
Provably-Correct Fault Tolerant Control with Delayed Information

Liren Yang and Necmiye Ozay

Abstract— In this paper, we study a class of hierarchical finite
transition systems representing a set of fault configurations,
and we consider synthesizing fault tolerant controllers for such
systems that lead to a graceful degradation as faults occur. In
previous work, the problem was solved under the assumptions
that (i) the specification for each fault configuration is of “reach-
avoid-stay” type, (ii) the knowledge of the fault occurrence is
immediate. We extend the previous work in two aspects. First,
we propose an algorithm that works for specifications given in
a more general fragment of linear temporal logic. Secondly, we
show how the proposed algorithm can be modified to synthesize
controllers that guarantee satisfaction of the specification even
in the presence of fault detection delays.

I. INTRODUCTION

Designing resilient systems that can operate in the pres-
ence of failures is crucial in many application domains. One
key aspect of resiliency is graceful degradation. That is,
we expect the system to satisfy certain (possibly relaxed)
requirements even when failures occur. In this paper, we
address this problem when the systems are modeled as a
hierarchy of non-deterministic transition systems, and the
requirements for different failure modes are given in linear
temporal logic.

In recent years, there has been significant amount of
research on synthesizing controllers that can guarantee that
the closed-loop system satisfies given logic specifications
[12], [4]. The problem we study in this paper and the
solution approach follows this line of work. In particular,
when faults can be detected and isolated instantaneously,
the problem can be reduced to a control synthesis problem
on a finite transition system, obtained by flattening the
hierarchical structure we start with, subject to temporal logic
constraints. By exploiting the fact that the occurrences of
faults can be represented by a directed acyclic graph leading
to a partial order, we propose an algorithm that avoids this
flattening step and obtain a more efficient solution. With
further assumptions on the specifications, soundness of the
proposed algorithm is proved.

In the second part of the paper, we focus on the case
where fault detection and isolation occur with an unknown
but bounded delay. This results in controller not having full
information of the state at decision time. Synthesis with
partial information is in general quite harder as it requires
an exponential power set construction to keep track of belief
states [5], [10], [15]. Delayed information is a special case
of partial information. We show how the algorithm proposed
in the first part can be modified to handle detection delays.
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The main focus of the paper is to provide theoretical
analysis of the proposed algorithms and to highlight the type
of specifications that enable efficient synthesis in both full
information and delayed information settings. We provide
a toy example to demonstrate the ideas and leave larger
scale implementations on realistic system models (e.g., using
abstraction-based methods) for future work.

II. PRELIMINARIES

A. Notation

Let N be the set of nonnegative integers. For a finite set Σ,
a finite word w over Σ is a finite sequence of elements from
Σ, i.e., w = w(0)w(1)w(2) · · ·w(n) with w(t) ∈ Σ for all
0 ≤ t ≤ n. An ω-word w = w(0)w(1)w(2) · · · over Σ is an
infinite sequence of elements w(t) ∈ Σ. Let Σ∗ denote the
set of all the finite words over Σ, and Σω denote the set of
all ω-words over Σ. For an ω-word w = w(0)w(1)w(2) · · ·
and any n ∈ N, w(0) · · ·w(n) is called a prefix of w and
w(n)w(n+ 1)w(n+ 2) · · · is called a suffix of w. For a set
S ⊆ (Σω), we use pref(S) (resp. suff(S)) to denote the
set of prefixes (resp. suffixes) of ω-words from S.

B. Finite Transition System with Fault Configurations

Finite transition systems are the basic building blocks
of the overall system considered in this paper. A (timed)
finite transition system, denoted by TS, is a tuple (Q,A,→
, AP, L), where Q is a finite set of states, A is a finite set of
actions,→⊆ Q×A×Q is a transition relation, AP is a set of
atomic propositions, and L : Q→ 2AP is a labeling function.
Particularly, we assume that a finite transition system TS
can start from any state in Q, and the transitions happen
only at time instant t ∈ N. An execution ρ of system TS
is an infinite sequence of pairs

(
q(0), a(0)

)(
q(1), a(1)

)
· · · ,

where
(
q(t), a(t), q(t+ 1)

)
∈→. The ω-word wρ generated

by execution ρ is defined as wρ = L
(
q(0)

)
L
(
q(1)

)
, · · · .

In this paper we are interested in finite transition systems
with fault configurations (faulty systems for short), which is
the discrete analogue of the systems studied in [14]. Such
a system consists of a collection of different regular finite
transition systems (regular systems for short), each governing
the system transitions under a specific faulty situation, and
these different regular systems may degrade from one to
another in the order of their corresponding fault severity. In
what follows, we formally define a finite transition system
with fault configurations.

Let F = {f1, . . . , fM} be a finite set, each element fi is
called of a fault configuration, or a fault for short. A partial
order � is defined on set F to capture the severity of different
faults in F . That is, fi � fj means that fault fj is more
severe than or equal to fault fi, and fi ≺ fj means that fault



fj is strictly more severe. We define the set of minimum
elements of E ⊆ F to be

min(E) := {fj ∈ E | @fi ∈ E s.t. fi ≺ fj}, (1)

and max(E) can be defined in a similar way. We will assume
F always has a unique minimum element that represents the
healthy configuration. By convention we always denote this
healthy configuration by f1. Finally we define the successors
of a fault fi ∈ F to be

succ(fi) := min
(
{fj ∈ F | fi ≺ fj}

)
. (2)

By definition, fault fj is a successor of fault fi if fj is more
sever than fi and there are no other faults in between.

