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Abstract— We consider synthesizing safety controllers for
discrete-time dynamical systems with imperfect (i.e., noisy)
state measurements. In order to find the actual winning set
of a safety game for such systems, one needs to solve a
partial information game via power set construction, which,
in general, is computationally intractable. In this paper, we
propose two conservative but computationally more efficient
approaches by computing sets that can be rendered invariant
with the noisy measurement. This is achieved by considering
a perfect information safety game for the dynamics of an
estimated state. The invariant set for this alternative game is
shown to be equivalent to a noise-adapted contractive set for
the original system. The controllers associated with the two
proposed approaches require different knowledge of the initial
states: one requires only the initial measurement and the other
also requires knowing the initial state exactly. In general, the
resulting controlled invariant sets by these two approaches are
not comparable, and depending on the problem in hand either
one can be preferable. The efficacy of the proposed approach
is illustrated with an aircraft taxiing example, where the state
estimation task is performed by a perception module.

I. INTRODUCTION

In this paper we consider synthesizing safety controllers
for dynamical systems to ensure that their states remain in a
safe set for all time. To find where such a safety controller
can be initiated and operated, one needs to compute the
maximal robust controlled invariant set contained by the
safe set. The properties and computation of robust controlled
invariant sets are well studied in the literature of control
theory, both for discrete-state (see e.g., [12]) and continuous-
state systems (see e.g., [2], [3] and the references therein).

At runtime, the safety controller defined on the controlled
invariant set takes the true state x as input and maps x to a
set of admissible control inputs u, which guarantee that the
next state will stay in the controlled invariant set. In practice,
however, the true value of the state x may not be known
exactly. Instead, we observe an estimate px of the true state x
with certain measurement noise. Such noisy estimate px may
come from an interval observer, or even a perception module
that estimates the system’s state from camera images. The
safety controller must make decisions based on the noisy
measurement px instead of x but still guarantee safety. This
hence requires computing sets that can be made controlled
invariant with noisy state measurement.

Safety control synthesis with noisy measurements is a
partial information game as each observation px may be valid
for multiple values of the true state x. Complete (i.e., non-
conservative) solutions of such partial information games
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usually require lifting the system into the belief space via
power set construction. This allows the controller to estimate
the true state as accurately as possible using the entire history
of the collected data instead of the latest measurement,
which is enough in full information settings. Although this
is computationally expensive, it is still theoretically possible
for discrete-state systems, see e.g., [6], [13], [16]. Similar
ideas are explored for continuous-state systems in [1], [10],
but the heavy computational requirements make it hard to
employ these techniques for real applications.

A computationally more efficient approach tackling this
problem is to design conservative controllers by enforcing
some form of contractivity to overcome the impact of the
measurement noise. For example, set invariance for noisy
continuous-time continuous-state systems is studied in [8]
with this idea, using control barrier functions as a means
to enforce a Nagumo type condition strengthened with extra
contraction. Similar contractivity-based ideas are also used in
abstraction-based synthesis approaches for more general lin-
ear temporal logic (LTL) specifications [9], and opacity veri-
fication [17]. A slightly different yet highly related approach
is to use contraction to design bounded-error observers and
achieve the control objective robust against any noise within
the bounds. For example, this is used for two-player games
[11] and path planning [15] with LTL specifications with
imperfect measurement.

In this paper, we consider synthesizing safety controllers
for discrete-time systems with imperfect state measurement,
which may have discrete or continuous state space. In
particular, we follow the second line of research that uses
contraction to avoid the expensive power set construction.
We propose two efficient approaches to compute sets that
can be rendered invariant with the imperfect measurement.
This is done by solving a perfect information safety game
for the dynamics of an estimated state, which is described
using a generalization of the Minkowski set arithmetic. We
prove that the obtained invariant sets are equivalent to some
noise-adapted contractive sets for the original system. Such
contraction ensures robustness against noise with a simple
controller that only uses the latest measurement, and hence
avoids complex state estimation algorithms involving the
power set construction. In particular, our generalization of
the Minkowski arithmetic enables a uniform approach to
handle systems with both continuous and discrete states,
and can adapt to systems with non-uniform state-dependent
measurement noise as well.

