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Abstract— In this paper, we study the noise sensitivity of
the semidefinite program (SDP) used in the direct data-driven
infinite horizon linear quadratic regulator (LQR) problem for
discrete-time linear time-invariant systems. While this SDP is
shown to find the true LQR controller in the noise-free setting,
we show that it leads to a trivial solution when data is corrupted
by noise, even when the noise is arbitrarily small. Hence, a
“certainty equivalence” approach that uses the original SDP
with noisy data is not appropriate.

I. INTRODUCTION

Two of the most dominant paradigms in learning-based
control are the certainty equivalence approach and the robust
control approach. Roughly speaking, in certainty equiva-
lence, we pretend that our data is not corrupted by noise, the
estimated model is the true system model, or the estimated
control policy is designed based on the true system and clean
data. On the other hand, in robust control approach, we try
to bound the effect of the noise in the data and aim to find a
controller that achieves the desired properties for all possible
noise values within this bound.

These two different paradigms can be applied both in the
model-based case, where system identification is followed by
control design, or in direct data-driven control, which uses
data to directly synthesize a controller using the behavioral
approach (see, e.g., [1], [2]). In the context of model-
based LQR, Mania et al. [3] show that certainty equivalence
is statistically consistent and is more sample-efficient than
the robust approach given in [4]. The success of certainty
equivalent control, in this case, lies in the fact that there
is some inherent robustness in the solutions of the Riccati
equations with respect to perturbations in system matrices.

A natural question is how the certainty equivalence ap-
proach and a robust control approach compare in terms
of statistical properties for direct data-driven LQR. Several
works consider a robust approach for direct data-driven
control for different control objectives or noise settings (e.g.,
[5]–[7]). On the other hand, De Persis and Tesi [8] analyze
a certainty equivalent approach to direct data-driven LQR,
where they provide a sufficient condition for stabilizability
and regularization techniques for improving noise robustness.
Here, the certainty equivalence approach amounts to using
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the noisy data directly in the semidefinite program developed
for the noise-free case. It is observed in [8] that even small
noise can lead to a violation of their proposed sufficient con-
dition for stabilizability and the semidefinite program may
favor low gain solutions. However, a thorough understanding
of the noise sensitivity of this semidefinite program for direct
data-driven LQR is missing. In this paper, using a scalar
system, we prove that the semidefinite program for direct
data-driven LQR is very sensitive to noise and yields, with
probability one, trivial control gains independent of the data
even when there is an arbitrarily small amount of noise.

There are also recent works that propose alternative opti-
mization formulations for direct data-driven control that aim
to mimic the solution of the model-based certainty equiva-
lent control [9], [10]. Since the controllers synthesized by
these alternative formulations are equivalent to model-based
certainty equivalent control, they inherit the nice statistical
consistency properties of the former. Our analysis does not
pertain to these alternative formulations.

The remainder of the paper is organized as follows. After
we briefly introduce the notation used throughout the paper,
in Section II we review some basic results from direct
data-driven LQR focusing on a scalar system. Section III
introduces the main results and their proofs. We provide
some numerical examples in Section IV before concluding
the paper in Section V.
Notation: We use lower case, lower case boldface, and upper
case boldface letters to denote scalars, vectors, and matrices
respectively. N denotes the Gaussian distribution. R denotes
the real number domain. We denote the identity matrix of
size n as In.