Let F = {f1, . . . , fM} be a partially ordered set of fault
configurations, a finite transition system with the given fault
configurations, denoted by TSF, is a tuple (Q,F,A,→TS

,→F , AP, L), where
• Q, A, AP have the same meanings as the ones in a

regular finite transition systems, F is the given set of
fault configurations;

• →TS⊆ Q × F × A × Q is a transition relation that
describes the system’s evolution under some specific
fault;

• →F⊆ F × F is the transition relation of the faults,
and we assume that the transitions of faults always start
from healthy configuration f1, and that (fi, fj) ∈→F if
and only if (iff) fj ∈ {fi} ∪ succ(fi), a fault transition
(fi, fj) is called nontrivial if fi 6= fj ;

• L : Q× F → AP is the labeling function.
Similarly to regular systems, we define an execu-
tion ρ of system TSF to be an infinite sequence
of 3-tuples

(
q(0), f(0), a(0)

)(
q(1), f(1), a(1)

)
· · · , where(

q(t), f(t), a(t), q(t+1)
)
∈→TS , and

(
f(t), f(t+1)

)
∈→F

for all t ∈ N. The ω-word wρ generated by execution ρ is
wρ = L

(
q(0), f(0)

)
L
(
q(1), f(1)

)
, · · · .

A few remarks regarding to the definition above are in
order. First, It might be helpful to think TSF as a hierarchical
transition system with M different regular finite transition
systems as subsystems. Each subsystem TSi is associated
with the fault configuration fi ∈ F of the same subscript. Ev-
ery TSi has a distinct transition relations →i:= {(q, a, q′) |
(q, fi, a, q

′) ∈→TS} and different labeling functions Li :=
L(·, fi). The transition of the overall system TSF can be seen
as being governed by→i that corresponds to the current fault
status, while transition relation→F describes the degradation
of governing subsystem TSi’ in case the fault status changes.
Note that, by definition of →F , a subsystem TSi either
maintains to be the current governing system or transits into
its successors. This means two things: first, the faults are
permanent, i.e., the system will never recover once the faults
occur; secondly, the system never “goes down” more than
two levels at once.

Secondly, by definition, TSF has a common state set
Q, atomic proposition set AP and action set A that is
shared by all of its subsystems TSi. Note that we may
have different control authority and atomic proposition of
interest under different fault configurations. However, the
assumption for common atomic proposition set and common

action set can be made without loss of generality. In case we
have different propositions AP i of interest in different fault
configurations, a common atomic proposition set AP can
be simply chosen to be

⋃M
i=1AP i, and the difference can

be handled by defining non-surjective labeling function Li.
Moreover, the lack of control authority under more severe
fault configurations can be captured by a transition relation
→i that is not affected by some inactive control action a ∈ A.

Finally, note that the fault transition relation→F is beyond
our control, hence it introduces additional nondeterminism
into the system, and such nondeterminism can be combined
with that of a regular system—whose state set is Q×F—to
obtain the faulty system TSF. This means a faulty system is
nothing but a special type of regular finite transition system.
However, as will be presented in section IV, the special
structure of fault configurations can be leveraged to develop a
recursive synthesis process when the considered specification
is in certain from. We hence distinguish it from regular
systems.

C. Fault Detection with Delay

In this paper, we consider both fault detection with and
without delay. In reality, the faults may not be detected
immediately after their occurrence. Instead, a detector will
collect data from the system in an online manner and make
diagnosis based on these data. The detector reports a fault
whenever the collected data suggests that the current system
behavior is different enough from that of the healthy system,
and the fault is isolated whenever the system behavior differs
from those of other possible faulty models.

There is research to design such detectors based on model
invalidation approaches [8], [7]. In particular, such detectors
are guaranteed to detect and isolate the fault within time
T after its occurrence. T is a constant depending on the
difference between the considered faulty system and other
system models, and its value can be computed offline. Note
that the actual online fault detection may not take as long
as time T . Instead, T is only an upper bound for the actual
detection delay.

Also note that these fault detection techniques are devel-
oped for continuous state space models governed by differ-
ence equations. In this paper we consider finite transition
systems, which can be viewed as abstractions that simulate
some underlying continuous systems [12]. The delay upper
bounds for such abstractions can be obtained from offline
analysis of the underlying continuous systems. To be specific,
given a faulty system TSF with fault configuration set
F = {f1, · · · , fM}, let fi be arbitrary current fault, and
let fj ∈ succ(fi) be a possible succeeding fault. We assume
a fault detection delay of length Tj is required to isolate fault
fj from other faults in {fi} ∪ succ(fi) \ {fj}.

D. Linear Temporal Logic

We use linear temporal logic without next operator
(LTL\©) [3], [9] to specify the correct closed-loop system
behavior.



1) Syntax of LTL\©: Let AP be an atomic propositions
set, the syntax of LTL\© formulas over AP is given by

ϕ ::= π | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 U ϕ2, (3)

where π ∈ AP . With the grammar given in Eq. (3), we
define the other propositional and temporal logic operations
as follows: ϕ1∧ϕ2 := ¬(¬ϕ1∨¬ϕ2), ϕ1 → ϕ2 := ¬ϕ1∨ϕ2,
♦ϕ := True U ϕ, �ϕ := ¬♦¬ϕ.

2) Semantics of LTL\©: Given an infinite word w =
w(0)w(1)w(2) · · · ∈ (2AP )ω and an LTL\© formula ϕ, we
say ϕ holds for w at time t (or the word satisfies ϕ at time
t), denoted by w, t |= ϕ, if and only if ϕ holds for w(t)w(t+
1)w(t+ 2) · · · . By this we mean:
• w, t |= π iff π ∈ w(t),
• w, t |= ¬ϕ iff w, t 6|= ϕ,
• w, t |= ϕ1 ∨ ϕ2 iff w, t |= ϕ1 or w, t |= ϕ2,
• w, t |= ϕ1 U ϕ2 iff ∃s ≥ t : w, s |= ϕ2 and ∀t ≤ s′ <
s : w, s′ |= ϕ1.

