
Tight decomposition functions for mixed monotonicity

Liren Yang Necmiye Ozay

Abstract— Mixed monotonicity is a property of a system’s
vector field that says that the vector field admits a decom-
position function, in a lifted space, that has some order-
preserving properties. It is recently shown that this property
allows one to efficiently over-approximate the system’s one-
step reachable set with a hyperinterval, which is obtained
by evaluating the vector field’s decomposition function at two
points. Such decomposition functions are usually not unique
and some decompositions may not be tight in the sense that the
resulting hyperintervals are not the smallest ones that contain
the exact one-step reachable set, which leads to conservative
over-approximation. In this paper, we show that for a general
class of functions, there exists a tight decomposition, which can
be implicitly constructed as the solution of certain optimization
problems. This implies that any function from Rn to Rm (hence
any forward complete system) is mixed-monotone. However, the
usefulness of the constructed tight decomposition functions is
limited by the fact that it might not be possible to evaluate them
efficiently. We show that under certain conditions, the tight de-
compositions can reduce to a function with explicit expression,
which can be directly evaluated. This result suggests that it
is not mixed monotonicity itself, but other extra properties,
which lead to explicitly evaluatable decomposition functions,
that enable efficient and tight hyperinterval over-approximation
of reachable sets.

I. INTRODUCTION

Reachable set computation and over-approximation is
widely used in formal verification and control synthesis of
cyber physical systems. Consider an autonomous discrete-
time dynamical system in the following form

xk+1 = f(xk), (1)

where xk ∈ Rn is the state, and f : Rn → Rn is the vector
field, one-step reachable set computation solves the following
problem: given initial state set X0 ⊆ Rn, what is the (one-
step) reachable set X1 := {f(x) | x ∈ X0}? Being able to
compute X1 is useful in system verification because one can
compute the system’s k-step reachable set Xk recursively and
verify, for example, if Xk does not intersect with a set Xb of
bad states for all k, or if Xk is entirely contained by a set Xg

of good states for some k (Fig. 1, left). For these purposes,
clearly it is sufficient to over-approximate the reachable sets
and check if the over-approximation intersects Xb or is fully
contained by the Xg. In abstraction-based verification and
control synthesis, one can construct a finite graph structure,
called an abstraction, that preserves certain properties of the
underlying dynamical system and perform verification and
control synthesis on the abstraction leveraging graph search

LY and NO are with the Dept. of Electrical Engineering and
Computer Science, Univ. of Michigan, Ann Arbor, MI 48109
{yliren,necmiye}@umich.edu. This work is supported in
part by NSF Grant ECCS-1553873.

algorithms [16]. To compute the abstraction, one usually
discretizes the state space into small regions, maps each
region to a node of the abstraction and then constructs the
transitions between the nodes via computing the one-step
reachable sets starting from each region (Fig. 1, right).

Fig. 1: Left: verification via k-step reachable set computation.
Right: abstraction computation via one-step reachable set compu-
tation.

In the past several decades, there were considerable
amount of research focusing on computing (or over-
approximating) reachable sets efficiently. While there are
approaches developed for general (both continuous-time and
discrete-time) nonlinear systems, e.g., [3], [6], [13], [20],
there are many other works that are tailored to systems
with special structural properties, for example, linearity [7],
[2], piecewise affine property[1], multi-affine property [9],
monotonicity [15] and mixed monotonicity [4], [11].

In particular, mixed monotonicity has recently attracted
some attention in reachable set computation, especially when
such computation is involved in abstraction-based control
synthesis [4], [5], [10], [12], [17]. Similar ideas can also
be found in the literature of interval observers, for example,
see [14]. The brief idea is shown in Fig. 2: if a system
in the form of Eq. (1) has mixed monotone vector field
f , and if the initial set X0 is a hyperinterval1 {f(x) |
x ≤ x ≤ x}, then one can find another function g,
called the decomposition function of f , and approximate
the one-step reachable set X1 with another hyperinterval
defined by {x | g(x, x) ≤ x ≤ g(x, x)}. The benefits
of using mixed monotonicity for reachable set computation
are twofold. First, the computation is fairly efficient as it
amounts to evaluating the decomposition function g at only
two points, whose complexity does not grow dramatically
with the dimension of the state space. Secondly, the fact
that a hyperinterval is the product of lower dimensional
hyperintervals naturally leads to a system decomposition,
which enables more efficient computation and storage of
abstractions for system verification and synthesis [8].