II. DIRECT DATA-DRIVEN (DDD) LQR

For simplicity, we only consider the following scalar
discrete-time linear time-invariant (LTI) system in this paper:

xt+1 = axt + but + wt, (1)

where xt ∈ R, ut ∈ R, wt ∈ R are the state, input, and noise
at time t, respectively. We assume that the initial state and
the noise are independent random variables with distributions
satisfying wt

i.i.d.∼ N (0, σ2
w), E[x0] = 0, and E[x2

0] = σ2
x0

.
The system parameters a and b are unknown but, throughout
the paper, we assume that b ̸= 0, which ensures that the
system is controllable. The standard LQR problem for the



scalar LTI system (1) is

min
u0,u1,···

lim
T→∞

E

[
1

T

T∑
t=0

(
qx2

t + u2
t

)]
s.t. Dynamics in (1)

, (2)

where q > 0, E denotes the expectation over the randomness
from the initial state x0 and the process noise wt. When a
and b are known, this LQR problem can be solved by finding
the positive solution p of the scalar discrete-time algebraic
Riccati equation: p = a2p − a2b2p2

1+b2p + q. Then, the solution
of (2) is ut = klqrxt, with the optimal controller given by

klqr =
−abp

1 + b2p
.

In direct data-driven control, the parameters a and b are
unknown and the goal is to directly estimate klqr from data
without explicitly estimating a and b. We assume the data is
collected offline by driving the system with a random input
such that ut

i.i.d.∼ N (0, σ2
u) with σ2

u > 0, and this input is
independent of the noise process and the initial condition. Let
us define the data matrices formed from this data collected
over some horizon T :

x⊤
0 (T ) :=

[
x0 x1 . . . xT−1

]
,

u⊤
0 (T ) :=

[
u0 u1 . . . uT−1

]
,

x⊤
1 (T ) :=

[
x1 x2 . . . xT

]
.

(3)

Most of the time, when T is clear from context, we will
drop it and use x⊤

0 , u⊤
0 , x⊤

1 to indicate the above quantities.
We similarly define w⊤

0 (T ) :=
[
w0 w1 . . . wT−1

]
for the (unknown) noise sequence; and use w⊤

0 when T is
clear from context.

De Persis and Tesi proposed a semidefinite program, called
the DDD LQR, to estimate the optimal LQR gain in [1,
Theorem 4]. In the case of a scalar system, this SDP takes
the form:

min
s∈R,y∈RT

qx⊤
0 y + s

s.t.
[

x⊤
0 y − 1 x⊤

1 y
y⊤x1 x⊤

0 y

]
⪰ 0[

s u⊤
0 y

u⊤
0 y x⊤

0 y

]
⪰ 0.

(4)

If y∗
ce denotes an optimal solution to (4), then the LQR gain

estimate is given by

kce := −u⊤
0 y

∗
ce

x⊤
0 y

∗
ce

. (5)

The following result from [1] shows that when the system
does not have any noise (i.e., wt = 0 for all t) and
a persistency of excitation condition holds (which can be
shown to hold with probability 1 when the input is Gaussian
as assumed), we have klqr = kce.

Theorem 1 ( [1, Theorem 4]). Let rank

([
x⊤
0

u⊤
0

])
= 2.

When σ2
w = 0, kce = klqr.

Some limitations of the estimate kce, which is also known
as a certainty equivalence DDD LQR solution, are discussed
in [8]; and alternative semidefinite programs with regular-
ization are proposed to improve noise robustness. Our main
result (Theorem 2) is to show that even when the noise is
arbitrarily small, kce can be an arbitrarily bad estimate.

For the noisy setting, in [8], the following sufficient
condition for stabilization is proposed.

Lemma 1 ( [8, Lemma 4] ). Consider an optimal solution
y∗
ce of (4). Let

M := y∗
ce(x

⊤
0 y

∗
ce)

−1 (y∗
ce)

⊤
,

and
Ψ := w⊤

0 Mw0 − x⊤
1 Mw0 −w⊤

0 Mx1.

Consider kce defined in (5). If there exists η ≥ 1 such that

Ψ ≤ 1− 1

η
,

then kce is a stabilizing state feedback gain for (1).

We will also provide an interpretation of this sufficient
condition in light of our main theorem.

III. CLOSED-FORM SOLUTION TO DDD LQR
SEMIDEFINITE PROGRAM

Our first main result shows that in the presence of noise,
with probability 1, the solution of the certainty equivalence
DDD LQR problem in (4) is independent of the data.