Finally we say w |= ϕ iff w, 0 |= ϕ.
3) Linear Time Property: A linear time (LT) property

P over atomic propositions AP is a subset of (2AP )ω .
An LT property P is called a safety property if a word
w belonging to P is equivalent to the following: for all
p ∈ pref({w}) there exists s ∈ (2AP )ω such that ps ∈ P .
An LT property P is called a liveness property if for all
p ∈ (2AP )∗ there exists s ∈ (2AP )ω such that ps ∈ P .
It is well known that any LT property can be written as
the conjunction of a safety property and a liveness property
[3]. In particular, such decomposition is not unique but
a canonical sharp one exists [3]. That is, there exists a
decomposition P = P ?safe ∩P ?liveness, such that for any other
decomposition P = Psafe ∩ Pliveness, one has P ?safe ⊆ Psafe

and Pliveness ⊆ P ?liveness.
Given an LTL formula ϕ (not necessarily excluding next

operator) over atomic proposition set AP , the words satis-
fying ϕ, i.e., Word(ϕ) := {w ∈ (2AP )ω | w |= ϕ}, is
a linear time property over the same AP . In particular, this
LT property is ω-regular, which can be equivalently described
by a nondeterministic Buchi automaton (NBA) [3]. By LT
property decomposition,

Word(ϕ) = Wordsafe(ϕ) ∩Wordliveness(ϕ). (4)

By [2], two new NBA’s can be constructed (from
the automaton that generates Word(ϕ)), one generates
Wordsafe(ϕ), and the other generates Wordliveness(ϕ). Con-
verting these two new NBA’s into LTL formulas ϕsafe,
ϕliveness, we have ϕ = ϕsafe ∧ ϕliveness.

In this paper, we consider a special type of LTL\©
formula that specifies an absolutely decomposable property,
which is defined as follows.

Definition 1: Let P ⊆ (2AP )ω be a property over set AP .
Property P is called absolutely decomposable if there exists
a decomposition P = Psafe ∩ Pliveness, such that
• Psafe is an absolute safety property, i.e., it is a safety

property, and p ∈ pref(Psafe), w ∈ Psafe implies that
pw ∈ Psafe;

• Pliveness is an absolute liveness property, i.e., it is a
liveness property, and p ∈ pref(Pliveness), w ∈ Pliveness

implies that pw ∈ Pliveness.

Note that pref(Pliveness) = (2AP )∗, thus the definition of
absolute liveness coincides with the one given by [1]. Some
useful results are listed and proven in Appendix A.

4) Two-player Temporal Logic Game: The systems (both
regular and faulty ones) studied in this paper are nondeter-
ministic, the actual evolution of the system can be viewed as
the outcome of a two player game between the controller and
the environment. In each round of the game, the controller
picks an action first, then the environment picks a transition
that is available under the current state and action [13]. More
formally, given a finite transition system TS = (Q,A,→
, AP, L), a control strategy is a partial function µ : (Q ×
A)∗×Q→ A that assigns a next-step action based on execu-
tion history, and an environment strategy η : (Q×A)∗ → Q
defines the next-step state. The µ-η-controlled execution
starting from initial state q0, denoted by ρµ-η(q0) is an execu-
tion

(
q(0), a(0)

)(
q(1), a(1)

)(
q(2), a(2)

)
of TS such that (i)

q(0) = q0, (ii) a(t+ 1) = µ
(
q(0), a(0), · · · , q(t), a(t), q(t+

1)
)
, and (iii) q(t + 1) = η

(
q(0), a(0), · · · q(t), a(t)

)
. The

objective of the controller is to give a strategy µ so that the
words wρµ-η(q0) generated by all the µ-η-controlled execu-
tions starting from q0 satisfy some given LTL\© formula ϕ,
regardless of the move η of the environment. Such a strategy
is called winning for initial state q0. We define the maximum
winning set Win(ϕ, TS) to be the set of all states that can
have a winning strategy, i.e., Win(ϕ, TS) := {q0 ∈ Q |
∃µ : ∀η : wρµ-η(q0) |= ϕ}. We say W is a winning set if
W ⊆Win(ϕ, TS).

III. PROBLEM STATEMENT

In this paper we consider synthesizing correct-by-
construction controller that leads to a graceful degradation
for an finite transition system with fault configuration set
F = {f1, . . . , fM}. The correct behavior of the closed-loop
system, i.e., the so called graceful degradation, is specified
by the following LTL\© formula:

Φ =
∧
fi∈F

(♦�fi → ϕi) , (5)

where ϕi is an LTL\© formula specifying the system’s
desired behavior when the final fault configuration is fi ∈ F .

Eq. (5) says: if the fault configuration eventually stays at
fi, the specification ϕi associated with this fault is achieved.
Note that the fault status of a faulty system is guaranteed to
reach a specific configuration fi ∈ F and stays there forever.
This is because fault set F is finite and a fault only transits
into its successors in F , hence there can be only finitely
many transitions.

We now formally define the two problems considered in
this paper.

Problem 1: [Synthesis with Immediate Fault Detection]
Given a fault configuration F , let TSF be finite transition
system with fault configuration F , and let Φ be an LTL
formula (over the same AP ) in the form of Eq. (5). Assuming
that a fault is detected immediately after it occurs, find a
winning set W ⊆Win(TSF,Φ) and the winning strategies
associated with each state in the set W .



Problem 2: [Synthesis with Delayed Fault Detection]
The problem is stated the same as Problem 1, except that
any fault fi ∈ F requires at most time Tj to detect and
isolate.