1Here, ≤ is the element wise order in Rn.



Fig. 2: Illustration: over-approximating the reachable set of a
system with mixed monotone vector field f by evaluating the
decomposition function at two points, i.e., (x, x) and (x, x).

Clearly, the usefulness of mixed monotonicity in reachable
set computation relies on the following three facts:
• one can show that f has a decomposition function g;
• the decomposition function g can be evaluated effi-

ciently;
• the over-approximation of the reachable set using de-

composition function g is not too conservative.
Regarding the above three bullets, the following questions
need to be answered:
Q1. How to verify mixed monotonicity of function f (i.e.,

prove that f has a decomposition function)? Is it a very
special property or is it a general property that most
functions have?

Q2. When does a mixed monotone function f have a de-
composition function in explicit expression so that it
can be evaluated efficiently?

Q3. When does a mixed monotone function f have a tight
decomposition function?

Works like [4], [18], [19] try to address these questions.
In [4], it is shown that every continuously differentiable
function with a sign-stable Jacobian is mixed monotone.
In particular, the associated decomposition function can be
defined directly from the expression of function f and hence
can be evaluated efficiently. Moreover, this decomposition
function is “tight” (or gives tight one-step reachable set over-
approximation) in the sense that hyperinterval {x | g(x, x) ≤
x ≤ g(x, x)} is the smallest (in set inclusion sense) that
contains the exact one-step reachable set {f(x) | x ≤ x ≤ x}.
Following this, [19] extends similar results to all continu-
ously differentiable functions with bounded partial derivative,
except that the associated decomposition functions may not
be tight. Despite of this potential drawback, [19] still leads
to some successful applications, e.g., [12], [17], in the
sense that satisfactory controllers can be still synthesized
on the abstraction obtained via such conservative reachable
set over-approximation. In a more recent work [18], it is
further shown that every function with bounded variation
has a decomposition function. However, such decompositions
are neither tight nor in explicit form. This hence prevents
applying the result to reachable set computation.

In this work, we follow this line of research and try
to answer this question: does a general class of functions
(other than functions with sign stable Jacobian) have a

tight decomposition function, and if yes, when such tight
decomposition function can be written in explicit form so
that they can be evaluated efficiently. The key result of this
work is to show that every function whose extreme values
are well defined actually has a (not necessarily unique) tight
decomposition, which is “constructed” using optimization.
We further show that this result is consistent with [4] when
function f has sign-stable Jacobian matrix.

II. PRELIMINARIES

A. Notations

Let Rn be the n-dimensional Euclidean space. In this
paper, lower case letters, e.g., x, are often used to denote
real scalar, while bold font lower case letters, e.g., x, are
used to denote vectors from Rn and we let xi be the ith

element of vector x. For a function f : Rn → Rm, we use
f(x) to denote the function value of a vector x ∈ Rn and
use f(xi) as the short notation of f(x) with xi highlighted
as the variables and xjs viewed as function parameters for
j 6= i. We also use fi(x) to denote the ith component value
of f(x). We use ≥ to denote the element wise order on Rn,
i.e., for x, y ∈ Rn, x ≥ y if and only if (iff) xi ≥ yi for all
i = 1, 2, . . . , n. For x, x ∈ Rn such that x ≤ x, we denote
the hyperinterval {x ∈ Rn | x ≤ x ≤ x} by [x, x].

B. Mixed Monotone Functions on Rn

In this part, we give some relevant concepts and prelim-
inary results regarding mixed monotone functions defined
on Rn. These concepts are well established in the literature
and we present them simply to make this paper more self-
contained.

Definition 1: (Mixed Monotone Function) A function f :
Rn → Rm is mixed monotone if there exists g : R2n → Rm
satisfying the following:

1. g(x, x) = f(x);
2. x ≥ x′ ⇒ g(x, y) ≥ g(x′, y);
3. y ≥ y′ ⇒ g(x, y) ≤ g(x, y′).

