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Abstract— In this paper, we consider adaptive decision-
making problems for stochastic discrete state estimation with a
given budget of sensing actions/measurements that yield noisy
and/or faulty partial observations. This problem is an extension
of Bayesian active diagnosis, which is known to be NP-hard,
to the setting when the sensor measurements are vector-valued
and may be affected by persistent sensor faults and/or non-
persistent noise. In particular, we identify meaningful reward
functions for this problem that are adaptive monotone and
weakly adaptive submodular; thus an adaptive greedy algorithm
(with no need for proxy reward functions nor new algorithms)
has guaranteed near-optimal performance. Finally, we apply
our approach to discrete state estimation via active sensing of
an electrical power system with sensor faults (persistent noise)
and sensor noise (stochastic/non-persistent noise).

I. INTRODUCTION

The operation of complex cyber-physical systems often
involves a sequence of control and sensing decisions under
partial observability. This problem of sequential decision-
making appears in various applications, both in the context
of stochastic control (e.g., in robot navigation [1], reinforce-
ment learning [2]) and stochastic state estimation (e.g., in
information gathering in robotics [3], [4], fault diagnosis in
nuclear plants [5], sensor placement and scheduling [6]–[9]).
Specifically, the research area of active diagnosis and active
learning, i.e., the problem of discrete state (or diagnosis or
hypothesis) identification via a minimal number of sequential
information-bearing sensing actions, has many real-world
applications in medical diagnosis and emergency response
[10], [11], electrical systems diagnosis [12], [13], etc., and
thus can have significant and broad impacts on the fields of
cyber-physical systems, robotics and artificial intelligence.

Related Work. Finding optimal active sensing policies for
general partially observable stochastic estimation problems
is often an intractable combinatorial optimization problem.
Hence, researchers, e.g., [8], [14], [15] in the context of
actuator and sensor placement and scheduling, have appealed
to a diminishing returns property known as submodularity,
which plays a similar role in combinatorial optimization as
convexity in continuous optimization. Furthermore, a recent
paper [6] introduced the notion of adaptive submodularity
for set functions that extends submodularity to the adaptive
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setting, i.e., when actions are sequentially chosen based
on observations/sensor measurements, and provided near-
optimal performance guarantees for adaptive greedy policies.

When the sensor measurements or observations are not
corrupted by noise or faults, [6] identified a reward func-
tion for the active learning and diagnosis problems that
they showed to be adaptive monotone submodular and
further proved that an adaptive greedy policy yields the
best polynomial-time approximation algorithm, based on
the results of [16]. The setting when the observations are
corrupted by noise or faults has also been studied, but only
for special cases, of either only persistent faults or only
non-persistent noise, although they can occur simultaneously
in many applications with vector-valued observations, as is
considered here.

When the noise is stochastic/non-persistent, i.e., the case
when repeated measurements may yield different observa-
tions, [17], [18] proposed practical algorithms based on
rank and entropy approximation, respectively, for active
diagnosis without providing performance guarantees. For the
complementary problem of (non-persistently) noisy active
learning that selects sensing actions to identify the correct
state/diagnosis with a given maximum probability of error,
noisy generalized binary search (GBS) and Extrinsic Jensen-
Shannon (EJS) divergence maximization have been proposed
in [19], [20], respectively, each with its own performance
guarantees. These approaches do not rely on (weak) adaptive
submodularity [6], [13] that can potentially simplify the
performance analysis.

On the other hand, the active diagnosis problem with
persistent noise or faults has only been recently considered in
[13], although the complementary Bayesian active learning
with persistent noise has been investigated earlier in [4],
[11], [21]. All these approaches consider a more general
problem of group-based active diagnosis and learning via
defining the possible states/diagnoses of interest as groups of
modes/objects of persistent faults. [4], [11], [21] share the
indirect approach of defining proxy reward functions that
are adaptive submodular, providing new corresponding al-
gorithms and consequently proving performance guarantees
for the original problem. In contrast, the direct approach in
[13] showed that the reward function is weakly adaptive sub-
modular and proved that the adaptive greedy algorithm for
the unmodified reward function also has similar performance
guarantees as [11], [21].

Contributions. We consider the noisy discrete state esti-
mation problem (more generally, the noisy Bayesian active
diagnosis problem) where the vector-valued observations



may be corrupted by persistent sensor faults and/or non-
persistent stochastic noise. We propose reward functions that
are meaningful for robust decision-making/control problems
in safety-critical and health-related applications, which we
further show to be adaptive monotone and weakly adap-
tive submodular; hence, an adaptive greedy active sensing
policy (with no need for sophisticated new algorithms) has
guaranteed near-optimal performance. When we only have
persistent sensor faults or when there are no faults or noise,
the reward functions reduce to the ones in the literature [6],
[13] and when the noise is only non-persistent, the proposed
greedy policies provide alternatives to the approaches in [19],
[20]. Lastly, we empirically evaluate our approach with the
proposed reward functions on a state estimation problem of
an aircraft electrical system, which we observed to perform
just as well as an exhaustive search policy while using
significantly less computation.

II. MOTIVATION: AIRCRAFT ELECTRICAL SYSTEM WITH
PERSISTENT FAULTS AND STOCHASTIC NOISE

Fig. 1: A single-line diagram of a simple circuit with AC
components (in black) and DC components (in red).

