

-15

-10

-5

0

5

10

15

20

25

14

What should you choose?

-20

-15

-10

-5

0

5

10

15

20

25

int NaiveSolution(int a[], int n, int &bestL, int &bestR)
{
assert(n);

int sum, bestSum, L, R;
bestSum = a[0];
bestL = bestR = 0;

for (L = 0; L < n; L++)
for (R = L, sum = 0; R < n; R++)

{
sum += a[R];
if (sum > bestSum)

{
bestL = L;
bestR = R;
bestSum = sum;
}

}

return bestSum;
}

Naïve solution

What makes this naïve?

int NaiveSolution(int a[], int n, int &bestL, int &bestR)
{
assert(n);

int sum, bestSum, L, R;
bestSum = a[0];
bestL = bestR = 0;

for (L = 0; L < n; L++)
for (R = L, sum = 0; R < n; R++)

{
sum += a[R];
if (sum > bestSum)

{
bestL = L;
bestR = R;
bestSum = sum;
}

}

return bestSum;
}

Naïve solution

What makes this naïve?

Once a sum <= 0, it can't be
useful.

int Improved(int a[], int n, int &bestL, int &bestR)
{
assert(n);

int sum, bestSum, L, R;
bestSum = a[0];
bestL = bestR = 0;

for (L = 0; L < n; L++)
for (R = L, sum = 0; R < n; R++)

{
sum += a[R];
if (sum > bestSum)

{
bestL = L;
bestR = R;
bestSum = sum;
}

if (sum <= 0)
break;

}

return bestSum;
}

Stops when the sum <= 0.
Does not find the shortest
sequence.

int Shortest(int a[], int n, int &bestL, int &bestR)
{
assert(n);

int sum, bestSum, L, R;
bestSum = a[0];
bestL = bestR = 0;

for (L = 0; L < n; L++)
for (R = L, sum = 0; R < n; R++)

{
sum += a[R];
if (sum > bestSum ||

sum == bestSum && R - L < bestR - bestL)
{
bestL = L;
bestR = R;
bestSum = sum;
}

if (sum <= 0)
break;

}

return bestSum;
}

Finds the shortest sequence.

int Shortest(int a[], int n, int &bestL, int &bestR)
{
assert(n);

int sum, bestSum, L, R;
bestSum = a[0];
bestL = bestR = 0;

for (L = 0; L < n; L++)
for (R = L, sum = 0; R < n; R++)

{
sum += a[R];
if (sum > bestSum ||

sum == bestSum && R - L < bestR - bestL)
{
bestL = L;
bestR = R;
bestSum = sum;
}

if (sum <= 0)
break;

}

return bestSum;
}

Do you like this solution?
Anything you think is ugly?

int Shortest(int a[], int n, int &bestL, int &bestR)
{
assert(n);

int sum, bestSum, L, R;
bestSum = a[0];
bestL = bestR = 0;

for (L = 0; L < n; L++)
for (R = L, sum = 0; R < n; R++)

{
sum += a[R];
if (sum > bestSum ||

sum == bestSum && R - L < bestR - bestL)
{
bestL = L;
bestR = R;
bestSum = sum;
}

if (sum <= 0)
break;

}

return bestSum;
}

Two exits to the for loop.

Do we really need two nested loops?

int AlternateSolution(int a[], int n, int &bestL, int &bestR)
{
assert(n);
int sum, bestSum, L, R;
bestSum = a[0];
bestL = bestR = 0;

for (L = R = sum = 0; R < n; R++)
{
sum += a[R];
if (sum > bestSum ||

sum == bestSum && R - L < bestR - bestL)
{
bestL = L;
bestR = R;
bestSum = sum;
}

if (sum <= 0)
{
sum = 0;
L = R + 1;
}

}
return bestSum;
}

Can this be optimized?

int OptimizedAlternate(int a[], int n, int &bestL, int &bestR)
{
assert(n);
int sum, bestSum, L, R;
bestSum = a[0];
bestL = bestR = 0;

for (L = R = sum = 0; R < n;)
{
sum += a[R];
if (sum > bestSum ||

sum == bestSum && R - L < bestR - bestL)
{
bestL = L;
bestR = R;
bestSum = sum;
}

R++;
if (sum <= 0)

{
sum = 0;
L = R;
}

}
return bestSum;
}

Can this be optimized?
Might move the increment
operation.