A function g satisfying the above conditions is called a
decomposition function of f .

Remark 1: In general, a mixed monotone function can be
defined for f : X → T where X and T are ordered spaces
defined via a notion of positive cone [4]. Here, for simplicity,
we only consider the case where X = Rn and T = Rm and
the order is the one induced by the positive orthant (i.e.,
element wise order).

As described in the introduction, it is possible to use
the decomposition function in reachable set computation for
a system with mixed monotone vector field. The result is
formally stated with the following proposition.

Proposition 1: [4] Let f : Rn → Rm be a mixed
monotone function and let g be one of its decomposition
functions, then {f(x) | x ∈ [x, x]} ⊆ [g(x, x), g(x, x)].

Motivated by the use of decomposition functions to tightly
over approximate {f(x) | x ∈ [x, x]} with a hyperinterval,
we introduce the following definition of tightness of a
decomposition function.



Definition 2: (Tight Decomposition) Let f be a mixed
monotone function and g be a decomposition of f . De-
composition function g is called tight if for all x, x ∈ Rn
s.t. x ≤ x, [g(x, x), g(x, x)] is the smallest (in set inclusion
sense) hyperinterval that contains {f(x) | x ∈ [x, x]}. That
is [g(x, x), g(x, x)] = [infξ∈[x,x] f(ξ), supξ∈[x,x] f(ξ)].

Remark 2: Tightness of decomposition function g only
depends on the definition of g on set {(x, y) |
x, y are comparable}.

The following result is a recently established sufficient
condition for a function f in Rn to be mixed monotone. It
comes with the nice properties that the associated decom-
position function g is tight and can be constructed directly
from the expression of function f . Later, we will prove that g
reduces to a special case of the tight decomposition function
we construct for more general f using optimization ideas.

Proposition 2: [4] If f : Rn → Rm is continuously
differentiable and has sign-stable Jacobian, i.e., either ∂fj

∂xi
≥

0 for all x or ∂fj
∂xi
≤ 0 for all x, then f is mixed monotone

and has a tight decomposition function in the following form:

gj(x, y) = fj(z), j = 1, 2, . . . ,m, (2)

where

zi =

{
xi if ∂fj

∂xi
≥ 0 ∀x

yi if ∂fj
∂xi
≤ 0 ∀x

. (3)

III. MAIN RESULTS

The key result of this paper is that every function whose
extreme values are well defined has a tight decomposition. To
prove this, we introduce the following notation: for x, y ∈ R
and h : R→ R, define

opt(x,y)ξ h(ξ) =

{
infξ∈[x,y] h(ξ) if x ≤ y
supξ∈[y,x] h(ξ) if x > y

. (4)

The following simple facts regarding the opt operator are
useful in later proofs.

Lemma 1: opt(x,y)ξ h(ξ) is monotonically increasing in x
and monotonically decreasing in y, that is, x ≥ x′ ⇒
opt(x,y)ξ h(ξ) ≥ opt(x

′,y)
ξ h(ξ) and y ≥ y′ ⇒ opt(x,y)ξ h(ξ) ≤

opt(x,y
′)

ξ h(ξ).
Proof: We prove x ≥ x′ ⇒ opt(x,y)ξ h(ξ) ≥

opt(x
′,y)

ξ h(ξ) in the following three cases respectively:
(i) y ≥ x ≥ x′: opt(x,y)ξ h(ξ) = infξ∈[x,y] h(ξ) ≥

infξ∈[x′,y] h(ξ) = opt(x
′,y)

ξ h(ξ);
(ii) x ≥ y ≥ x′: opt(x,y)ξ h(ξ) = supξ∈[y,x] h(ξ) ≥

h(y) ≥ infξ∈[x′,y] h(ξ) = opt(x
′,y)

ξ h(ξ);
(iii) x ≥ x′ ≥ y: opt(x,y)ξ h(ξ) = supξ∈[y,x] h(ξ) ≥

supξ∈[y,x′] h(ξ) = opt(x
′,y)

ξ h(ξ).

The proof for y ≥ y′ ⇒ opt(x,y)ξ h(ξ) ≤ opt(x,y
′)

ξ h(ξ) is
similar.