We are motivated by the discrete state estimation problem
of an aircraft electrical system via active sensing, first studied
in [12] (see Figure 1 for an example of a simple circuit and
the readers are referred to [12] for a detailed description
of the electrical circuits). As more systems become more
dependent on electric power systems, this problem is crucial
to the operation and safety of these systems. In [12], the
sensors are assumed to be healthy or faultless and noiseless,
while [13] considers the setting with persistent sensor faults
that persistently provide incorrect information about the
unknown discrete state (i.e., operating condition or status)
of the electrical components. To complement [13], we will
also consider non-persistent or stochastic sensor noise in this
paper. In contrast to persistent faults, a non-persistently noisy
sensor outputs a false measurement with a certain probability
each time a measurement/sensing action is taken, and thus,
the sensor measurements do not stay constant/persistent
when the same sensing action is repeated. Thus, in this case,
there is a trade-off between exploration (taking a separate
sensing action) and exploitation (repeating the same action).

Despite the presence of persistent sensor faults and/or non-
persistent sensor noise, our goal is similar to that in [12],
[13], i.e., to design a policy that can adaptively/sequentially
estimate the discrete state of the circuit by taking active
sensing “actions” (i.e., opening or closing controllable con-
tactors) and observing the sensor measurements.

III. PROBLEM FORMULATION

We consider the discrete state estimation problem (also
known as Bayesian active diagnosis or adaptive stochas-
tic maximization) with a finite set of vector-valued
states/hypotheses/diagnoses X = X1× . . .×Xn (e.g., health
of electrical components, locations of target objects) with
a (possibly non-uniform) prior probability distribution P[x],
a finite set of sensing actions/queries/tests V and a finite
set of vector-valued sensor measurements/observations Y =
Y1 × . . . × Ym (e.g., an array of sensors, multi-question
questionnaire). In contrast to the traditional noiseless discrete
state estimation problem, the sensing actions can yield noisy
observations, which can be persistent and/or non-persistent.
If the noise affecting observation yi ∈ Yi is persistent
(henceforth referred to as deterministic/persistent fault), then
repeating the same action will yield the same observation,
whereas if the noise affecting observation yi ∈ Yi is non-
persistent (henceforth referred to as stochastic noise), then
repeated actions may yield different observations. Note that
the stochastic noise should not be viewed as a special case
of the persistent fault with an infinite number of copies
of each action (a common misconception) because each
repeated action would incur a cost. Moreover, since each
action (repeated or not) incurs a cost, there is a net loss in
repeating an action if we only have persistent sensor faults
but the repeated action may result in a net gain if there is
also stochastic or non-persistent sensor noise, leading to a
form of trade-off between exploration and exploitation.

Deterministic faults are modeled as fault modes that do
not change with time, denoted q ∈ Q, and is a Q-valued
random variable with conditional probability mass function
P[q|x] . We will also adopt the types of faults in [13], where a
Type 1 fault is when a faulty observation persistently outputs
another (wrong) outcome and a Type 2 fault is when the
faulty observation is always constant, e.g., ‘0’ or ‘1’. On the
other hand, stochastic noise are time-dependent noise modes,
i.e., wt ∈ W for each time t that an action/test is chosen.
The noise mode for each time t is determined by aW-valued
random variable with conditional probability mass function
P[wt|x, q] that we assume to satisfy the following:

(A1) P[w1:T |x, q] =
∏T
i=1 P[wi|x, q],

(A2) P[wi|x, q] = P[yi|x, q, vi], ∀i ∈ {1, . . . , T},
where vi is the chosen action and w1:T is a shorthand to
denote the vector of sensor modes for the time horizon from
t = 1 to t = T . Assumption (A1) represents the typical
assumption that stochastic noise is conditionally independent
over time, while Assumption (A2) means that conditioned on
the state x, the fault mode q and the action vi, there is a 1-to-
1 mapping between yi and wi (typically true by the definition
of wi). These assumptions hold in the noisy Bayesian active
learning problems in [19], [20].

Next, as in [11], [13], [21], we reduce the noisy problem to
the noiseless case by considering “noisy” copies of the state,
each corresponding to a fault mode and a noise mode for
each t. More formally, we have objects consisting of a tuple
of state, fault mode and noise modes, x , (x, q, w1:T ) ∈



X ×Q×WT , X , and the state x ∈ X can be thought of
as a group of objects, i.e., x = {(x, q, w1:T )|q ∈ Q, w1:T ∈
WT }. The decision maker is allowed to take a sensing action
(or run a test) v ∈ V . The sensing action v generates a
measurement observation/outcome in y ∈ Y whose value is
(uniquely) determined by the true state xo, fault mode qo and
noise mode wt,o at time t, i.e., yt = µ(v, xo, qo, wt,o). Given
a budget on the number of actions, T , the goal of the decision
maker is to minimize the uncertainty in the estimation of the
actual state xo by an adaptive sequential choice of irrevocable
actions based only on past (noisy) observations from previous
actions. The goal of “minimum uncertainty” is described by
a reward function f : 2V × X × Q × WT that is to be
maximized, where we slightly abuse the notation of 2V to
represent collections of sets that allow repeated elements.