Theorem 2. Assume σ2
w > 0, T ≥ 3, and the offline data is

persistently exciting in the sense that

rank

([
x⊤
0

u⊤
0

])
= 2.

Then, for all optimal solutions y∗
ce of (4), the controller gain

kce given in (5) is unique and we have that

PT (kce = 0) = 1,

where the probability is with respect to the randomness of
x0, u0(T ), and w0(T ).

Based on Theorem 2, we have that when T ≥ 3, the data-
driven feedback gain based on certainty equivalence DDD
LQR in (4) is generically equal to 0. Hence, kce will not
converge to klqr no matter how large T is, i.e., kce is an
inconsistent estimator of klqr.

The following corollary enables an alternative interpreta-
tion of Lemma 1.

Corollary 1. Consider Ψ defined in Lemma 1. Let all the
assumptions in Theorem 2 hold. Then, with probability one,
we have that Ψ = a2.

Corollary 1 shows that when the open-loop system in (1) is
unstable, the inequality condition in Lemma 1 will not hold
with probability one. This is because when |a| > 1, there
does not exist η ≥ 1 such that Ψ = a2 ≤ 1− 1

η . Therefore,
Lemma 1 essentially says that, when the open-loop system
is stable, control gains being zero is stabilizing, as expected.



A. Proof of the main results

Our proof builds on a few lemmas.

Lemma 2. Assume σ2
w > 0, T ≥ 3. Consider the events

E1 =

{
(x0,u0,w0) : rank

([
x⊤
0

u⊤
0

])
= 2

}
and E2 =(x0,u0,w0) : rank

 x⊤
0

u⊤
0

x⊤
1

 = 3

. Then,

P (E2 | E1) = 1. (6)

Proof. Based on the dynamics defined in (1), we have that

x1 = ax0 + bu0 +w0. (7)

Now consider the complement Ec
2 of the event E2. We

will show that P (Ec
2 | E1) = 1 − P (E2 | E1) = 0.

Note that given E1, the only way E2 fails is if we have

rank

 x⊤
0

u⊤
0

x⊤
1

 = 2. However, by (7), this requires

w0 ∈ span(x0,u0). Note that w0 is a Gaussian random
vector taking values in RT and this event requires it to
lie in a Lebesgue measure zero subset of RT . It follows
from [11, Prop 1.24] that if X is a random variable ab-
solutely continuous with respect to the Lebesgue measure
(like Gaussian random variables), then P(X ∈ B) = 0 for
any B ⊂ Rn which has Lebesgue measure zero. Therefore,
P (Ec

2 | E1) = 0.

Remark 1. The results in Lemma 2 (hence, the remaining
results as well) are not restricted to Gaussian noise and
will hold for any sufficiently regular noise distribution whose
support contains an open set around the origin.

Lemma 3. Assume rank

 x⊤
0

u⊤
0

x⊤
1

 = 3. Consider the

following underdetermined system of equations: x⊤
0

u⊤
0

x⊤
1

y =

 1
0
0

 . (8)

Then, y∗ is an optimal solution of (4) if and only if y∗

satisfies (8).

Proof. We note that since rank

 x⊤
0

u⊤
0

x⊤
1

 = 3, Equation

(8) always has a solution. First, we prove that any solution
of (8) is an optimal solution of (4). Since x⊤

0 y ≥ 1 > 0,
by Schur complement, we can rewrite the first constraint in
(4) as: x⊤

0 y − 1 − (x⊤
1 y)2

x⊤
0 y

≥ 0 and x⊤
0 y − 1 ≥ 0, and the

second constraint as s ≥ 0 and s − (u⊤
0 y)

2

x⊤
0 y

≥ 0. Since s

is being minimized, its optimal value will be s =
(u⊤

0 y)
2

x⊤
0 y

.
Hence, we can remove s from (4) to obtain the following

equivalent problem:

minimize
y∈RT

Oce(y) := qx⊤
0 y +

(u⊤
0 y)