To illustrate the efficacy of our approach, we present a case
study on an aircraft taxiing system, whose state is estimated
from camera images at runtime by a perception module.



The state estimation is imperfect due to the noise in image
formation and the error introduced by the vision algorithms.
Using a realistic flight simulator, X-plane, we show that
the obtained controller is able to achieve safety despite the
aforementioned sensing and perception inaccuracies.

Notation: Let S be a set, 2S denotes the power set
of S, and S� (Sω , respectively) denotes the set of all
finite (infinite, respectively) sequences of elements in S.
Throughout this paper, we will use bold font letters, e.g.,
s � s0s1s2 . . . , to denote an infinite sequence, and use
st � s0s1s2 . . . st to denote the finite prefix of s until t.

II. SYSTEM WITH NOISY STATE MEASUREMENT

In this paper, we consider systems in the following form:

Σ : xt�1 P τpxt, utq, (1)pxt P µpxtq, (2)

where x P X is the state, u P U is the control input, px PpX � X is the noisy state measurement, τ : X � U Ñ 2X

is the state transition mapping, and µ : X Ñ 2
xX is the

measurement mapping. The uncertainty in the evolution and
state measurement is captured by the fact that τpx, uq and
µpxq are sets. We will overload the notation of τ and µ for set
inputs as well, i.e., for sets X0 � X , U0 � U , τpX0, U0q :��
xPX0,uPU0

τpx, , uq and µpX0q :�
�
xPX0

µpxq. We also
make the following assumption on the measurement map µ.

Assumption 1: At least one measurement is available at
every state, i.e., µpxq � H for all x P X .

Let π : pX� � U� Ñ U be the control policy and x P X
be a state, an infinite sequence x � x0x1x2 � � � P Xω

is a trajectory generated by the closed-loop system Σπ
starting from state x if there exists px � px0px1px2 � � � P pXω ,
u�u0u1u2 � � � P Uω such that

i) x0 � x,
ii) @t : xt�1 P τpxt, utq, pxt P µpxtq, ut � πppxt,ut�1q.

We will define BpΣπ, xq :� tpx,pxq | Du : i) and ii) holdu
to be the set of behaviors1 of the closed-loop system from
initial state x, and define BpΣπ, X0q :�

�
xPX0

BpΣπ, xq.

III. PROBLEM STATEMENT

In this section, we define the safety control synthesis
problem for systems with noisy state measurements. The
problem can be viewed as a game between the controller
and the environment, which “chooses” the uncertainties in
the system and aims at violating safety requirement of the
system. A set of states from where safety can be enforced by
the controller is hence called a winning set and is formally
defined below.

Definition 1: (Winning Condition of Safety Game) Given
a set Xsafe of safe states, a set W � Xsafe is winning w.r.t.
the safety specification under the dynamics in (1), (2) if there
exists a control policy π : pX� � U� Ñ U , such that

@px,pxq P BpΣπ,W q, px1,px1q P BpΣπ, Xsafeq s.t. px10 � px0 :

x1 P Xω
safe (3)

1Since the control sequence u is fully determined by the observation px
given controller π, there is no need to include u in the behavior.

and a set W � Xsafe is weakly winning if there exists a
control policy π : pX� � U� Ñ U such that

@px,pxq P BpΣπ,W q : x P Xω
safe, (4)

Remark 1: Clearly Eq. (3) implies Eq. (4). There exists
a maximal (in the set inclusion sense) winning set Wmax,
which is the union of all set satisfying Eq. (3). However, a
maximal weakly winning set does not necessarily exist. In
fact, the union of two sets W1,W2 that satisfy Eq. (4) under
controller π1, π2 respectively does not necessarily satisfy
Eq. (4). This is because in general it is impossible to find
a controller π under which W1 Y W1 is weakly winning,
unless the initial state is known exactly, in which case we
can choose to use π1 or π2 accordingly.

The safety control synthesis problem is stated as follows.
Problem 1: Suppose Assumption 1 holds, given a system

Σ in Eq. (1), (2), and a set Xsafe of safe states, find a set
W � Xsafe, a feedback control mapping π : pX��U� Ñ U
such that W is winning (or weakly winning) under π.