To formalize the noisy discrete state estimation prob-
lem, we represent the pairs of actions {v1, . . . , vt} and
observed outcomes {y1, . . . , yt} as the partial realization
ψt = {(vi, yi)}i∈{1,...,t}. Given two partial realizations ψt
and ψt′ , we call ψt a subrealization of ψt′ if ψt ⊆ ψt′ .
Moreover, we define D(y, v, q, wt) as the set of states x ∈ X
that gives the same observation y under the action v and
(x, q, wt) is the true tuple of state, fault mode and noise
mode at time t. We then define St,q,w1:t

as the set of all
compatible states with the hypothesis that q and w1:t are
the true fault and noise modes up to iteration t, i.e., the
set of all states that produce the same set of outcomes
{µ(v1, xo, qo, w1,o), ..., µ(vt, xo, qo, wi,o)} under the set of
actions {v1, ..., vt}:

St,q,w1:t
= ∩i∈{1,...,t}D(µ(vi, xo, qo, wt,o), vi, q, wi). (1)

Since only intersections are taken, the order of actions vi
does not matter.

Furthermore, we define a policy π as a function of the
observed partial realizations ψt to action v, i.e., vt+1 =
π(ψt). Randomized policies that specify the distribution on
actions are also allowed.

The noisy discrete state estimation (henceforth referred to
by its more common name, noisy Bayesian active diagnosis)
problem is as follows:

Problem 1 (Noisy Bayesian Active Diagnosis). Given a
reward function f and a probability mass function P[x], the
objective of the noisy Bayesian active diagnosis (or noisy
discrete state estimation) problem is to find a policy π∗ with
a budget of T actions such that

π∗ ∈ arg max
π

E[f(Ṽ(π,X),X)]

subject to |Ṽ(π,xo)| ≤ T, ∀xo ∈ X ,
(2)

with expectation taken with respect to (w.r.t.) X and
Ṽ(π,xo) ⊆ 2V is the set of all action sequences under policy
π with the state xo.

IV. PRELIMINARIES

We begin by introducing some definitions for set functions.
Note that we allow sets to have repeated elements and the
union operation is defined accordingly.

Definition 1 (Conditional Expected Marginal Benefit [6]).
Given an objective function f , an action v ∈ V and a partial
realization ψt, the conditional expected marginal benefits of
an action v and a policy π conditioned on having observed
ψt are defined as

∆(v|ψt) , E[f(v1:t ∪ {v},X)− f(v1:t,X)|ψt], (3)

∆(π|ψt) , E[f(v1:t ∪ Ṽ(π,x0),X)− f(v1:t,X)|ψt],

respectively, with the expectation taken w.r.t. P[x|ψt].

Definition 2 (Adaptive Monotonicity [6]). A function f :
2V×X → R≥0 is adaptive monotone w.r.t. distribution P[x]
if for all v ∈ V and ψt with P[ψt] > 0, ∆(v|ψt) ≥ 0.

Definition 3 (ζ-Weak Adaptive Submodularity [13]). A
function f : 2V×X → R≥0 is ζ-weakly adaptive submodular
w.r.t. distribution P[x] if for all ψt, ψt′ such that ψt is a
subrealization of ψt′ , i.e., ψt ⊆ ψt′ , and for all v ∈ V \v1:t′ ,

∆(v|ψt′) ≤ ζ∆(v|ψt),

for some adaptive submodularity factor ζ ≥ 1.

Adaptive monotonicity has the interpretation that the
conditional expected marginal benefit of any action v is
non-negative, while weak adaptive submodularity has the
interpretation that the conditional expected marginal benefit
of any fixed action (or query) v does not increase “too much”
as more actions are performed and their measurements are
observed. Note that the notion of ζ-weak adaptive submodu-
larity generalizes the (strong) adaptive submodularity defined
in [6], where ζ = 1.

When the marginal gain ∆(v|ψt′) satisfies adaptive mono-
tonicity and weak adaptive submodularity, [13] recently
showed that the following near-optimal performance guar-
antee can be obtained with an adaptive greedy algorithm.

Theorem 1 (Near-Optimality Guarantee [13]). Fix any ζ ≥
1. Let the greedy policy πgreedy` be run for ` iterations (i.e.,
it selects ` actions), and π∗T be any policy selecting at most
T actions for any realization x. Then, for adaptive monotone
and ζ-weakly adaptive submodular f (with f(∅) = 0),

favg(π
greedy
` ) > (1− e−`/ζT )favg(π

∗
T ),

where favg(π) , E[f(Ṽ(π,X),X)] is the expected reward
of the policy π w.r.t. P[x].

V. NOISY BAYESIAN ACTIVE DIAGNOSIS

The noisy Bayesian active diagnosis is inherently com-
binatorial and hence, computationally intractable for large
problems. To circumvent this difficulty, researchers have
often resorted to approximation algorithms to obtain sub-
optimal solutions reasonably fast but still with provable
performance. For the Bayesian active diagnosis and learning
problems, greedy algorithms are widely used when the re-
ward function is (strongly) adaptive submodular [6] because
of their near-optimal performance. However, many proposed
reward functions for the noisy Bayesian active diagnosis and
learning problems are, in general, not adaptive submodular.



TABLE I: Overview of reward functions for noisy Bayesian active diagnosis and their corresponding adaptive greedy policies
and adaptive submodularity factors.