Agenda

1. Course details.
2. HW1 MostPositiveSubsequence().
3. History of the web.
4. Search basics.
5. Your project.

Before the web

1970s Internal networks, mostly for email. Dial in for
time sharing. 300 baud modems.

1980s USENET newsgroups. Posts were passed by
polling from one machine to the next. 2400
baud modems.

1990s Bulletin boards, CompuServe, BIX, many
others. 9600 baud modems.

Newsgroups: rec.humor
Path:
gmd.de!xlink.net!sol.ctr.columbia.edu!news.kei.com!ub!acsu.buffalo.edu!ubvms.cc
.buffalo.edu!v140pxgt
From: v140...@ubvms.cc.buffalo.edu (Daniel B Case)
Subject: Canonical List of Light Bulb Jokes
Message-ID: <CEr2F0.521@acsu.buffalo.edu>
News-Software: VAX/VMS VNEWS 1.41
Sender: nn...@acsu.buffalo.edu
Nntp-Posting-Host: ubvmsd.cc.buffalo.edu
Organization: University at Buffalo
Date: Mon, 11 Oct 1993 20:34:00 GMT
Lines: 1021

Sorry for the delay this month, but I had to clear some disk space to
post this (In the future, whenever I get there, I will be using Unix so this
won't happen-I hope). Anyway, here's the latest version.
:
:

https://groups.google.com/forum/?hl=en#!original/rec.humor/uRVacQrozNs/Qrmmizp8bUUJ

https://groups.google.com/forum/?hl=en#!original/rec.humor/uRVacQrozNs/Qrmmizp8bUUJ

Newsgroups: rec.humor
Path:
gmd.de!xlink.net!sol.ctr.columbia.edu!news.kei.com!ub!acsu.buffalo.edu!ubvms.cc
.buffalo.edu!v140pxgt
From: v140...@ubvms.cc.buffalo.edu (Daniel B Case)
Subject: Canonical List of Light Bulb Jokes
Message-ID: <CEr2F0.521@acsu.buffalo.edu>
News-Software: VAX/VMS VNEWS 1.41
Sender: nn...@acsu.buffalo.edu
Nntp-Posting-Host: ubvmsd.cc.buffalo.edu
Organization: University at Buffalo
Date: Mon, 11 Oct 1993 20:34:00 GMT
Lines: 1021

Sorry for the delay this month, but I had to clear some disk space to
post this (In the future, whenever I get there, I will be using Unix so this
won't happen-I hope). Anyway, here's the latest version.
:
:

https://groups.google.com/forum/?hl=en#!original/rec.humor/uRVacQrozNs/Qrmmizp8bUUJ

https://groups.google.com/forum/?hl=en#!original/rec.humor/uRVacQrozNs/Qrmmizp8bUUJ

Newsgroups: rec.humor
Path:
gmd.de!xlink.net!sol.ctr.columbia.edu!news.kei.com!ub!acsu.buffalo.edu!ubvms.cc
.buffalo.edu!v140pxgt
From: v140...@ubvms.cc.buffalo.edu (Daniel B Case)
Subject: Canonical List of Light Bulb Jokes
Message-ID: <CEr2F0.521@acsu.buffalo.edu>
News-Software: VAX/VMS VNEWS 1.41
Sender: nn...@acsu.buffalo.edu
Nntp-Posting-Host: ubvmsd.cc.buffalo.edu
Organization: University at Buffalo
Date: Mon, 11 Oct 1993 20:34:00 GMT
Lines: 1021

Sorry for the delay this month, but I had to clear some disk space to
post this (In the future, whenever I get there, I will be using Unix so this
won't happen-I hope). Anyway, here's the latest version.
:
:

https://groups.google.com/forum/?hl=en#!original/rec.humor/uRVacQrozNs/Qrmmizp8bUUJ

https://groups.google.com/forum/?hl=en#!original/rec.humor/uRVacQrozNs/Qrmmizp8bUUJ

The web is born

Aug 6, 1991, the WWW goes live.
1993 Mosaic browser introduced.
1994, WebCrawler and Lycos go live.

Web surfing is born

Through the 90s, individuals and companies post pages
with quirky links.
Web surfing begins.

Yahoo!

Mar 2, 1995, Yahoo! goes live but their links are all
hand-curated.

Yahoo!