A concept closely related to the winning set of safety
games is the controlled invariant set.

Definition 2: A set C � X is controlled invariant w.r.t.
system Σ if there exists π such that BpΣπ, Cq � Cω .

Remark 2: For systems with perfect state measurement
(i.e., µpxq � txu), a maximal controlled invariant set Cmax,
contained by Xsafe, exists and Wmax � Cmax. This is not the
case when the measurement is imperfect. In fact, trajectory
starting from Wmax may leave Wmax under the winning
strategy [1] in this setting. Under imperfect information, a
controlled invariant set contained by Xsafe is weakly winning
by definition but not necessarily winning.

IV. SOLUTION APPROACH

Problem 1 can be viewed as a partial information game
and can be solved in a sound and complete way. That is, the
maximal winning set (or the maximal weakly winning set
whenever the initial state is known exactly) can be found
by lifting the system into the belief space via power set
construction. This approach, however, is computationally
expensive because the lifted system has a state space whose
size is exponential in that of the original system. Moreover,
for continuous state systems, synthesis in the belief space
is generally intractable. In this section, we propose two
conservative yet efficient ways to solve Problem 1, one
computes a winning set and the other computes a weakly
winning set. Both sets are not necessarily maximal.

A. Measurement Mapping and Inverse Mappings

We first introduce several mappings that relate true states
with their measurements.

 the set of possible true states given measurement px:

µ`�1ppxq :� tx | px P µpxqu, (5)

and µ`�1ppSq :�
�
pxP pS µ

`�1ppxq.
 the set of true states whenever we know the measure-

ment cannot go beyond pS regardless of the noise:

µa1ppSq :�
 
x | µpxq � pS(. (6)



 the set of measurement whose associated true states
must be in S:

µa�1pSq :�
 px | µ`�1ppxq � S

(
. (7)

We now provide several remarks on the above notations.
First, map µ and µa�1 are similar in the sense that their su-
perscripts both result in “positive one” and both µ and µa�1

map a set of true states to a set of measurements; whereas
µ`�1 and µa1, whose superscripts result in “negative one”,
are certain inverse maps that bring a set of measurements to
a set of true states.

Second, the difference between µa1ppSq and µ`�1ppSq is:
1� if we only know that the measurement px P pS, we can

only say that the true state x P µ`�1ppSq;
2� if we know that a) the measurement px P pS, and b) the

measurement px must be in pS no matter what noise the
environment picks, we can conclude that the true state
is in µa1ppSq.

Finally, for the readers who are familiar with Minkowski
sum and difference [14], it might be helpful to think of the
above notations as such.

Example 1: Let X � Rn, and µpxq � x` V � tx� v |
v P V u be the Minkowski sum of x and a set V � Rn of
admissible noise. In this case,

 µ`�1ppSq � pS `�V ;
 µa1ppSq � pS a V :� tx | x ` V � pSu, which is the

Minkowski difference between pS and V ;
 µa�1pSq � S a�V .
The following Lemmas can be easily proven by definitions

and will be useful in later proofs.
Lemma 1: µpAq � pB is equivalent to A � µa1p pBq.
Lemma 2: Under Assumption 1, i.e., µpxq � H for all

x P X , µpAq � pB implies that A � µ`�1p pBq.
Note that Lemma 2 does not necessarily hold without

Assumption 1. To see this, let A � txu such that µpxq � H
and let pB � H. Clearly, µpAq � H � B but A � µ`�1p pBq.

Lemma 3: Under Assumption 1, µa1p pBq � µ`�1p pBq.
Lemma 4: µ`�1

�
µa�1pAq

�
� A � µa1

�
µpAq

�
.

B. Synthesis without Power Set Construction

In the rest of this section, we propose two safety control
synthesis algorithms for noisy systems without power set
construction. The key idea is, instead of considering system
Σ, we will consider an auxiliary system pΣ that captures the
dynamics of measurement px:pΣ : pxt�1 P µ

�
τ
�
µ`�1ppxtq, ut�	. (8)

Then we can use off-the-shelf tools2 to efficiently compute
a (approximately) maximal controlled invariant set of pΣ
(the set is called “px-invariant”) and recover a controlled
invariant set of Σ because x and px are closely related by the
measurement mapping µ. The above intuition leads to two
slightly different algorithms, one gives a winning set and a

2For example, the implementation used in this paper is available in
https://github.com/pettni/pcis.

controller that only uses the latest noisy measurement for
decision making, while the other leads to a weakly winning
set and a controller that also requires the exact knowledge of
the initial state. We will present the two algorithms separately
and compare the obtained sets in what follows.