REWARD FUNCTION, fi ADAPTIVE GREEDY POLICY, gi (vt+1 ∈ argmin
v∈V

gi)a ADAP. SUBMODU-
LARITY FACTORb

(I) 1−
∑

x∈
⋃

w1:t∈Wt
⋃

q∈Q St,q,w1:t

P[x]
∑
y∈Y

g̃(·)
∑

x∈
⋃

w1:t+1∈Wt+1
⋃

q∈Q St,q,w1:t
∩D(y,v,q,wt+1)

P[x] ζ ≤ |Q||W|T

(II) 1−
∑

x∈
⋃

w1:t∈Wt

⋃
q∈Q

St,q,w1:t

P[x]P[y1:t|x, v1:t]
∑
y∈Y

g̃(·)
∑

x∈
⋃

w1:t+1∈Wt+1
⋃

q∈Q St,q,w1:t
∩D(y,v,q,wt+1)

P[x]P[y1:t|x, v1:t] ζ ≤ |Q|

(III) 1−
∑
q∈Q

∑
x∈

⋃
w1:t∈Wt St,q,w1:t

P[x, q]P[y1:t|x, q, v1:t]
∑
y∈Y

(g̃(y, v, ψt, {St,q,w1:t}))
2 ζ = 1

a Definition: g̃(·) = g̃(y, v, ψt, {St,q,w1:t}) ,
∑

q∈Q
∑

x∈∪
w1:t+1∈Wt+1St,q,w1:t

∩D(y,v,q,wt+1)
P[x, q]P[y1:t|x, q, v1:t].

b These upper bounds can be derived analytically for the case when the fault and noise are uniformly distributed as described in Theorems 2 and 3,
indicating that ζ is, in the worst case, linearly dependent on the number of faults and noise modes. Similar level of performance degradation due to ζ (cf.
Theorem 1) was found in [11], [21]. For other fault and noise distributions, the upper bounds can be algorithmically computed using slightly modified
versions of Algorithm 1 in [13].

Thus, proxy reward functions and corresponding algorithms
were introduced in [4], [11], [21] to indirectly obtain perfor-
mance guarantees for the original reward function, while [20]
introduced a heuristic based on Extrinsic Jensen-Shannon
(EJS) divergence and also provided performance guarantees
when using that heuristic.

Recently, [13] introduced a simple yet valuable gen-
eralization of adaptive submodularity termed as weakly
adaptive submodularity, for which a greedy algorithm with
such reward functions also have near-optimal performance.
More importantly, “sophisticated” proxy reward functions
and algorithms (as in [11], [21]) are unnecessary, yet their
performance guarantees are comparable. However, a reward
function with this property was only proposed for the per-
sistent fault setting without stochastic noise.

A. Overview

In this section, we extend the approach in [13], which is
only applicable for persistent faults, to allow both persistent
faults and non-persistent noise. When there are only per-
sistent faults, our results reduce to those in [13], whereas
when there is only stochastic noise, our results present
submodularity-based alternatives to the noisy GBS and the
EJS divergence heuristic in [19], [20]. This extension to
consider both persistent faults and non-persistent noise is
non-trivial because, depending on the type of noise, we may
have to trade-off between the cost and benefit of repeating
an action and exploring a new action at each step.

The reward functions we propose and their adaptive greedy
policies and adaptive submodularity factors are summarized
in Table I, and described below with proofs in the appendix.

1) Reward Functions: For the (persistently and non-
persistently) noisy Bayesian active diagnosis problem, we
consider three reward functions, fi(v1:T , y1:T , x, q, w1:t), i ∈
{I, II, III}:

(i) fI(·) = 1−
∑

x∈∪w1:t∈Wt∪q∈QSt,q,w1:t

P[x], (4)

(ii) fII(·) = 1−
∑

x∈∪w1:t∈Wt∪q∈QSt,q,w1:t

P[x]P[y1:t|x, v1:t], (5)

(iii) fIII(·) = 1−
∑
q∈Q

∑
x∈∪w1:t∈WtSt,q,w1:t

P[x, q]P[y1:t|x, q, v1:t], (6)

with P [y1:0|x, ∅] = 1. The reward functions represent several
objectives for noisy Bayesian active diagnosis that are rele-
vant to robust control/decision-making problems in safety-
critical and health-related applications, where worst-case
scenarios need to be considered [22]. In such applications,
the objective is to minimize uncertainty by eliminating as
many states or hypotheses (e.g., of diseases) as possible
that are incompatible with measured/observed outcomes. By
contrast, the minimum MAP error and minimum entropy
solutions (that are less uncertain in terms of probability but
with potentially more states) would be less useful for finding
the minimal set of compatible states. Moreover, the reward
functions (4)–(6) are generalizations of the well-received re-
ward function for version space mass reduction [6]; however,
they are in general no longer (strongly) adaptive submodular.

Each proposed reward function has a different interpre-
tation, based on whether the elimination criterion is based
on the prior probability of the states x (Case I), based
on the prior probability of the states x weighted by the
likelihood for the observations (Case II) or based on the
prior probability of the state-fault mode pair (x, q) weighted
by the likelihood for the observations (Case III). They
serve different purposes and we do not advocate for the
significance of either one over the others.

2) An Adaptive Greedy Policy: Since we will show that
the reward functions we propose are weakly adaptive sub-
modular (a diminishing returns property), an adaptive greedy
policy will provide near-optimal performance guarantees (cf.
Theorem 1), while having the advantage of a polynomial-
time computational complexity. Therefore, we consider adap-
tive greedy policies that, at each step, myopically and greed-
ily maximize the expected gain based only on past (noisy)
observations from previous actions:

πgreedyi (ψt) , vt+1 ∈ arg max
v∈V

∆i(v|ψt), i ∈ {I, II, III},

where ∆i(v|ψt) is derived according to Definition 1 based
on the reward function fi defined above. It can be easily



shown that this is equivalent to the following minimization
of greedy loss functions gi:

vt+1 ∈ arg min
v∈V

gi(v, ψt, {St,q,w1:t
}), i ∈ {I, II, III},

at every iteration/step t, where gi(·) can be found in Table I
(will be derived in Lemmas 4, 5 and 6 in Appendix B).