Jerry Yang and David Filo, both PhD students in engineering at
Stanford, start Jerry’s Guide to the Web.

Jerry hated the name, so it became Yahoo!, a meaningless
acronym.

Hand-crafted directory to the web.

Jerry and David categorized 1000 sites/day.

Initially running out of a trailer on campus.

Moved to free hosting on Netscape’s machines in early 1995.

“It was a labor love – lots of labor, since no software program
could evaluate and categorize sites.”

AltaVista

Dec 15, 1995, DEC Research’s AltaVista goes live with
the first modern search engine architecture.

Used index stream readers invented by Mike Burrows.

AltaVista quickly becomes most popular engine.

Bought by Yahoo! in 2003.

Google

Sep 4, 1998, Google goes live with PageRank, named
after Larry Page, coinvented by Sergey Brin.

Introduced a much simpler page where they promised
that all their results were algorithmic, none paid and
that they would do no evil.

Quickly became the dominant engine.

Why did this become dominant?

Bing

Jan 2005, Microsoft’s own engine goes live, initially as
MSN Search.

It’s a lot easier to do something if you know it’s
possible.

In business, this called either an imitator or follower
strategy.

In engineering, if you know something’s possible, you
know not to give up.

Agenda

1. Course details.
2. HW1 MostPositiveSubsequence().
3. History of the web.
4. Search basics.
5. Your project.

The basic parts to a search engine

1. HTML parser.
2. Crawler.
3. Index.
4. Constraint solver.
5. Query language.
6. Ranker.
7. Front end.

Index files

Crawler

Index buildHTML parser

Seed list

The index build side

The query serve side

Index files

Front end

Constraint
solver

Query
compiler Ranker Results

Queries

Index server

Master
index

A search engine index is typically a set of files

List of index
chunks

Index
chunk

Index
chunk

Index
chunk

Index
chunk…

A master index

List of URLS Inverted word index

Each index chunk

FrontierConfiguration
settings

HTML Parser

Extract the content from a HTML file as a series of
tokens in the title and the body of the document and a
set of links with anchor text to other documents.

HTML
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

<head>
<meta content="text/html; charset=utf-8" http-equiv="Content-Type" />

<title>Page title shown in the browser tab</title>
<script>Lots of gibberish</script>

<link href="MyStyles.css" rel="stylesheet" type="text/css" />
<link href="https://mydomain/favicon.ico" rel="shortcut icon" />

<meta name="DC.Rights" content="Copyright 2018 my name"/>
<meta name="description" content=“Short abstract."/>
<meta name="keywords" content=“arbitrary list of words"/>

</head>

<body>
:
</body>
</html>

HTML Parser

Realistically, many teams find getting the HTML parser
to work is the most time-consuming part of the project.

There is so much bad, broken HTML out there on the
web that most teams struggle to keep their parsers
from crashing.

HTML Parser

Realistically, many teams find getting the HTML parser
to work is the most time-consuming part of the project.

There is so much bad, broken HTML out there on the
web that most teams struggle to keep their parsers
from crashing.

This is a big part of the surface area of your project.

HTML Parser

Common pitfall: Overengineering and overcomplexity.

Think carefully: What does it need to do?
Does it need to parse the entire document structure?
HW3 will try to point you in the right direction.

Crawler
1. Manage a frontier of new links to be crawled.
2. Decide what will or will not be crawled and in what order.
3. Keep track of what’s already been crawled.
4. Read pages over HTTP and HTTPS.
5. Obey robots.txt files.
6. Deal with redirects.

All of this has to be highly multithreaded so you don’t wait on slow
sites, instead overlapping them.
You will also want to spread it across multiple machines and will need
to decide how to divide it up.
This also is part of your surface area.

Crawler

Typically maintains pool of worker processes or threads
to read and parse webpages.

Each worker retrieves the file and queues it for the
HTML parser which creates an object.

Links go into the frontier, perhaps with anchor.

Words go into the index.

Crawler

It’s very easy to DOS a site with thousands of
threads on a bunch of AWS machines with gigabit
connections.

So, we’ll talk about politeness and putting your
contact info in your User-Agent: field so
complaints go to you, not me.

Index

A merged inverted word index of all the documents that
have been crawled, allowing you to report all the
documents and individual locations (postings) where
any given word was found.

Due to the size, the posting lists will have to be on disk
but you’ll map them right into your process memory
space for performance.