IV. SOLUTION APPROACH

A. Solution to Problem 1

This part gives an algorithm that solves Problem 1 in
a recursive manner. We start with introducing the idea of
the proposed algorithm in an intuitive way. We then explain
the meaning of the returned values of the algorithm, and
comment on how these returned values can be used to solve
Problem 1. Finally the correctness of the algorithm under
certain assumptions is stated.

First, notice that a major challenge in solving Problem
1 is: the final fault configuration is not known in advance,
nor is the time this fault occurs. Therefore, the controller
has to assume the current fault configuration fi is the
final one, and give a strategy that achieves the specification
associated with the current configuration. However, unless
no other faults are strictly more severe than the current one,
there is always a chance for the system to further degrade.
Therefore, the controller must also maintain the capability to
achieve the specifications for possible succeeding faults fj .
In particular, this requires the following to hold in case the
system degrades to fault configuration fj :
(I1) (bad prefix issue) the finite word generated by the old

strategy does not violate the new specification ϕj ,
(I2) (succeeding strategy issue) there is a new strategy to

achieve specification ϕj starting from the current state.
Finally note that the argument also applies to the new fault fj
and its succeeding configurations, if any. This hence suggests
a recursive algorithm.

The above intuition is formalized by Algorithm 1.
1) Inputs: Algorithm 1 takes a system TSF, an LTL\©

formula Φ in form of Eq, (5), and a fault configuration fi
as inputs. Fault fi can be seen as the initial configuration.
Note that a faulty system always starts from being healthy
by definition, here fi is used to track the recursion.

2) Outputs: Algorithm 1 returns set Wi as a winning set
w.r.t. specification Φ when system TSF starts from fault
configuration fi. Ki := {Kj}fj�fi is a collection of maps
Kj , each map Kj relates a state to a strategy. It might be
helpful to think Kj(q) as a strategy that achieves specifica-
tion ϕj if the system starts from state q and stays at fault
configuration fj forever. The fault-tolerant strategy, with
initial fault fi and initial state q0, can be then extracted from
Ki by appending strategy fragments of Kj(q)’s according
to the latest fault status and the recent states after that fault
occurring. Formally, this fault-tolerant strategy at time t is
defined as:

µ
((
q(0) = q0, f(0), a(0)

)
· · ·
(
q(t), f(t)

))
=Kn

(
q(s)

)((
q(s), a(s)

)
, · · ·

(
q(t− 1), a(t− 1)

)
q(t)

)
, (6)

where n in “Kn” is the subscript of latest fault f(t), and

s = min
0 ≤ τ ≤ t
f(τ) = f(t)

τ. (7)

Finally the function also returns an LTL formula ψi called
strengthened formula, which is obtained by strengthening ϕi
by additional safety specifications. ψi can be seen as the
specification of an overall system that captures all possible
degradations from current fault fi.

3) Recursion: Algorithm 1 repetitively calls itself until
the worst faults are achieved as base cases. In each round
of recursion, we need the following two oracles. In what
follows we always assume the two oracles are sound.
(1) [ψsafe

j , ψliveness
j ] = Decomp(ψj) does the sharpest LT

property decomposition;
(2) [Wi,Ki] = Win(ψi, TSi) returns the maximum win-

ning set Wi, and a map Ki associating a state from Wi

with a winning strategy, so that all executions of TSi
under such strategy satisfy LTL\© formula ψi.

If a worst fault is reached, function WinF simply returns
the normal winning set and strategies, because the system
will not further degrade from there. Otherwise a further
degradation is possible. To avoid generating prefixes that
violate the specification for the final fault, we strengthen the
current specification by ψsafe

j ; to guarantee the existence of
succeeding strategies, we strengthen the current specification
by �Wj where Wj is the winning set returned by deeper
recursions. Finally oracle Win is called to synthesize the
winning set w.r.t. specification ψi and this finishes the round
of the recursion.

Algorithm 1 [Wi,Ki, ψi] = WinF(Φ, TSF, fi)

1: Initialize Wi = ∅, Ki = ∅, ψi = ϕi
2: if fi ∈ max(F ) then
3: [Wi,Ki] = Win(ϕi, TSi)
4: Ki = {Ki}
5: else
6: for fj ∈ succ(fi) do
7: [Wj ,Kj , ψj ] = WinF(Φ, TSF, fj)
8: [ψsafe

j , ψliveness
j ] = Decomp(ψj)

9: ψi = ϕi ∧ (�Wj) ∧ ψsafe
j

10: [Wi,Ki] = Win(ψi, TSi)
11: Ki = Kj ∪ {Ki}
12: return Wi, Ki, ψi

Theorem 1: Assume that each ϕi specifies an absolutely
decomposable property, then Algorithm 1 is sound in the
sense that every state in W1 is a winning set w.r.t. overall
specification Φ, with each state in W1 equipped with a
winning strategy defined by Eq. (6).

Proof of Theorem 1 can be found in Appendix B.
As mentioned earlier at the end of section II-B, faulty

system TSF can be modeled by a regular transition system
with state space Q × F . Problem 1 hence can be solved
theoretically by solving a Rabin game [4], whose complexity
is given by

O
((
|A| |Q| |F | 2(2|Φ||Φ)|

)2k
)
, (8)

where |A| is the size of action set, |Q| is size of state space of
a regular system for each fault configuration, |F | is number



of faults, |Φ| is the length of LTL formula in Eq. (5), and k is
the number of accepting pairs in associated Rabin automaton,
which is a small number that is usually equal to 1 [6].

The complexity of Algorithm 1, ignoring the complexity
for LTL formula decomposition, is given by

O
(
|F |
(
|A| |Q| 2(2|ϕ||ϕ)|

)2k
)
, (9)

where |ϕ| = maxi:fi∈F |ϕi|. The complexity of our ap-
proach is linear in |F |, the number of faults, while the
complexity in Eq. (8) contains term O(|F | 2(2|Φ||Φ)|)2k)
where |Φ| is linear in |F |.