Interestingly, it can be verified that the worst-case com-
plexity for all three adaptive greedy policies are the same
(its proof is omitted due to space limitations).

Proposition 1 (Worst-Case Complexity). For all three adap-
tive greedy policies corresponding to reward functions fI,
fII and fIII, the number of set operations per step t is
O(|Y||V||Q||W|), while the number of arithmetic operations
per step t is O(|Y||V||Q||X |).

B. Theoretical Analysis

We now state our main results on the properties of the
reward functions fI, fII and fIII in (4), (5), (6) and their
corresponding near-optimal performance guarantees for the
persistently and non-persistently noisy Bayesian active diag-
nosis problem (proofs will be provided in Appendix C).

1) Reward Function fI:

Proposition 2 (Adaptive Monotonicity of fI). The reward
function fI in (4) is adaptive monotone.

Proposition 3 (ζI-Weak Adaptive Submodularity of fI). The
reward function fI in (4) is ζI-weakly adaptive submodular
with

1 ≤ ζI ≤ ζ I ≤
|Q||W|T

min
{x∈X ,q∈Q,w1:T∈WT :P[x,q,w1:T ]>0}

P[x, q, w1:T ]
, (7)

where ζI and ζ I are defined as

ζI , max
v1:T∈VT , v∈V,
y∈Y, t=1,...,T

∑
x∈

⋃
q∈Q

⋃
w1:t+1∈Wt+1

St,q,w1:t∩
D(y,v,q,wt+1)

P[x]

∑
w1:t+1∈Wt+1

∑
q∈Q

∑
x∈ St,q,w1:t

∩
D(y,v,q,wt+1)

P[x, q, w1:t+1]
,

ζ I , max
v1:T∈VT , v∈V,
y∈Y, t=1,...,T

∑
w1:t+1∈Wt+1

∑
q∈Q

∑
x∈ St,q,w1:t

∩
D(y,v,q,wt+1)

P[x]

∑
w1:t+1∈Wt+1

∑
q∈Q

∑
x∈ St,q,w1:t∩
D(y,v,q,wt+1)

P[x, q, w1:t+1]
.

Moreover, when there are no informative priors on the
persistent faults and stochastic noise, i.e., P[x, q, w1:t+1] =
P[x] 1

|Q||W|t+1 , we have ζI ≤ ζ I = |Q||W|T .

Theorem 2. For any true state xo ∈ X , fault mode qo ∈ Q
and noise modes w1:T,o ∈ WT , the adaptive greedy policy
πgreedyI,T for the reward function fI in (4) guarantees that

fI,avg(π
greedy
I,T ) > (1− e−1/ζI )fI,avg(π

∗
I,T ),

where fI,avg(π
∗
I,T ) is achieved in T steps by the optimal

policy and ζI is given in (7).
Furthermore, without informative priors on the noise (i.e.,

ζI ≤ |Q||W|T ), the adaptive greedy policy that selects T
actions obtains at least (1−e−1/|Q||W|T ) of the value of the
optimal strategy that selects T actions.

2) Reward Function fII:

Proposition 4 (Adaptive Monotonicity of fII). The reward
function fII in (5) is adaptive monotone.

Proposition 5 (ζII-Weak Adaptive Submodularity of fII). The
reward function fII in (4) is ζII-weakly adaptive submodular
with

1 ≤ ζII ≤ ζ II ≤
|Q|

min
{x∈X ,q∈Q,w1:T∈WT :P[x,q,w1:T ]>0}

P[x, q, w1:T ]
, (8)

where ζII and ζ II are defined as

ζII , max
v1:T∈VT , v∈V,
y∈Y, t=1,...,T

∑
w1:t+1∈Wt+1

∑
x∈

⋃
q∈Q

St,q,w1:t
∩

D(y,v,q,wt+1)

P[x,w1:t+1]

∑
w1:t+1∈Wt+1

∑
q∈Q

∑
x∈ St,q,w1:t∩
D(y,v,q,wt+1)

P[x, q, w1:t+1]
,

ζ II , max
v1:T∈VT , v∈V,
y∈Y, t=1,...,T

∑
w1:t+1∈Wt+1

∑
q∈Q

∑
x∈ St,q,w1:t

∩
D(y,v,q,wt+1)

P[x,w1:t+1]

∑
w1:t+1∈Wt+1

∑
q∈Q

∑
x∈ St,q,w1:t∩
D(y,v,q,wt+1)

P[x, q, w1:t+1]
.

Moreover, without informative priors on the persistent
faults, i.e., P[x, q, w1:t+1] = P[x,w1:t+1] 1

|Q| , we have ζII ≤
ζ II = |Q|.

Theorem 3. For any true state xo ∈ X , fault mode qo ∈ Q
and noise modes w1:T,o ∈ WT , the adaptive greedy policy
πgreedyII,T for the reward function fII in (5) guarantees that

fII,avg(π
greedy
II,T ) > (1− e−1/ζII )fII,avg(π

∗
II,T ),

where fII,avg(π
∗
II,T ) is achieved in T steps by the optimal

policy and ζII is given in (8).
Furthermore, without informative priors on the persistent

faults (i.e., when ζII ≤ |Q|), the adaptive greedy policy that
selects T actions obtains at least (1− e−1/|Q|) of the value
of the optimal strategy.