2

x⊤
0 y

subject to x⊤
0 y − 1 ≥ 0(
x⊤
0 y − 1

)
x⊤
0 y −

(
x⊤
1 y

)2 ≥ 0

. (9)

For the optimization problem (9), because x⊤
0 y− 1 ≥ 0 and

q ≥ 0, we have Oce(y) ≥ q for any feasible solution y of
(9). Therefore, if there exists ym such that Oce(ym) = q,
then ym is an optimal solution of (9). Take a solution y∗

of (8), then two inequality constraints of (9) are satisfied
with equality and we also have Oce(y

∗) = q. Therefore, any
solution of (8) is an optimal solution of (9) and the optimal
objective value of (9) is q.

Next, we will prove that any optimal solution y∗
ce of (9)

must satisfy (8). First, according to the first constraint in
(9), x⊤

0 y
∗
ce ̸= 1 implies that x⊤

0 y
∗
ce > 1. Then, we have

Oce(y
∗
ce) > q, which contradicts the fact that y∗

ce is an
optimal solution of (9). Therefore, we have that x⊤

0 y
∗
ce = 1

must hold. Based on the second constraint in (9), x⊤
0 y

∗
ce =

1 implies that x⊤
1 y

∗
ce = 0 must hold. According to the

objective function definition in (9) and the fact that the
optimal objective value of (9) is q, we necessarily have
u⊤
0 y

∗
ce = 0 must hold. In conclusion, any optimal solution

of (9) satisfies (8).

Remark 2. We note that in the noiseless setting, given E1,
we have

rank

 x⊤
0

u⊤
0

x⊤
1

 = 2,

with x1 = ax0+bu0. In this case, for Equation (8) to have a
solution, we need

[
1 0 0

]⊤
to be in the column space

of the above matrix, which would only happen when a = 0.1

Hence, the constructed trivial solution is not a valid solution
in the noiseless case and our result does not constitute a
counterexample to the semidefinite program (4) resulting in
the true klqr in noiseless settings.

Next, we give the proof of Theorem 2.

Proof. (of Theorem 2) By Lemma 3 and by the definition
of kce, any optimal solution of (4) yields the unique kce

value of 0 when

 x⊤
0

u⊤
0

x⊤
1

 is full row rank, which holds true

with probability one due to Lemma 2. This completes the
proof.

We can prove Corollary 1 similarly.

Proof. (of Corollary 1) Under the assumptions of Theorem 2,
by Lemma 2 and Lemma 3, we get that x⊤

0 y
∗
ce = 1,u⊤

0 y
∗
ce =

0, and x⊤
1 y

∗
ce = 0, with probability 1. Then based on (7), it

implies that

w⊤
0 y

∗
ce = (x1 − ax0 − bu0)

⊤
y∗
ce = −a,

1Note that when a = 0, the true LQR gain klqr = 0, hence in this case
as well the semidefinite program (4) results in the true klqr .



with probability 1. Then by the definition of Ψ in Lemma 1,
we conclude that P

(
Ψ = a2

)
= 1.

IV. NUMERICAL EXAMPLES

In this section, we present two numerical experi-
ments—one for a scalar system and another for a multivariate
system—to validate our main theoretical results and provide
insights for future research.

A. Scalar System

We first perform the experiments to estimate the LQR gain
for a scalar system, both with and without noise, to verify
Theorem 1 and Theorem 2. Consider the scalar dynamics in
(1) with parameters a = 2 and b = 1 and the scalar LQR
problem in (2) with q = 1. Let the initial state be x0 = 1 and
set the data matrices horizon to T = 4. For this setup, the
true LQR gain is klqr = 1.6180. First, consider the following
noiseless data matrices:

u⊤
0 =

[
0.1 0.1 0.1 0.1

]
,

w⊤
0 =

[
0 0 0 0

]
,

x⊤
0 =

[
1 2.1 4.3 8.7

]
,

x⊤
1 =

[
2.1 4.3 8.7 17.5

]
.