1) Computing Winning Set: We first consider a set of
states that can be rendered invariant with a controller that
only uses the last noisy measurement as input. The set and
the associated controller can be found by Algorithm 1.

Algorithm 1 rC1, πs � Win1pXsafe,Σq

1: Find the largest set pC � µpXsafeq and a controller pπ :pC Ñ U such that

@px P pC : µ
�
τ
�
µ`�1ppxq, pπppxq�	 � pC. (9)

2: C1 � µa1p pCq
3: define π to be s.t. πppxt,ut�1q � pπppxtq
4: return C1, π

With a slight abuse of notation, we will write πppxt,ut�1q
as πppxtq (or just πppxq when the time information is not
important) in the sequel.

We have the following results regarding Algorithm 1.
Proposition 1: Let C1 and π be returned by Algorithm 1,

@px P pC, x P µ`�1ppxq : τ
�
x, πppxq� � C1. (10)

Proof: First, since x P µ`�1ppxq, we have

τ
�
x, πppxq� � τ

�
µ`�1ppxq, πppxq� (11)

Secondly, by definition of pC:

px P pC ñ µ
�
τ
�
µ`�1ppxq, πppxq�	 � pC

ô τ
�
µ`�1ppxq, πppxq� � µa1p pCq pLemma 1q

ô τ
�
µ`�1ppxq, πppxq� � C1 (12)

Combining Eq. (11), (12) yields

τ
�
x, πppxq� � τ

�
µ`�1ppxq, πppxq� � C1, (13)

which is what we want to prove.
Remark 3: Proposition 1 requires the set C1 to have a

property stronger than invariance. In fact, set C1 is not
only controlled invariant, but also contracting. That is, as
Proposition 1 suggests, even for a state out of C1, as long
as it may generate a measurement px P pC, there is a control
action πppxq that brings the true state x into C1 in one step.
This means that, unless a strong enough contraction can be
enforced for any set of states, algorithm will return C1 � H.
We illustrate this with the following example.

Example 2: Consider the finite transition system in Fig.
1. Let X � tx1, x2, . . . , x6u, U � tu1u and let Xsafe �
tx3, x4, x5, x6u. The transition mapping τ is such that
τpxiq � txiu for i � 1, 2, . . . , 6, and the measurement
mapping µ is such that

µpx1q � tx1, x2u,
µpxiq � txi�1, xi, xi�1u, for i � 2, 3, 4, 5,



Fig. 1: Illustration of Example 2. Blue arrows mark the transition
under control input u1.

µpx6q � tx5, x6u.
In this example, it can be seen that, the largest winning set
found with power set construction is tx4, x5, x6u. However,
Algorithm 1 returns C1 � H because the system lacks of
necessary contraction suggested by Proposition 1.

Remark 4: Note that C1 is not necessarily contained by
Xsafe in general although pC � µpXsafeq by construction. We
illustrate this situation by the following example.

Example 3: Consider the finite transition system in Fig.
2. Let X � tx1, x2, x3u, U � tu1, u2u, and let the safe set
Xsafe � tx1, x3u. Suppose τ is such that

τpx1, u1q � tx3u, τpx1, u2q � tx2u,
τpx2, u1q � tx2u, τpx2, u2q � tx2u,
τpx3, u1q � tx2u, τpx1, u2q � tx1u;

and µ is such that
µpx1q � tx1, x2u, µpx2q � tx2u, µpx3q � tx2, x3u.

In this case, it can be seen that µpXsafeq � tx1, x2, x3u,
and pC � tx1, x2, x3u is the largest controlled invariant set
under pΣ contained by µpXsafeq. However, C1 � µa1p pCq �
tx1, x2, x3u � Xsafe. This is true because if the measurementpx � x2, there is no chance that we can tell if the true
state is unsafe. As a result, Algorithm 1, which only yields
a controller that makes its decision based on the latest
measurement pxt, will not remove x2 from pC.