3) Reward Function fIII:

Proposition 6 (Adaptive Monotonicity of fIII). The reward
function fIII in (6) is adaptive monotone.

Proposition 7 (Adaptive Submodularity of fIII). The reward
function fIII in (6) is adaptive submodular (i.e., 1-weakly
adaptive submodular).

Theorem 4. For any true state xo ∈ X , fault mode qo ∈ Q
and noise modes w1:T,o ∈ WT , the adaptive greedy policy
πgreedyIII,T for the reward function fIII in (6) guarantees that

fIII,avg(π
greedy
III,T ) > (1− e−1)fIII,avg(π

∗
III,T ),

with fIII,avg(π
∗
III,T ) achieved in T steps by the optimal policy.

Remark 1. The upper bounds, ζi, for any general fault and



noise distributions can be algorithmically computed using
Algorithm 1 in [13] with slight modifications. Moreover, the
obtained upper bounds for the uniform case are comparable
to the performance guarantees found in [11], [21] for
(persistently) noisy active learning.

4) Special Cases: The results for the special cases below
follow directly from the above analysis.

Stochastic Noise Only: When there is only stochas-
tic noise, the following corollaries provide alternative
submodularity-based adaptive greedy policies to the ones in
[19], [20].

Corollary 1. For any true state xo ∈ X , fault mode qo ∈ Q
and noise modes w1:T,o ∈ WT , the adaptive greedy policy
πgreedyIV,T with the reward function fIV(v1:T , y1:T , x, w1:t) =
1−

∑
x∈∪w1:t∈WtSt,w1:t

P[x] guarantees that

fIV,avg(π
greedy
IV,T ) > (1− e−1/ζIV )fIV,avg(π

∗
IV,T ),

where fIV,avg(π
∗
IV,T ) is achieved in T steps by the optimal

policy and with ζIV that satisfies:

1 ≤ ζIV ≤ ζ IV ≤
|W|T

min{x∈X ,,w1:T∈WT :P[x,w1:T ]>0} P[x,w1:T ]
,

where ζIV and ζ IV are defined as

ζI , max
v1:T∈VT , v∈V,
y∈Y, t=1,...,T

∑
x∈

⋃
w1:t+1∈Wt+1

St,w1:t∩D(y,v,wt+1)

P[x]

∑
w1:t+1∈Wt+1

∑
x∈St,w1:t∩D(y,v,wt+1)

P[x, q, w1:t+1]
,

ζ IV , max
v1:T∈VT , v∈V,
y∈Y, t=1,...,T

∑
w1:t+1∈Wt+1

∑
x∈St,w1:t

∩D(y,v,wt+1)

P[x]∑
w1:t+1∈Wt+1

∑
x∈St,w1:t∩D(y,v,wt+1)

P[x,w1:t+1]
.

Moreover, with no informative priors on the stochastic
noise (i.e., when ζIV ≤ ζ IV = |W|T ), the adaptive greedy
policy that selects T actions obtains at least (1− e−1/|W|T )
of the value of the optimal strategy that selects T actions.

Corollary 2. For any true state xo ∈ X and noise
modes w1:T,o ∈ WT , the adaptive greedy policy πgreedyV,T

with the reward function fV(v1:T , y1:T , x, w1:t) = 1 −∑
x∈∪w1:t∈WtSt,w1:t

P[x]P[y1:t|x, v1:t] guarantees that

fV,avg(π
greedy
V,T ) > (1− e−1)fV,avg(π

∗
V,T ),

with fV,avg(π
∗
V,T ) achieved in T steps by the optimal policy.

Persistent Faults Only: The reward functions fI and fII

with only persistent faults reduce to the one considered in
[13] and have the same performance guarantees.

Noiseless Setting: The reward functions and performance
guarantees reduce to the ones in [6].

VI. ILLUSTRATIVE EXAMPLE

For an illustrative example, we return to the motivational
example in Section II of an aircraft electrical system whose
sensors are affected by persistent faults and stochastic noise.
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Fig. 2: Decreasing average number of compatible states
with increasing number of iterations for each reward
function: fI, fII and fIII, in comparison with uniformly
random and worst-case strategies.
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Fig. 3: Histogram of the final posterior probability of
true state, P[xo|ψT ] where T = 6, over 50 runs for
each reward function: fI, fII and fIII, in comparison with
uniformly random and worst-case strategies.

As in [12], [13], our overall goal is to design a policy that
sequentially/adaptively finds the set of compatible discrete
states of the circuit by taking active sensing “actions” (i.e.,
opening or closing controllable contactors) and observing
the sensor measurements. The availability of this minimal
compatible set of discrete states will, for instance, allow the
system operator to quickly narrow down which components
need to be repaired.