Master
index

A search engine index is typically a set of files

List of index
chunks

Index
chunk

Index
chunk

Index
chunk

Index
chunk…

A master index

List of URLS Inverted word index

Each index chunk

FrontierConfiguration
settings

The inverted word index operates list the index at the back of a
book.
And index in a book lists all pages where a word or topic appears.
If you want to know the list of pages where some combination of
topics appears, all you need to do is form the appropriate union or
intersection of the lists.
It’s called inverted because we think of the original text as the non-
inverted form.

List of URLS Inverted word index

Each index chunk

Dictionary Posting list Posting list Posting listPosting list …

Common
Header

Type-specific
data Index Post Post Post Sentinel…

The inverted word index

A posting list

Delta from
previous

post

Type-specific
data

An individual post

Index Stream Reader (ISR)

Finds the next occurrence of the desired token or
combination of child ISRs.

Individual words,
Document ends,
Or’ing or And’ding of term,
Phrases, and
Nots

Constraint solver

Given an inverted word index and a constraint, e.g., a
list of words that must appear together or as a phrase
in a document, find the list of matching documents.

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

Consider these posting lists

To read and merge these lists, we need to move from one entry to the next.

We'll do that with an ISR (index stream reader).

The ISR for each token has to be able to report its current location and
attributes, and it needs Next() and Seek() functions.

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

quick | fox 10 27 87 105 106 513 515 518 520

OR'ing streams

An OR ISR simply merges the streams.

No need to pay attention to document boundaries. Each post is in whichever
posting list and whatever document it happens to be.

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

quick fox ?

AND'ing streams

AND'ing of terms should find occurrences of all the terms within a single
document.

Should it return every possible combination, every combination only changing
the nearest ISR or the first match in each matching document?

AND'ing streams

To determine what document a post falls within, we advance a #DocEnd ISR to
the next document end, where we can retrieve information about the
document, including its length.

This tells us the start and end points of the document and whether all the word
ISRs point within the same document.

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

quick fox ?

Easier to consider if we show the document boundaries.

AND'ing streams

AND'ing of terms should find occurrences of all the terms within a single
document.

Should it return every possible combination, every combination only changing
the nearest ISR or the first match in each matching document?

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

quick fox How many possible combinations?
Can you reach all of them in a single pass, all ISRs only moving
forward?

AND'ing streams

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

quick fox How many possible combinations? 6
Can you reach all of them in a single pass, all ISRs only moving
forward? No.

Should it return every possible combination, every combination only changing
the nearest ISR or the first match in each matching document?

AND'ing streams

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

quick fox How many possible combinations? 6
Can you reach all of them in a single pass, all ISRs only moving
forward? No.

Should it return every possible combination, every combination only changing
the nearest ISR or the first match in each matching document?

The point of the constraint solver is to find matching pages. Once any match on
the page has been found, it's the ranker's job to figure out what to do next

Query language

Compile a query as typed, e.g., with quotes around
phrases, into a structure the constraint solver
understands.

The query language and the ISRs will be recursive

"apollo moon landing" | (apple banana)

OR

Phrase AND

"apollo" "moon" "landing" "apple" "banana"

The parse tree

Front end

Report the results back, possibly including snippets
with a simple HTTP server.

Ranker

Use the compiled query to retrieve matching pages
from the index, then score them by a statistical,
heuristic or other method and pick the ten best.

Result quality

To be useful as a search engine, it must produce good
results quickly.

Result quality

Traditional measures:

Precision The fraction of the results that are
relevant.

Recall The fraction of all relevant results
returned.

Result quality

And because it matters that the top results be the best:

Relevance An estimate of the overall quality of the
page as an result for this query that can
be used for ranking (ordering) the
results.

Kinds of rank

Dynamic rank How good a match this page is to
this specific query.

Static rank How good the page is, knowing
nothing about the query.

Dynamic rank: Matching the page to the query

Traditionally methods in information retrieval
considered the page as a bag of words and ostensibly
measured the mathematical or statistical similarity.

For example, one method claimed to consider the
document and the query as vectors and to calculate the
angle between them.

Bag of words

A scoring method that considers only that the search
words occur in the document, not where or what
relation to each other.

tf-idf

Term-frequency, inverse document frequency.

Easily the most famous bag of words technique. The more
occurrences of a rare word, the better.