Fig. 2: Illustration of Example 3. Blue arrows mark the transition
under control input u1, red arrows mark the transitions under u2.

To remove the above situation, we make the following
extra assumption on the safe set Xsafe and the measurement
mapping µ.

Assumption 2: The safe set Xsafe and µ are “completely
consistent”, i.e., µa1

�
µpXsafeq

�
� Xsafe.

Note that, by Lemma 4, µa1
�
µpXsafeq

�
� Xsafe is always

true. Hence the nontrivial part of Assumption 2 is that
µa1

�
µpXsafeq

�
� Xsafe also holds.

Assumption 2 may look a bit strong at first sight. However,
without this assumption, there will be unsafe states that are
indistinguishable from the safe states in any case. Moreover,
Assumption 2 holds for the following setting that is widely
considered in the literature: Xsafe is a convex and bounded
set and µpxq � x` V where V is a convex bounded set of
admissible noises [14].

Under Assumption 2, Algorithm 1 returns a winning set
We summarize this result with the following theorem.

Theorem 1: If Assumption 2 holds, then set C1 and con-
troller π be generated by Algorithm 1 is contained by Xsafe

and is a winning set under π.
Proof: First, we have C1 � Xsafe because

C1 � µa1p pCq pdefinition of C1q

� µa1
�
µpXsafeq

�
p pC � µpXsafeqq

� Xsafe pAssumption 2q (14)

Next, we show that the winning condition (3) also holds for
set C1. Let px,pxq P BpΣπ, C1q and px1,px1q P BpΣπ, Xsafeq
be such that px0 � px10. First, since x0 P C1, we havepx10 P pC (15)

because px10 � px0 P µpx0q � pC by definition of C1. Clearly

x10 P µ
`�1ppx10q (16)

also holds by definition of B. Combining Eq. (15),(16) and
applying Proposition 1 shows that x11 P τ

�
x10, πppx10q� �

C1 � Xsafe, and this implies that px1t P C1 � Xsafe for all
t ¥ 1 by an inductive argument. Finally, note that x10 P Xsafe,
hence x1 P Xω

safe and this verifies the winning condition.
The winning set C1 obtained by the presented approach

may not be maximal in general. In fact, as suggested by
Example 2, sometimes C1 can be empty while the maximal
winning set Wmax found via power set construction is
nonempty. This is the case whenever the necessary contrac-
tion suggested by Proposition 1 cannot be fulfilled for any
nonempty subset of Xsafe. Hence, in general, it is impossible
to quantify the level of conservatism of Algorithm 1 unless
a contracting subset can be found. In the following theorem,
we will show that finding such contracting subset that is
nonempty is also sufficient for C1 to be nonempty. With this
result, quantifying the conservatism essentially amounts to
asking what is the gap between Wmax and the largest subset
of Xsafe that can be made contracting enough to overcome
the effect of the noise.

Theorem 2: (Characterization of Set C1) We say a setrC1 � Xsafe is “contracting enough w.r.t. τ and µ to overcome
the noise’ if

@px P µp rC1q : Du P U : @x P µ`�1ppxq : τpx, uq � rC1, (17)

If Assumption 2 holds, set C1 returned by Algorithm 1 is the
largest (in set inclusion sense) subset of Xsafe that satisfies
Eq. (17).

Proof: We first show that rC1 � C1 holds for any rC1 that
satisfies Eq. (17). Note thatrC1 � Xsafe ñ µp rC1q � µpXsafeq. (18)

By Eq. (17), we also have

@px P µp rC1q : Du P U : τ
�
µ`�1ppxq, u� � rC1, (19)

which implies

@px P µp rC1q : Du P U : µ
�
τ
�
µ`�1ppxq, u�	 � µp rC1q. (20)



that is, µp rC1q satisfies Eq. (9). But note that, by construction,pC in Algorithm 1 is the largest subset of µpXsafeq that
satisfies the condition in Eq. (9), hence

µp rC1q � pC. (21)

Finally,rC1 � µa1
�
µp rC1q

�
pLemma 4q

� µa1p pCq papply µa1 to Eq. (21)q
� C1. pdefinition of C1q (22)

We now show that C1 satisfies Eq. (17). First, under
Assumption 2, C1 � Xsafe (see the proof of Theorem 1).
Moreover, we have

C1 � µa1p pCq ñ µpC1q � pC pLemma 1q. (23)

Eq. (23) together with Eq. (10) in Proposition 1 immediately
implies the condition in Eq. (17).