By using four controllable contactors {C1, C3, C4, C6}
(thus, |V| = 24 = 16 actions) and observing the read-
ings of sensors {S1, S2, S3}, which may be noisy, the
objective is to estimate the state of unknown components
{G1, G2, R1, R2, C2, C5} within a budget of T = 6 actions.
For simplicity, we only allowed two states for the system
components, i.e., healthy or faulty, and assumed that the state
x was uniformly distributed on X . Moreover, the sensor read-
ings only took two values, i.e., proper voltage or improper
voltage, where the observation of sensor ‘S2’ was prone to
a persistent Type 1 fault with probability of obtaining the
opposite outcome at P[q|x] = 0.2 and the sensor ‘S1’ was
corrupted by stochastic noise with probability of the opposite
outcome, P[wt|x, q] = P[wt] = 0.2, for each step t.

To demonstrate the effectiveness of our approach using
the three reward functions proposed in (4), (5) and (6), we
compare their performances to a random strategy that takes
actions uniformly at random and a worst-case strategy that
repeatedly takes the worst action that maximizes (instead
of minimizes) the number of compatible states. From our
simulations, we observed that the adaptive greedy policy
for all three reward functions that takes 6 actions (our
budget) outperformed the uniformly random and worst-case
strategies and more interestingly, performed equally well as



the exhaustive search policy that took all 16 actions (our
benchmark). In fact, the number of compatible states was
already equal to the minimum number of indistinguishable
states with an exhaustive search after taking 4 actions.
Hence, we compared the transient behavior of the number
of compatible states at each iteration for each of the reward
functions. Fig. 2 shows that the transient performances were
comparable, with fI being slightly tardier and with no clear
winner between fII and fIII.

Moreover, despite this not being the reward function we
maximize, we compared the average posterior probability of
the true state after taking 6 actions (over 50 runs) for each
of the reward functions fI, fII and fIII with a fixed state xo
and fault mode qo, but with different stochastic noise sampled
from P[wt] for each run. Somewhat surprisingly, the adaptive
greedy policies for all 3 reward functions performed equally
well as exhaustive searches. However, as we observe in Fig.
3, fI yielded a posterior probability of 0.2 for all runs, while
fII and fIII had higher posterior probability during most runs.
This is expected since only fII and fIII take noise modes (the
only quantity that was varied across runs) into account. In
comparison, the uniformly random and worst-case strategies
performed poorly, where the performance of the uniformly
random strategy is approximately at the midpoint between
the worst-case strategy and the adaptive greedy strategies
with fII and fIII (thus, also the exhaustive search policy).

VII. CONCLUSIONS

In this paper, we considered an extension of the noisy dis-
crete state estimation problem (also known as noisy Bayesian
active diagnosis) that allows the vector-valued observations
to be simultaneously corrupted by both persistent sensor
faults and non-persistent sensor noise. To this end, we intro-
duced novel and meaningful reward functions for both faults
and noise (as opposed to separate ones for different noise
types). Moreover, we showed that these reward functions are
both adaptive monotone and weakly adaptive submodular.
Therefore, corresponding adaptive greedy policies were pro-
posed to circumvent the complexity of the inherently com-
binatorial problem, which still have provable near-optimal
performance guarantees. Our state estimation simulations for
an aircraft electrical system with persistent sensor faults and
stochastic sensor noise demonstrated that the adaptive greedy
policy performs just as well as an exhaustive search policy
while using significantly less computation.
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APPENDIX

A. Connection to Group-Based Active Diagnosis

We first show that the proposed reward functions are
related to the reward function for group-based active diag-
nosis in (5) of [13] under Assumptions (A1) and (A2). In
particular, fI corresponds to the case when the group is the
state x, fII to the case with the tuple (x,w1:T ) as the group
and fIII to the case with the tuple (x, q, w1:T ) as both the
group and the object.

Lemma 1 (Reward function fI). Under Assumptions (A1)
and (A2), with groups defined as states x and objects as
tuples (x, q, w1:T ), the group-based reward function in (5)
of [13] is equivalent to fI = 1− f̃I, with

f̃I(v1:T , y1:T , x, q, w1:T )

,
∑

x∈∪w1:T∈WT ∪q∈QSt,q,,w1:T

P[x] =
∑

x∈∪w1:t∈Wt∪q∈QSt,q,,w1:t

P[x].



Proof. This follows since the set of compatible states is
independent of future noise (Assumption (A1)). �

Lemma 2 (Reward function fII). Under Assumptions (A1)
and (A2), with groups defined as (x,w1:T ) and objects as
tuples (x, q, w1:T ), the group-based reward function in (5)
of [13] is equivalent to fII = 1− f̃II, with

f̃II(v1:T , y1:T , x, q, w1:T )

,
∑

(x,w1:T )∈∪q∈QSt,q

P[x,w1:T ] =
∑

x∈∪w1:t∈Wt∪q∈QSt,q,w1:t

P[x]P[y1:t|x, v1:T ].

Proof. Starting from the reward function in [13], we can
simplify f̃II(v1:T , y1:T , x, q, w1:T ) to be

f̃II(v1:T , y1:T , x, q, w1:T )

=
∑

(x,w1:T )∈∪q∈QSt,q,w1:T

∑
q∈Q

P[x, q]P[w1:T |x, q]

=
∑

x∈
⋃

w1:T∈WT

⋃
q∈Q

St,q,w1:T

∑
q∈Q

∑
w1:T∈Wt,q,x

(
P[x, q]P[w1:t|x, q]

P[wt+1:T |x, q]

)

=
∑

x∈
⋃

w1:T∈WT

⋃
q∈Q

St,q,w1:T

∑
q∈Q

( P[x, q]P[y1:t|x, q, v1:T ]∑
wt+1:T∈WT−t

P[wt+1:T |x, q]
)