B. Solution to Problem 2

In this part, we modify Algorithm 1 to solve a special
class of instances of Problem 2. In what follows, we first
briefly discuss the challenges when there are delays for
fault detection. Then we restrict ourselves to the problems
in which the considered fault configuration set is a chain.
Such problems allow a solution by a simple modification to
Algorithm 1.

We first address the challenges caused by detection delay.
Assume that the system degrades from configuration fi to
fj , there will be a time period, called uninformed execution
horizon, within which the latest degradation is not known
to the controller. This time horizon starts from the instant
when transition (fi, fj) happens, and lasts for at most time
Tj by our detectability assumption. Within the uninformed
execution horizon, the controller will assume that the evolu-
tion is governed by original system TSi and apply the old
strategy, while the system dynamics evolves according to the
transitions of the new system TSj . As a result, two things
may go wrong during the uninformed execution horizon, i.e.,
(I3) (bad prefix issue) the wrongly-controlled partial exe-

cution may violate specification ϕj for some possible
succeeding fault configuration fj � fi;

(I4) (succeeding strategy issue) the execution may be led to
parts of the state space where no strategies are available
to achieve specification ϕj for some succeeding faults.

Note that the bad prefix issue (I3) cannot be solved by
simply applying Algorithm 1. In Algorithm 1 (line 9), the
specifications under succeeding faults are taken into consid-
eration when synthesizing controller for current fault fi. But
the synthesis is done for system TSi, not TSj . Within the
uninformed execution horizon, the controller applies strategy
designed for system TSi while the system evolves as TSj .
Therefore the outcome prefix may still violate strengthened
formula ψi, hence violate ψsafe

j and the specifications for the
succeeding faults. For a similar reason, issue (I4) cannot be
solved by simply enforcing �Wj . Because �Wj may still be
violated if the controller applies strategy designed for TSi
while the system evolves as TSj .

As a preliminary step to solving Problem 2, in what
follows in the paper, we consider a special class of faulty
systems whose fault configuration set F is a chain. That
is, for any fi, fj ∈ F , fi and fj are comparable. Without
loss of generality, we assume that f1 � f2 � · · · � fM .
In order to solve the two challenges raised above for such

special systems, we modify Algorithm 1 in two aspects. In
line 10 of Algorithm 1, (i) pair (ψi, TSi) is replaced by a
pair (ψi

′, TS′) with so called one-step-margin, (ii) oracle
Win is strengthened by some invariance restrictions. Next
we explain these two modifications in details.

1) One-Step-Margin by Positive Normal Form: To solve
issue (I3), we define a pair (ψ′i, TS

′
i) with one-step-margin

for a given pair (ψi, TSi). System TSi is the subsystem
associated with fault fi of a faulty system TSF, whose fault
configuration set F = {f1, · · · , fM} is a chain. We assume
that fi+1 is the only successor of fault fi.

We first introduce the following notations for the given
regular finite transition system TSi = (Q,A,→i, AP, Li).
For all π ∈ AP , define [π]i := {q ∈ Q | π ∈ Li(q)} and
[¬π]i := AP \ [π]i. For a state set S ⊆ Q, define its one-
step-out set to be

Outi(S) := {q ∈ S |∃a ∈ A, q′ /∈ S :

(q, a, q′) ∈→i ∪ →i+1}, (10)

where→i+1 is the transition relation for the only succeeding
system TSi+1.

Now the pair (ψ′i, TS
′
i) is defined as follows.

• AP ′ = AP ∪ {π′ | π ∈ AP}, with π′ representing the
“negation” of proposition π.

• TS′i = (Q,A,→i, AP
′, L′i) is a finite transition system,

where Q, A,→ are the same as the underlying transition
system TSi above, and L′i : Q→ 2AP

′
is defined to be

such that
∀π ∈ AP : π ∈ L′i(q)⇔ q ∈ [π]i \Out([π]i)

π′ ∈ L′i(q)⇔ q ∈ [¬π]i \Out([¬π]i) (11)

• For the given LTL\© formula ψi, write ψi in positive
normal form [3], and replace every ¬π in the formula
by π′ ∈ AP ′. We denote the obtained formula by ψ′i.

The usefulness of one-step-margin pair (ψ′i, TS
′
i) is as

follows. First, if a strategy achieves ψ′i on system TS′i, it
also achieves ψi on system TSi. Secondly, if the system
degrades from TSi to TSi+1, and ψ′i is violated at some
point by the old strategy, ψi will not be violated for at least
one more step. Note that this one step margin is enough for
the detector to identify the fault. This is because formula
ψ′i is already violated, while we know ψ′i should have been
achieved if the system evolved with TSi. Based on the above
argument, one can synthesize a strategy that achieves ψ′i on
TS′i, then apply this strategy to TSi, the prefix generated is
guaranteed not to violate ψi before the end of uninformed
execution horizon. This prefix, by the assumption of absolute
decomposability of ϕi (and hence ψi), is a good prefix in
terms of the specification of the final fault (see proof of
Theorem 1, observation (b)). This hence solves issue (I3)
stated at the beginning of this section.

Also note that the one-step-margin modification only
works when the faults form a chain. The reason is that,
one-step-margin is only enough for fault detection, but not
necessarily enough for the fault isolation whenever there are
multiple possible succeeding faults. As will be discussed in
section V, however, such one-step-margin modification is not
necessary for some special cases.