2) Computing Weakly Winning Set with Exactly Known
Initial State: In this part, we present Algorithm 2 that
solves a problem slightly different from the one solved by
Algorithm 1. In particular, we consider the case where the
initial state of the system is known exactly. This is the case,
for example, when one can set the initial state before starting
the system. In this setting, it makes sense to consider the
notion of weakly winning set.

Algorithm 2 rC2, πs � Win2pXsafe,Σq

1: Find a set qC � µa�1pXsafeq and a controller qπ : qC Ñ U
such that

@qx P qC : µ
�
τ
�
µ`�1pqxq, qπpqxq�	 � qC. (24)

2: C2 :� µ`�1p qCq
3: π is s.t. πppxt,ut�1q :� qπppxtq
4: return C2, π

We use πppxtq as a short notation for πppxt,ut�1q, and give
the following result regarding Algorithm 2.

Proposition 2: Let C2 and π be returned by Algorithm 2,

@x P C2 : Dqx P qC : τ
�
x, πpqxq� � µa1p qCq � C2. (25)

In Eq. (25), qx is called a “pseudo measurement” of x.
Proof: Let x P C2 be arbitrary, we have

x P C2 ô x P µ`�1p qCq
ô x P

¤
qxP qC

µ`�1pqxq
ô Dqx P qC : x P µ`�1pqxq (26)

First, x P µ`�1pqxq implies

τ
�
x, πpqxq� � τ

�
µ`�1pqxq, πpqxq�. (27)

Secondly, since qx P qC, we have

µ
�
τ
�
µ`�1pqxq, πpqxq�	 � qC pconstruction of qCq.

ñ τ
�
µ`�1pqxq, πpqxq� � µa1p qCq. pLemma 1q

(28)

Combining Eq. (27), (28) yields

τ
�
x, πpqxq� � τ

�
µ`�1pqxq, πpqxq� � µa1p qCq. (29)

Finally, by Lemma 3, we have

µa1p qCq � µ`�1p qCq � C2, (30)

which completes the proof.
Remark 5: Note that C2 is contracting under π in the

sense that τpx, πpqxqq � µa1p qCq � C2 for all x P C2.
Very similar to the case in Proposition 1, we need such
extra contraction to overcome the effect of imperfect state
measurements. In fact, similar to Theorem 2, we can prove
that set qC is the largest (in set inclusion sense) subset of
µa1pXsafeq that satisfies certain contraction condition, i.e.,

@x P qC : Du P U : @x1 P µ`�1ppxq : τpx1, uq � µa1p qCq.
(31)

Remark 6: Proposition 2 does not say that C2 is con-
trolled invariant under π. Because whenever the true state
x is initiated in C2, the actual measurement px may not be
necessarily equal to a pseudo measurement qx P qC that will
lead to the right control input πpqxq keeping the next true
state in C2. To set px � qx, we need to know the true initial
state x. This extra requirement is captured by the following
assumption.

Assumption 3: The value of the true initial state is known.
Assumption 3 holds in the situations where we can ini-

tialize the state very accurately before starting the system.
Theorem 3: Let qC, π,C2 be from Algorithm 2, and let

x0 P C2 be the initial state, which is known by Assumption 3.
Then C2 is a contained by the safe set Xsafe and is controlled
invariant (hence weakly winning) under π defined below#

πppx0q � πpqxq where qx P µpx0q X qC
πppxt,utq � πppxtq when t ¥ 1

. (32)

Proof: By Proposition 2 and Eq. (32), set C2 is controlled
invariant under the controller π. Moreover,

C2 � µ`�1p qCq
� µ`�1pµa�1pXsafeqq p qC � µa�1pXsafeqq

� Xsafe. pLemma 4q (33)

Hence C2 � Xsafe is controlled invariant.
Note that, to use controller π in set C2, we only need the

exact initial state x0 at the very beginning because we need
to pick the pseudo measurement qx0 P qCXµpx0q to determine
the right control input u0 P πpqx0q. However, it is enough to
know the noisy measurement afterwards as the contracting
condition in Eq. (31) will make sure pxt P qC for t ¥ 1.