Lemma 2: Let h : R → R and h : R → R be such that
h ≥ h for all ξ ∈ R, then opt(x,y)ξ h(ξ) ≥ opt(x,y)ξ h(ξ) for all
x, y ∈ R.

Proof: This should be clear by the definition of opt.
Now we formally state the main result of this paper.
Theorem 1: Let f : Rn → Rm be such that opt(xi,yi)

ξi
f(ξi)

is well defined2, then the following g : R2n → Rm defined
element-wise by

gj(x, y) = opt(x1,y1)
ξ1

opt(x2,y2)
ξ2

. . . opt(xn,yn)
ξn

fj(ξ),

j = 1, 2, . . . ,m (5)

is a tight decomposition function of f .
Proof: We first prove that g is indeed a decomposition

function of f .
1. Clearly, g(x, x) = f(x) by definition.
2. To show that x ≥ x′ ⇒ g(x, y) ≥ g(x′, y), it is sufficient

to show that this is true for a simple case where x and x′
differs by only one element, i.e., xi ≥ x′i and xj = x′j
for j 6= i. For general case, let x = x0 ≥ x1 ≥ x2 ≥
· · · ≥ xn = x′, where xi and xi−1 has exactly the same
coordinates except for the ith position. Then applying
the result for the simple case for n times yields the
desired result for the general case.
Let x and x′ be such that xi ≥ x′i and xj =
x′j for j 6= i, and define h(x,y)(ξ1, ξ2, . . . , ξi) :=

opt(xi+1,yi+1)
ξi+1

. . . opt(xn,yn)
ξn

f(ξ). Since xj = x′j for
j 6= i, h(x,y)(ξ1, ξ2, . . . , ξi) = h(x′,y)(ξ1, ξ2, . . . , ξi) and
we will use h to denote the function in what follows for
simplicity. With this notation, g(x, y) and g(x′, y) can
be rewritten as

g(x, y) =

opt(x1,y1)
ξ1

opt(x2,y2)
ξ2

. . . opt(xi,yi)
ξi

h(ξ1, ξ2, . . . , ξi)︸ ︷︷ ︸
=:h(ξ1,ξ2,...,ξi−1)

, (6)

g(x′, y) =

opt(x1,y1)
ξ1

opt(x2,y2)
ξ2

. . . opt(x
′
i,yi)

ξi
h(ξ1, ξ2, . . . , ξi)︸ ︷︷ ︸

=:h(ξ1,ξ2,...,ξi−1)

. (7)

Since xi ≥ x′i, by Lemma 1, we know that for all
ξ1, ξ2, . . . ξi−1:

h(ξ1, ξ2, . . . , ξi−1) ≥ h(ξ1, ξ2, . . . , ξi−1). (8)

Applying Lemma 2 for i − 1 times leads to g(x, y) ≥
g(x′, y).

3. Proving that y ≥ y′ ⇒ g(x, y) ≤ g(x, y′) is similar as
bullet 2.

This hence proves that g is a decomposition function of f .
Next, we show that g is a tight decomposition. To see this,
let x, x ∈ Rn to be such that x ≤ x. Since xi ≤ xi for all i,

2For reachable set computation, it makes sense to assume that f is
bounded on any bounded set so that the system xk+1 = f(xk) is forward
complete. With such assumption, opt(xi,yi)ξi

f(ξi) is always well defined.
However, if we only want to talk about mixed monotonicity of the function
f , it is enough to assume that the domain of f is Rn.



by definition of g in Eq. (5) and Eq. (4), we have

g(x, x) = inf
ξ1∈[x1,x1]

inf
ξ2∈[x2,x2]

. . . inf
ξn∈[xn,xn]

f(ξ1, ξ2, . . . , ξn)

= inf
ξ∈[x,x]

f(ξ), (9)

g(x, x) = sup
ξ1∈[x1,x1]

sup
ξ2∈[x2,x2]

. . . sup
ξn∈[xn,xn]

f(ξ1, ξ2, . . . , ξn)

= sup
ξ∈[x,x]

f(ξ), (10)

and this shows that g is a tight decomposition function.
Corollary 1: A mixed monotone function f may not have

a unique tight decomposition function.
Proof: Note that the proof of Theorem 1 does not

depend on the fact that g is constructed with opt(xi,yi)
ξi

being
arranged in an ascending order of i. Therefore one can
rearrange the opt(xi,yi)