2) Synthesis with Invariance Restrictions: We now con-
sider solving the succeeding strategy issue (I4). For this
purpose, we modify oracle Win. Before line 10 of Algorithm
1 where Win is called, a line is inserted, in which we search
for the maximum controlled invariant set Cj ⊆ Wj , under
the dynamics of TSj . A map Ij : Cj → 2A is also found, so
that Cj is invariant as long as we keep applying any action
from Ij(q) at any state q ∈ Cj . Such set Cj and map Ij can
be found by fixed-point type algorithms given in [11]. Then
oracle Win is called as before, except that (i) the input is
replaced by the one-step-margin pair (ψ′i, TS

′
i) , and (ii) the

synthesis is restricted within state set Cj , while the actions
available at each state q ∈ Cj are restricted within Ij(q).

By the above modification, the states will always stay
within Cj ⊆ Wj even after the system degrades from fault
configuration fi to fj . This hence guarantees a succeeding
strategy after an uninformed execution horizon of any length.
Also note that the chain structure assumption on the fault
set is not essential for this modification to work. When there
are multiple possible faults fj succeeding current fault fi,
an intersection set C can be computed as

⋂
j:fj∈succ(fi) Cj ,

and a map I can be defined to be such that I(q) =⋂
j:fj∈succ(fi) Ij(q). Then winning set Wi can be synthesized

by Win restricted to state set C and control actions in I(q).
We summarize the soundness of the above modifications

by the following proposition, whose proof follows from the
soundness of Algorithm 1 and the above arguments.

Proposition 1: In addition to the hypothesises in Theorem
1, assume that the considered fault set is a chain, and that a
further fault does not occur during any uninformed execution
horizon. Algorithm 1 is sound for Problem 2, if its 10th line
is replaced with [Wi,Ki] = Win(ψ′i, TS

′
i), where (ψ′i, TS

′
i)

is the one-step-margin pair of (ψi, TSi), and the synthesis
in oracle Win is done with states restricted in controlled
invariant set Cj , and with the actions at q ∈ Cj restricted in
invariant action set Ij(q).

V. DISCUSSION

Several discussions are presented below, regarding to the
two modifications of Algorithm 1 in section IV-B, and the
relation between this work and the previous one.

First, note that an invariance property is absolute safety
property (Proposition 3 in Appendix A). Also note that if
ψsafe
j (line 9 of Algorithm 1) specifies an invariance property,

then Word(�Wj) ⊆ Word(ψsafe
j ). This suggests that the

bad prefix issue (I3) is automatically solved if the synthesis in
oracle Win is restricted within controlled invariant set Cj ⊆
Wj . Hence there is no need to create the one-step-margin
pair, which leads to a potentially more conservative solution.
In this case, since no additional time margin is needed, it is
not required to assume that the faults form a chain.

Secondly, if strengthened formula ψj in Algorithm 1
specifies a so called suffix-closed property1, it is not hard
to show that any winning set Wj w.r.t. ψj is controlled

1A property P over set AP is called suffix-closed, iff any suffix of a
word in P also belongs to P , i.e., uv ∈ P ⇒ v ∈ P .
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Fig. 1: Faulty system TSF. Left: regular system TS1 associated
with fault f1, right: TS2 associated with fault f2. Different colors
marked different propositions predicate: w (purple), x (green box),
y (orange), z (grey).

invariant under the corresponding winning strategies. This
suggests that Cj , the largest controlled invariant set contained
by winning set Wj , is equal to Wj .

In previous work [14], the fault structure is not a chain,
but we only consider reach-avoid-stay type of requirements
for each fault configuration. That is, ϕi’s in Eq. (5) are in
the form (�si)∧ (♦�gi), where si is an atomic proposition
marking states that are considered to be safe at fault configu-
ration fi, and gi is an atomic proposition that marks the goal
state. Note that �si specifies an invariant property, while
♦�gi specifies a suffix-closed, absolute liveness property.
Moreover, it is not hard to show by induction that ψi’s in
Algorithm 1 can also be written as a conjunction of an
invariance formula and ♦�gi. By the discussions in the
above paragraphs, the controller synthesis with detection
delay can be simply solved by Algorithm 1 with invariant
restrictions proposed in section IV-B.2

Finally, a notable property of our solution approach to
Problem 2 is that it does not rely on the value of T , the upper
bound for the detection delay. Instead, it is sufficient to know
that T exists, i.e., is finite. This is a result of the following
facts. First, one-step-margin is enough for fault detection
in a chain. Secondly, we synthesize controllers restricted to
invariant actions of Cj ⊆ Wj , hence the states stay inside
the winning set Wj of the next fault for arbitrarily long time.

VI. EXAMPLE

In this section we present a toy example that illus-
trates the proposed solution approach. Consider a faulty
system TSF = (Q,F,A,→TS ,→F , AP, L), where Q =
{q1, q2, q3, q4, q5}, F = {f1, f2}, A = {a, b}, AP =
{w, x, y, z}. The only fault transition in →F is (f1, f2).
The system transitions →TS and the labeling function are
defined in Fig. 1. The graceful degradation of system TSF

is specified by an LTL\© formula in form of Eq. 5, where
ϕ1 =(�¬z) ∧ (♦�x) ∧ (�♦w) ∧ (�♦y), (12)
ϕ2 =(�¬z) ∧ (♦�x) (13)

In what follows we compute the fault tolerant winning set
WinF(Φ, TSF) for both cases with and without detection
delay, to demonstrate the difference introduced by the delay.

1) Winning Set without Detection Delay: To find the fault
tolerant winning set, Algorithm 1 starts from fault f2 as base
case. Winning set W2 can be found as {q2, q3, q4}. We then



go to fault f1, and strengthen ϕi as ψ1 = ϕ1 ∧ (�W2) ∧
(�¬x), where the last term (�¬x) is the safety part of ϕ2.
Finally we compute W1 = Win(ψ, TS1) = {q2, q3, q4}, and
we claim that W1 is a fault tolerant winning set W .