=
∑

x∈
⋃

w1:t∈Wt

⋃
q∈Q

St,q,w1:t

∑
q∈Q

P[x, q]P[y1:t|x, q, v1:T ]

=
∑
x∈∪w1:t∈Wt∪q∈QSt,q,w1:t

P[x]P[y1:t|x, v1:T ],

where the second equality is obtained by defining Wt,q,x as
the set of noise modes that are compatible with ψt if (x, q)
were the true state and mode, and by applying Assumption
(A1). The third equality follows from Assumptions (A1) and
(A2) and the fact that given y1:t, x and q, w1:t is uniquely
determined. �

Lemma 3 (Reward function fIII). Under Assumptions (A1)
and (A2), with the groups and objects being (x, q, w1:T ), the
group-based reward function in (5) of [13] is equivalent to
fIII = 1− f̃III, with

f̃III(v1:T , y1:T , x, q, w1:T )

,
∑

(x,q,w1:T )∈St

P[x, q, w1:T ]=
∑
q∈Q

∑
x∈

⋃
w1:T∈WT

St,q,w1:T

P[x, q]P[y1:t|x, q, v1:T ].

Proof. As with Lemma 2, under Assumptions (A1) and (A2),
f̃III(v1:T , y1:T , x, q, w1:T ) simplifies to:

f̃III(v1:T , y1:T , x, q, w1:T )

=
∑
q∈Q

∑
x∈∪w1:T∈WT St,q,w1:T

∑
w1:T∈Wt,q,x

(
P[x, q]P[w1:t|x, q]

P[wt+1:T |x, q]

)

=
∑
q∈Q

∑
x∈∪w1:T∈WT St,q,w1:T

( P[x, q]P[y1:t|x, q, v1:T ]∑
wt+1:T∈WT−t

P[wt+1:T |x, q]
)

=
∑
q∈Q

∑
x∈

⋃
w1:T∈WT

St,q,w1:T
P[x, q]P[y1:t|x, q, v1:T ].

�

B. Greedy Loss Functions

Having established the connection between group-based
reward function [13] with our proposed reward functions
fI, fII and fIII, the corresponding greedy loss functions
in Table I can be derived from (9) of [13]. Moreover,
simplifications that result in causal (i.e., nonanticipative) and
computationally efficient algorithms can be obtained under
Assumptions (A1) and (A2), stated below without proof for
the sake of brevity.

Lemma 4 (Reward function fI). Under Assumptions (A1)
and (A2), with the groups being only the state x, the greedy
loss function gI(v, ψt, {St,q,w1:T }) for the reward function fI

is:

gI(v, ψt, {St,q,w1:T })

=
∑
y∈Y

∑
x̃∈

⋃
(q̃,w̃1:T )∈Q×WT

(St,q̃,w̃1:T
∩

D(y,v,q̃,w̃1:T ))

P[x̃]
∑

(q,w1:T )

∈Q×WT

∑
x∈ (St,q,w1:T

∩
D(y,v,q,w1:T ))

P[x, q]

=
∑
y∈Y

g̃(y, v, ψt, {St,q,w1:t})
∑

x∈
⋃

w1:t+1∈Wt+1

⋃
q∈Q

St,q,w1:t
∩D(y,v,q,wt+1)

P[x],

where g̃(·) ,
∑
q∈Q

∑
x∈

⋃
w1:t+1∈Wt+1

St,q,w1:t
∩D(y,v,q,wt+1)

P[x, q]P[y1:t|x, q, v1:t].

Lemma 5 (Reward function fII). Under Assumptions (A1)
and (A2), with groups being tuples of state and noise modes
(x,w1:T ), the greedy loss function gII(v, ψt, {St,q,w1:t

}) for
fII is (cf. g̃(·) in Lemma 4):

gII(v, ψt, {St,q,w1:t
})

=
∑
y∈Y

∑
(x̃,w̃1:T )∈

⋃
q̃∈Q

(St,q̃∩
D(y,v,q̃))

P[x̃, w̃1:T ]
∑
q∈Q

∑
(x,w1:T )∈ (St,q∩

D(y,v,q))

P[x, q, w1:T ]

=
∑
y∈Y

g̃(y, v, ψt, {St,q,w1:t
})
∑

x∈
⋃

w1:t+1∈Wt+1

⋃
q∈Q

( St,q,w1:t
∩

D(y,v,q,wt+1)

)P[x]P[y1:t|x, v1:t].

Lemma 6 (Reward function fIII). Under Assumptions (A1)
and (A2), with the groups and objects being (x, q, w1:T ), the
greedy loss function gIII(v, ψt, {St,q,w1:t

}) for fIII is (cf. g̃(·)
in Lemma 4):

gIII(v, ψt, {St,q,w1:t
})

=
∑
y∈Y

∑
(x̃,q̃,w̃1:T )∈St∩D(y,v)

P[x̃, q̃, w̃1:T ]
∑

(x,q,w1:T )∈St∩D(y,v)

P[x, q, w1:T ]

=
∑
y∈Y(g̃(y, v, ψt, {St,q,w1:t

}))2.

C. Proofs of Propositions 2–7 and Theorems 2–4

By the equivalence of fI, fII and fIII with the group-based
reward function in [13] (Lemmas 1, 2 and 3), it follows that
Propositions 2 & 3, 4 & 5 and 6 & 7 and thus, Theorems 2,
3 and 4 hold from the results in [13].