ξi
operators and this does not change

the fact the resulting g is still a tight decomposition, yet it
is well know that g may be different in general after such a
rearrangement. For example, let f : [0, 2] × [0, 2] → R2 be
such that

f1(x) =

{
0 if x ∈ [0, 1)× [0, 1] ∪ [1, 2]× (1, 2]

1 otherwise

f2(x) = 0 ∀x ∈ [0, 2]× [0, 2]. (11)

Consider candidate decomposition function g and g′ where

g1(x, y) = opt(x1,y1)
ξ1

opt(x2,y2)
ξ2

f1(ξ1, ξ2), (12)

g′1(x, y) = opt(x2,y2)
ξ2

opt(x1,y1)
ξ1

f1(ξ1, ξ2), (13)

and g2(x, y) = g′2(x, y) = 0. By Theorem 1, both g and g′ are
tight decomposition functions of f . However, at point x =
[2, 0]T and y = [0, 2]T , it can be verified that g1(x, y) = 1
while g′1(x, y) = 0. Hence g 6= g′ and we have two different
tight decomposition functions of f .

Remark 3: Note that Corollary 1 is not surprising because
decomposition functions are defined on the space of (x, y),
while the tightness of a decomposition function g only
depends on its value g(x, y) on the set S := {(x, y) |
x, y are comparable}. Therefore, tight decomposition func-
tions are not unique on the entire space of (x, y), although
they do coincide with each other on set S.

The main purpose of Theorem 1 is to show that for any
function on Rn whose supremum and infimum are well-
defined, there exists a tight decomposition function, so all
these functions are mixed monotone. However, this is an
existential result rather than a computational one. Indeed, the
tight decomposition function defined above is not directly
useful in the reachable set computation as its construction
involves computing the infimum and supremum of the func-
tion f , which is already equivalent to solving for the extreme
coordinates of the reachable set, and this defeats the purpose
of constructing the decomposition function. However, we
show in what follows that the tight decomposition function
defined by Eq. (5) reduces to a function with explicit form
that can be directly derived from the expression of f ,
whenever f has sign-stable Jacobian, and this coincides with
the result presented in [4].

Theorem 2: Assume that f is continuously differentiable
that ∂f

∂xi
either ≥ 0 everywhere or ≤ 0 everywhere, then

the tight decomposition function given by Eq. (5) reduces to
exactly the form of Eq. (2)-(3).

Proof: Clearly, if ∂fj
∂xi

≥ 0 everywhere, then by
definition of opt

opt(xn,yn)
ξn

f(ξ) =


infξn∈[xn,yn] f(ξ1, ξ2, . . . , ξn)

if xn ≤ yn
supξn∈[xn,yn] f(ξ1, ξ2, . . . , ξn)

if xn ≥ yn
= f(ξ1, ξ2, . . . , xn). (14)

Similarly, if ∂fj
∂xi

≤ 0 everywhere, opt(xn,yn)
ξn

f(ξ) =
f(ξ1, ξ2, . . . , yn). Applying this argument n times leads to
exactly the same definition of g in Eq. (2)-(3).

IV. CONCLUSION

In this paper, we proved that any function from Rn to Rm
is mixed monotone and has a tight decomposition function.
From the definition of mixed-monotonicity (see Definition 1),
it is not clear that it could be such a generic property.
However, by using its interpretation in terms of reachable
sets, we showed that a tight decomposition function for any
function can be implicitly constructed as a solution to an
optimization problem. These tight decompositions, however,
are in general not useful in reachable set computation as they
cannot be evaluated directly. This indicates that it is neither
mixed monotonicity nor the tightness of the decomposition
function, but other extra properties (e.g., Jacobian matrix
being sign-stable) that make the decomposition directly
evaluatable, which, in turn, enable efficient reachable set
computation.
Acknowledgments: The authors would like to thank one of
the anonymous reviewers of [18] who asked whether there
are any functions that are not mixed monotone and how
to characterize the tightest mixed monotone decomposition,
which motivated this work.