Note that q1 /∈W , even though a strategy can achieve ϕ1

starting from q1 on system TS1. This is because the fault may
occur when we are at q1. In that case the system degrades
to TS2 and no succeeding strategy exists to avoid state q5,
and hence to achieve ϕ2.

2) Winning Set with Detection Delay: Assume a finite
delay is required to detect the fault, we compute the fault
tolerant winning set and show it is different from the above
result. First note that the safety part of ϕ2 specifies an
invariance property. As discussed in section V, the one-step-
margin is not needed in this example. Then, similar as before,
Algorithm 1 starts from fault f1 and computes winning set
W1 = {q2, q3, q4}. We then compute Cj as the largest
controlled invariant set in W2. In this example, C2 = W2.
Map I2 is also found such that I2(q) contains the actions at
state q that make C2 invariant. In this example, I2(q2) = {b},
I2(q3) = I2(q4) = {a, b}. Finally the recursion goes back
to fault f1, and the fault tolerant winning set is synthesized,
with the states restricted to set C2, and with the actions at
state q restricted to I2(q). In the example W1 = {q3, q4},
and we claim the fault tolerant winning set W = W1.

Unlike the fault tolerant winning set without detection
delays, state q2 is not inside the winning set W . This is
because action a /∈ I2(q2), and is hence forbidden at state q2

in the synthesis. To see why this it is necessary to exclude
state q2 from W , we consider the following scenario. If fault
occurs at state q2, the controller will not be informed at once.
Instead, the controller assumes that the system evolves as
TS1 and tries to achieve ϕ1. Note that to achieve ϕ1 on
TS1, the controller has to take action a whenever the state
is at q2. As a result the actual system evolves as TS2 and
may bring the state to s1, from where the real specification
ϕ2 can not be achieved.

VII. APPENDIX

A. Properties of Absolutely Decomposable Property

In this part, some useful results regarding to absolutely
decomposable properties are presented.

First, we give a lemma about general safety properties that
is used in the later proofs.

Lemma 1: Let P1 and P2 be two safety property over AP ,
pref(P1) = pref(P2) implies that P1 = P2.

Proof: Assume for a contradiction that pref(P1) =
pref(P2) but P1 6= P2. Without loss of generality, this
means there exists w ∈ P1 such that w /∈ P2. Since w /∈ P2

and P2 is a safety property, we immediately know that w
has a bad prefix wt := w(0)w(1) · · ·w(t) /∈ pref(P2).
But on the other hand, w ∈ P1 and this implies that
wt ∈ pref(P1) = pref(P2), which is a contradiction.

The following propositions are used in proving soundness
of Algorithm 1.

Proposition 2: Let P be an absolutely decomposable
property, then for all p ∈ pref(P ), w ∈ P , pw ∈ P .

Proof: Let p ∈ pref(P ) and w ∈ P . First, notice the
fact that P = Psafe ∩ Pliveness. This implies that (i) p ∈
pref(P ) ⊆ pref(Psafe), (ii) p ⊆ pref(Pliveness), (iii) w ∈
Psafe and w ∈ Pliveness. By bullet 1 in Definition 1, we
have pw ∈ Psafe, and by bullet 2, pw ∈ Pliveness. Thus
pw ∈ P = Psafe ∩ Pliveness.

Proposition 3: An invariance property P is an absolute
safety property.

Proposition 4: Let P1, P2 be two absolute safety proper-
ties, P = P1 ∩ P2 is also absolute safety property.

Proof: Proposition 4, 3 easily follow from the definition
of absolute safety properties.

Proposition 5: Let P be an absolutely decomposable
property with the specific decomposition P = Psafe ∩
Pliveness, then pref(P ) = pref(Psafe).

Proof: From the proof of Proposition 2, we already
know that pref(P ) ⊆ pref(Psafe). Next we show the other
direction. For this purpose, let p ∈ pref(Psafe) and w ∈
P be arbitrary. Next we show pw ∈ P and conclude p ∈
pref(P ).
(a) First, note that p ∈ pref(Psafe) and that w ∈ P ⊆ Psafe.

By bullet 1 in Definition 1, we have pw ∈ Psafe.
(b) Secondly, also note that p ∈ pref(Pliveness) = (2AP )∗,

and w ∈ P ⊆ Pliveness. By bullet 2 in Definition 1, we
have pw ∈ Pliveness.

Combining (a) and (b), we have pw ∈ Psafe ∩Pliveness = P .
Therefore p ∈ pref(P ) and this finishes the proof.

Proposition 6: Let P be an absolutely decomposable
property with a specific decomposition P = Psafe∩Pliveness,
and let P = P ?safe ∩ P ?liveness be the sharpest decomposition,
then Psafe = P ?safe.

Proof: By P = P ?safe ∩ P ?liveness, we have P ⊆ P ?safe.
This hence gives

pref(P ) ⊆ pref(P ?safe). (14)

On the other hand, since P ?safe comes from the sharpest
decomposition, P ?safe ⊆ Psafe. This implies that

pref(P ∗safe) ⊆ pref(Psafe). (15)

Combine (14), (15), we have
pref(P ) ⊆ pref(P ?safe) ⊆ pref(Psafe). (16)

But by Proposition 5, we know that pref(P ) = pref(Psafe),
which forces all “⊆” in Eq. (16) to be “=”. Thus we have
pref(P ?safe) = pref(Psafe). Applying Lemma 1, we have
P ?safe = Psafe.