(10)

The LQR gain estimate, computed using (4), is kce = 1.6180,
which exactly matches the true LQR gain klqr, thereby
verifying Theorem 1. Next, we consider data matrices with
non-zero noise:

u⊤
0 =

[
0.1 0.1 0.1 0.1

]
,

w⊤
0 =

[
0.1 0.2 0.2 0.2

]
,

x⊤
0 =

[
1 2.2 4.7 9.7

]
,

x⊤
1 =

[
2.2 4.7 9.7 19.7

]
.

(11)

In this case, the LQR gain estimate computed by (4) is kce =
0, verifying Theorem 2.

B. Multivariate System

We next consider a multivariate LTI system, described by
the following dynamics:

xt+1 = Axt +But +wt, (12)

where xt ∈ Rn, ut ∈ Rm, wt ∈ Rn represent the state,
input, and noise at time t, respectively. The initial state and
the noise are independent random variables, with wt

i.i.d.∼
N (0, σ2

wIn), and the initial state x0 = 0. We consider the
following specific system matrices (A,B):

A =

[
0.8878 0.2232
0.3491 0.3726

]
and B =

[
−0.6808
0.3726

]
,

where the spectral radius of A is 1.01, indicating that
this LTI system is open-loop unstable. For the parameter
matrices (Q,R) in LQR problem, we set Q = I2 and R =
1, yielding a true LQR gain of

[
−0.7112 −0.2046

]
.

The implementation of DDD LQR for multivariate systems
follows the method outlined in Theorem 4 in [1]. The
data matrices are collected offline by exciting the system
with random inputs such that ut

i.i.d.∼ N (0, σ2
u), where

σ2
u = 1. We set the trajectory length to T = 50. When

σ2
w = 0, the LQR gain estimate computed by DDD LQR

is
[
−0.7112 −0.2046

]
, which matches the true LQR

gain, demonstrating the accuracy of the method in Theorem
4 of [1] for noiseless multivariate systems. However, when
σ2
w = 0.00001, the LQR gain estimate from DDD LQR

becomes:
[
0 0

]
. This LQR gain estimate would result

in an unstable closed-loop system. This result suggests that
the algorithm in Theorem 4 of [1] is highly sensitive to noise,
even when the noise level is very small.

We also implement the semidefinite program in Theorem 4
in [1] for 100 random controllable multivariate LTI systems
with the state dimension n = 5, the input dimension m = 2.
We generate B with independent scalar Gaussian N (0, 1)
entries, Â with independent uniformly distributed entries
between [0,1], and let A = rÂ/ρ(Â) with r = 0.5 and
ρ(Â) referring to the spectral radius of Â. We run the
experiments 20 times for every randomly generated system
with the length of data trajectory T = 20, the random inputs
such that ut

i.i.d.∼ N (0, σ2
uI2), where σ2

u = 1, and the random
noise such that wt

i.i.d.∼ N (0, σ2
wI5), where σ2

w = 0.00001.
For all experiments, the LQR gain estimate from DDD LQR
are always equal to a zero matrix.

The theoretical analysis of multivariate LTI systems is left
for future work.

V. CONCLUSION AND FUTURE WORK

This paper shows that the semidefinite program proposed
for the direct data-driven infinite-horizon LQR problem leads
to, with probability one, a trivial solution for noisy data.
Therefore, a “certainty equivalent” approach where the noisy
data is directly used in the semidefinite program for the
noiseless case is in general not a good idea and it is better to
resort to robust approaches or alternative formulations. This
is in contrast to the model-based certainty equivalent control,
which was shown to be superior to a robust approach in terms
of statistical properties [3].

Our current work focuses on generalizing these results
to multivariate systems and on the analysis of regularized
versions of the direct data-driven control for noisy data.
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