REFERENCES

[1] E. Asarin, O. Bournez, T. Dang, and O. Maler. Approximate reacha-
bility analysis of piecewise-linear dynamical systems. In International
Workshop on Hybrid Systems: Computation and Control, pages 20–31.
Springer, 2000.

[2] O. Botchkarev and S. Tripakis. Verification of hybrid systems with
linear differential inclusions using ellipsoidal approximations. In
International Workshop on Hybrid Systems: Computation and Control,
pages 73–88. Springer, 2000.

[3] X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An ana-
lyzer for non-linear hybrid systems. In International Conference on
Computer Aided Verification, pages 258–263. Springer, 2013.

[4] S. Coogan and M. Arcak. Efficient finite abstraction of mixed mono-
tone systems. In Proceedings of the 18th International Conference on
Hybrid Systems: Computation and Control, pages 58–67. ACM, 2015.

[5] M. Dutreix and S. Coogan. Specification-guided verification and
abstraction refinement of mixed-monotone stochastic systems. arXiv
preprint arXiv:1903.02191, 2019.

[6] M. Franzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert. Efficient
solving of large non-linear arithmetic constraint systems with complex
boolean structure. Journal on Satisfiability, Boolean Modeling and
Computation, 1:209–236, 2007.



[7] A. Girard. Reachability of uncertain linear systems using zonotopes. In
International Workshop on Hybrid Systems: Computation and Control,
pages 291–305. Springer, 2005.

[8] F. Gruber, E. S. Kim, and M. Arcak. Sparsity-aware finite abstraction.
In 2017 IEEE 56th Annual Conference on Decision and Control
(CDC), pages 2366–2371. IEEE, 2017.

[9] M. Kloetzer and C. Belta. Reachability analysis of multi-affine
systems. In International Workshop on Hybrid Systems: Computation
and Control, pages 348–362. Springer, 2006.

[10] P.-J. Meyer, S. Coogan, and M. Arcak. Sampled-data reachability
analysis using sensitivity and mixed-monotonicity. IEEE Control
Systems Letters, 2(4):761–766, Oct 2018.

[11] P.-J. Meyer, A. Devonport, and M. Arcak. Tira: Toolbox for interval
reachability analysis. arXiv preprint arXiv:1902.05204, 2019.

[12] P.-J. Meyer and D. V. Dimarogonas. Hierarchical decomposition of ltl
synthesis problem for mixed-monotone control systems. arXiv preprint
arXiv:1712.06014, 2017.

[13] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin. A time-dependent
hamilton-jacobi formulation of reachable sets for continuous dynamic
games. IEEE Transactions on automatic control, 50(7):947–957, 2005.

[14] M. Moisan and O. Bernard. Interval observers for non monotone
systems. application to bioprocess models. IFAC Proceedings Volumes,
38(1):43–48, 2005.

[15] N. Ramdani, N. Meslem, and Y. Candau. Computing reachable sets
for uncertain nonlinear monotone systems. Nonlinear Analysis: Hybrid
Systems, 4(2):263–278, 2010.

[16] P. Tabuada. Verification and control of hybrid systems: a symbolic
approach. Springer, 2009.

[17] L. Yang, A. Karnik, B. Pence, M. T. B. Waez, and N. Ozay. Fuel
cell thermal management: Modeling, specifications and correct-by-
construction control synthesis. In Proceedings of American Control
Conference, 2017.

[18] L. Yang, O. Mickelin, and N. Ozay. On sufficient conditions for mixed
monotonicity. arXiv preprint arXiv:1803.04528, 2018. accepted to
IEEE Transactions on automatic control.

[19] L. Yang and N. Ozay. A note on some sufficient conditions for
mixed monotone systems. Technical report, University of Michigan,
Department of EECS, 2017. Available at http://hdl.handle.
net/2027.42/136122.

[20] M. Zamani, G. Pola, M. Mazo, and P. Tabuada. Symbolic models
for nonlinear control systems without stability assumptions. IEEE
Transactions on Automatic Control, 57(7):1804–1809, 2012.

http://hdl.handle.net/2027.42/136122
http://hdl.handle.net/2027.42/136122

	Introduction
	Preliminaries
	Notations
	Mixed Monotone Functions on Rn

	Main Results
	Conclusion
	References