Proposition 7: Let P1 be an absolutely decomposable
property under decomposition P1 = P1,safe ∩ P1,liveness,
and let P2,safe be an absolute safety property, then P =
P1 ∩ P2,safe is absolutely decomposable under P = Psafe ∩
Pliveness, where Psafe = P1,safe ∩ P2,safe and Pliveness =
P1,liveness.

Proof: First note that Psafe is indeed a safety property
and Psafe ∩ Pliveness = (P1,safe ∩ P2,safe) ∩ Pliveness =
P2,safe ∩ (P1,safe ∩ P1,liveness) = P is a valid decomposi-
tion. Moreover, by Proposition 4, Psafe is a absolute safety
property. By definition P is absolutely decomposable, and
Psafe = P1,safe∩P2,safe is the unique absolute safety property
involved in the decomposition by Proposition 6.



B. Proof of Theorem 1

Assume the actual transitions of faults are given by
(fi1 , fi2), (fi2 , fi3), · · · , (fin−1 , fin), where fi1 is the initial
fault and fin is the final fault, and (fik−1

, fik) ∈→F are the
nontrivial degradations.

Let Wik ’s be the winning sets and ψik ’s be the strength-
ened formulas returned in each round of recursion. Regarding
to these sets and formulas, we can make the following
observations.
(a) Wi1 ⊆ Wi2 ⊆ · · ·Win . By soundness of oracle Win,

Wik−1
is the winning set w.r.t. specification ψik−1

. But
note that ψik−1

is a conjunction of �Wik with other
formulas (see line 9, Algorithm 1), thus Wik−1

⊆Wik .
This hence proves the nested relation of Wik ’s because
k is arbitrary in the above argument.

(b) pref
(
Word(ψi1)

)
⊆ pref

(
Word(ψi2)

)
⊆ · · · ⊆

pref
(
Word(ψin)

)
⊆ pref

(
Word(ϕin)

)
. To see this,

recall line 9 of Algorithm 1, we have
Word(ψik−1)

=Word(ϕik−1) ∩Word(�Wik ) ∩Word(ψsafe
ik ), (17)

where Word(ϕik−1
) is absolutely decomposable by as-

sumption, Word(�Wik) is an absolute safety property
by Proposition 3, and Word(ψsafe

ik
) is absolute safety

property presuming that ψik is absolutely decompos-
able. One can easily verify by induction that Word(ψik)
is absolutely decomposable, using Proposition 3, 4, 7.
Next applying Proposition 5, this implies

pref
(
Word(ψik )

)
= pref

(
Word(ψsafe

ik )
)

(18)

Also note that ψik−1
is obtained by conjunction of ψsafe

ik
and other formulas (line 9, Algorithm 1), hence

pref
(
Word(ψik−1)

)
⊆ pref

(
Word(ψsafe

ik )
)
. (19)

Combining Eq. (18) (19), we have
pref

(
Word(ψik−1)

)
⊆ pref

(
Word(ψik )

)
. (20)

With the same argument used to obtain Eq. (19),
pref

(
Word(ψin)

)
⊆ pref

(
Word(ϕin)

)
. (21)

Now to prove the soundness, consider an execution starting
from q0 ∈ Wi1 under control strategy µ constructed by Eq.
(6) and arbitrary environment strategy η
ρµ-η(q0) =

(
q(0) = q0, f(0), a(0)

)(
q(1), f(1), a(1)

)
· · · , (22)

and the word generated by this execution

wρµ-η(q0) = w(0)w(1)w(2), · · · . (23)

First, let tik denote the time instant when fault transition
(fik−1, fik) happens. By observation (a), it is not hard to
show by induction that q(t) ∈Wik for t ≤ tik .
1◦ Base case: k = 2. The execution starts from q(0) =

q0 ∈Wi1 , and the strategy enforces ψi1 . Hence �Wi2 ,
which is part of ψi1 by construction, is true before the
system degrades at time instant ti2 .

2◦ As induction hypothesis, assume that for all k ≤ m,
we have q(t) ∈ Wik for t ≤ tik Now we move to
k = m + 1. First, by observation (a), Wik ⊆ Wim+1

for all k ≤ m. The hypothesis immediately becomes
q(t) ∈ Wim+1

for t ≤ tim , and what remains to be

verify is when tim ≤ t ≤ tim+1 . Again by hypothesis,
we know q(tim) ∈Wim+1

. But by construction, strategy
µ enforces the succeeding execution, which starts from
q(tim), to satisfy �Wim+1

. In other words, for tim ≤
t ≤ tim+1 , we have q(t) ∈ Wim+1 . This hence finishes
the induction step.

This immediately implies that q(tin) ∈Win .
Next we show that the finite word generated until time

tin belongs to pref
(
Word(ϕin)

)
using observation (b). Let

wik := w(tik) · · ·w(tik+1
− 1) be the word segment that is

generated under fault fik . Note that this segment is generated
starting from q(tik) ∈ Wik (by the result from the last
paragraph), under the winning strategy designed to achieve
ψik . Therefore wik ∈ pref

(
Word(ψik)

)
. By observation

(b), this means w := wi1wi2 · · ·win ∈ pref
(
Word(ϕin)

)
.

To this point, we have shown that when the final fault
occurs at time tin , the state q(tin) is in the winning set
Win for this final fault. We also know that finite word
w = w(0) · · ·w(tin − 1) generated so far belongs to
pref

(
Word(ϕin)

)
. Note that the succeeding strategy will

focus on achieving ϕin starting from state q(tin), where the
strategy is well defined because q(tin) ∈Win . Moreover, this
strategy generates an execution v = v(tin)v(tin + 1) · · · ∈
Word(ϕin). Recall that ϕin is absolutely decomposable. By
Proposition 2, the overall word wv |= ϕin . This proves the
soundness of Algorithm 1 under the given assumptions.
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