3) Comparing Sets C1 and C2: We hereby compare sets
C1 and C2 and the associated results. First, both sets require
a certain amount of contraction to overcome the effect of the
noise. Set C1 is winning under a controller that only takes
the latest noisy measurement as input, while rendering set C2

safe also requires the exact knowledge of the initial state (i.e.,
Assumption 3). However, set C1 is not necessarily a subset
of the safe set Xsafe unless Assumption 2 holds, whereas
C2 � Xsafe is true without any further assumptions.



Since set C2 is rendered invariant under a controller that
has more information than the controller associated with set
C1, another natural question to ask is whether C1 � C2. It
turns out that the two sets are not comparable in general. We
will show this by providing two examples, where C1 � C2

in one and C2 � C1 in the other. In both of these examples,
we consider discrete-time linear control systems

xt�1 � Axt �But � Ewt, (34)pxt � xt � vt. (35)

where w P W is the disturbance and v P V is the
measurement noise. Sets W , V , and Xsafe are assumed to
be polytopes (i.e., a bounded set of points from a Euclidean
space that satisfies finitely many linear inequalities). This
system can be written in the form in Eq. (1), (2) with
τpxt, utq :� Axt � But ` W and µpxtq :� xt ` V . As
pointed out earlier, it can be proved that Assumption 2 holds
for µpxq � x` V and Xsafe when V and Xsafe are convex
and bounded sets. Hence set C1 � Xsafe by Theorem 1.

Example 4: Consider a 2-dimensional system in the form
of Eq. (34), (35), with E � r0 0sJ,

A �

�
0.9930 0.0358
�0.2240 0.9930

�
, B �

�
�0.0053
0.1205

�
. (36)

Here we assume that Xsafe � r�1.5, 1.5s � r�1, 1s, U �
r�1, 1s, W � t0u and V � r�0.01, 0.01s � t0u. In this
example, it can be verified that pC � qC, and hence C1 �pC a V � qC ` V � C2

Example 5: Consider a 2-dimensional system, again, in
the form of Eq. (34), (35), with A � I , B � I and E �
r0 0sJ. Xsafe � r�5, 5s � r�5, 5s, U � r�2, 2s � r�2, 2s,
W � t0u and V � tv P R2 | }d}1 ¤ 1u. In this example, it
can be verified that C1 � Xsafe, while C2 � pXsafe a V q `
V � Xsafe � C1.

V. CASE STUDY

We consider an autonomous taxiing system for a Baron
58 aircraft that aims to implement a “cockpit over cen-
terline” specification. That is, the controller aims to keep
the aircraft on the taxiway within a pre-specified distance
from the taxiway centerline. The system model is taken
to be a 4-dimensional lateral dynamics model of the form
9x � Ax�Bδf �Erd from [18]. The state x � ry, v,∆ψ, vs
consists of the lateral deviation y (m) from the centerline, the
lateral velocity v (m/s), the yaw-angle deviation ∆ψ (rad)
in centerline-fixed coordinates, and the yaw rate r (rad/s).
The control input δf (rad) is the steering angle of the front
gear, and rd (rad) is the desired yaw rate computed from
centerline curvature and treated as an external disturbance.
The values of the A, B, E matrices are picked according to
the data of a Baron 58 and can be found in [18]. To obtain a
linear difference equation in the form of Eq. (34), (35), we
discretize the continuous-time system with a sampling rate
∆t � 0.1s and a nominal longitudinal speed v0 � 5m/s.