Bag of words
Here’s a sample NY Times page from Jan 25, 2021.

Bag of words
Here it is stripped of HTML and CSS but the text remains.

Bag of words
Here it is with the words in the title and body sorted. Tf-idf can’t tell the difference.

At Microsoft

At Microsoft, we separated the occurrences into four
metastreams, in order of importance.

1. Anchor text.
2. URL.
3. Title.
4. Body text.

Heuristics

1. Pick the rarest word in the query, then iterate over its
occurrences on the page.

2. At each place, move the pointers to the other words to
as close to the correct relative position as possible.

3. Score that that set, called a span, counting the number
of spans, the number of exact phrases, in order, close
together, etc.

4. Score the counts, weighting exact phrases the title as
more important than other matches.

Heuristics

Altogether, had about 700 heuristics in a linear
combination.
Tuned them using gradient descent and approximately
150K labeled pages and queries.

What we found

Finding the search words in the right order and close
together was more important than simply finding lots
of them.
Added tf-idf because under pressure that of course we
should consider it. Removed it because it added
nothing to our relevance but slowed our crawl.
It mattered a lot where we found the matching terms.

Anchor > URL > Title > Body text

Static rank

Some pages are just better than others before you
know anything about the query.

Static rank

1. Some domains are better than others, e.g., .gov or
.edu over .biz.

2. Short URLs are better.

3. Short titles are probably better.

4. Some pages may be obvious spam.

5. Some pages may have lots of other pages pointing
to them, e.g., PageRank.

PageRank

The basic idea: The
more and better links
to a page, the more
likely it should rank
higher.

Image source: https://upload.wikimedia.org/wikipedia/commons/thumb/f/fb/PageRanks-Example.svg/1270px-PageRanks-Example.svg.png

https://upload.wikimedia.org/wikipedia/commons/thumb/f/fb/PageRanks-Example.svg/1270px-PageRanks-Example.svg.png

PageRank

It obviously did work and they got better results.

It also gave halo of special legitimacy to their results,
that they were scientific and unbiased.

At Microsoft

We gamely expected our version of PageRank to
represent about half the overall rank value, largely
based on the hype around it.
Turned out it was very expensive to calculate and
represented only a small part of the final rank score.

Agenda

1. Course details.
2. HW1 MostPositiveSubsequence().
3. History of the web.
4. Search basics.
5. Your project.

Your project

I’ve broken it into 8 levels of functionality:

0 Basic plan for your project.
1 Parse text files into a hash table.
2 Build a crawler.
3 Build a reverse word index.
4 Create a user interface.
5 Build a constraint solver and query parser.
6 Build a ranker.
7 Advanced functionality.

Next
Overall course plan is:

1. Get you crawling ASAP.

2. Cover the OS topics you’ll need.

3. Then, enough to build each piece as you get to it,
starting with the crawler.

Next time: Project planning.

Please install GanttProject software.

Who needs a team?

	EECS 440 System Design of a Search Engine�Winter 2021�Lecture 2: Search engine basics
	Agenda
	Agenda
	details
	Agenda
	Homework
	Homework
	Homework
	Early iterations
	What you saw
	Why shortest first?
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Naïve solution
	Naïve solution
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Agenda
	Before the web
	Slide Number 25
	Slide Number 26
	Slide Number 27
	The web is born
	Slide Number 29
	Web surfing is born
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Yahoo!
	Slide Number 35
	Yahoo!
	AltaVista
	Slide Number 38
	Google
	Slide Number 40
	Slide Number 41
	Bing
	Slide Number 43
	Slide Number 44
	Agenda
	The basic parts to a search engine
	Slide Number 47
	Slide Number 48
	Slide Number 49
	HTML Parser
	HTML
	HTML Parser
	HTML Parser
	HTML Parser
	Crawler
	Crawler
	Crawler
	Index
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Index Stream Reader (ISR)
	Constraint solver
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Query language
	Slide Number 72
	Front end
	Ranker
	Result quality
	Result quality
	Result quality
	Kinds of rank
	Dynamic rank: Matching the page to the query
	Bag of words
	tf-idf
	Bag of words
	Bag of words
	Bag of words
	At Microsoft
	Heuristics
	Heuristics
	What we found
	Static rank
	Static rank
	PageRank
	PageRank
	At Microsoft
	Agenda
	Your project
	Next