We formulate this aircraft lateral control problem as a
safety control problem. The “cockpit over centerline” spec-
ification and other comfort specifications are captured by

requiring the state x � ry, v,∆ψ, rs to stay in a rectangular
set Xsafe � r�1, 1s�r�1, 1s�r�0.2, 0.2s�r�0.2, 0.2s. The
admissible set of control inputs and the disturbance set are
taken to be U � r�0.6981, 0.6981s and W � r�0.02, 0.02s.

In this example, a down-facing belly camera is used to get
the estimates of the deviation (y) from the centerline and yaw
angle (∆ψ). Some sample camera images generated by the
X-plane simulator are show in Fig. 4. The estimation is based
on a line-segment detection algorithm using Hough trans-
form [7] implemented in MATLAB (function hough). The
boundaries of the yellow and black strips in the image are
detected as line segments and are then used to approximate
the centerline of the lane (Fig. 4, left). The yaw angle ∆ψ
can be easily computed from this approximated centerline,
and y is estimated as the distance from the approximated
centerline to the aircraft’s center of mass. To make sure
the black and yellow strips (or at least part of them) are
in the field of view of the camera, we further restrict the
state x � ry, v,∆ψ, rs within Xsafe,vision � tx P Xsafe |
|0.444y � ∆ψ| ¤ 0.444u, whose edges are plotted with the
red solid lines in Fig. 3. For most of the images generated
by the X-plane simulator, the algorithm is able to achieve an
estimation error �0.02 m in y and �0.007 rad (i.e., 0.4 deg)
in ∆ψ. We assume the other states are known exactly (e.g.,
from a gyroscope measurement) and define the admissible
noise set V � r�0.02, 0.02s � t0u � r�0.007, 0.007s � t0u.

We compute sets C1, C2 for the aircraft taxiing system.
Sets pC and qC are computed by an implementation based
on the algorithm proposed in [5]. The obtained sets are
plotted in Fig. 3. The blue transparent polytope is the robust
controlled invariant set with no measurement noise, the blue
solid polytope is the set C1 obtained by Algorithm 1. Set
C2 returned by Algorithm 2 is not plotted as it looks almost
identical to C1. However, it can be checked numerically that
C2 � C1 in this case.

We simulate the closed-loop system with the controller
induced by set C1 and the vision-based state estimation
module in the loop. At run time, the controller returns a
set πppxtq � U of control inputs that maintain safety, we
further use a one step MPC controller to pick a control
action from the set πppxtq while minimizing the distance to
the origin to improve tracking performance. Fig. 5 shows
the simulation result. The plotted states (i.e., y and ∆ψ)
stay in their bounds, meanwhile the vision module is able
to provide estimations close to the true values because the
yellow and black strips will remain in the camera field of
view by construction. It can be seen that the estimation error
is larger (and sometimes larger than the allowable bounds
used for controlled invariant set computation) whenever the
state gets closer to the origin. This is because the yellow
and black strips are partially occluded by the landing gear
of the aircraft whenever the value of y and ∆ψ are small,
which interfere the line detection algorithm. However, the
safety is not likely to be violated in those cases because the
system can actually tolerate larger measurement noise when
the state is in the middle of the controlled invariant set.



Fig. 3: The safe set Xsafe,vision (red solid line skeleton) and the controlled invariant sets of the aircraft taxiing system with exact state
measurement (blue transparent) and noisy state measurement (blue solid).

Fig. 4: Right: images generated in X-Plane via a down-facing
camera attached to the belly of a Baron 58 aircraft right above
the landing gear. Left: outcome of the line detection and centerline
estimation algorithm.

Fig. 5: Simulation results.

VI. CONCLUSION

This paper presents theoretical results that enable efficient
computation of controlled invariant sets in imperfect infor-
mation settings. Such invariant sets are relevant for systems
that only have access to inaccurate state information, like
noisy measurements or outputs of perception modules, at
run-time. We demonstrated how these invariant sets can be
used for synthesizing safe-by-construction controllers for an
autonomous taxiing system. These controllers guarantee that
the closed-loop system stays safe (within a pre-specified
distance from the taxiway centerline) as long as it starts in
the computed set and the assumptions on the system and
measurement models remain valid. For future work, we plan
to investigate the use of these sets for generating corner
cases, as is done in the perfect information setting in [4]
and to derive conditions on perception modules for safety.
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