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Abstract: We study the problem of synthesizing controllers that enforce hard state-constraints
under occasionally missing state measurements. Although the problem can be solved as a
partial information game via power set construction, it is undesired to do so because power
set construction is computationally expensive. In this paper, we consider the instances where
the missing data pattern can be specified by an automaton, and show that, for such cases, the
synthesis problem admits a simpler solution. We introduce string automata and exploit the
causality requirement to define the structure of the controller, and further use this structure to
derive a product system. The synthesis problem then reduces to a full-information game on this
product system. Two examples illustrate the efficacy of the proposed approach.
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1. INTRODUCTION

Designing controllers that enforce hard state-constraints
is at the core of achieving safe autonomous systems. A
well-studied way of synthesizing safety controllers is via
computing controlled invariant sets [Blanchini (1999)].
In these works, exact knowledge of the state is usually
required for all time, whereas in the imperfect information
setting, computationally expensive power set construction
is necessary for a sound and complete solution [Artstein
and Raković (2011); De Wulf et al. (2006)].

In this paper, we study the safety control problem under
a special class of information imperfections, i.e., missing
(intermittent) state measurements. Such data loss may
arise due to communication package drops, sensor attacks
or occlusion when a vision-based sensor is used. With these
sensing flaws, we need to design controllers that use limited
state feedback yet still ensure safety.

Finite-time constraint-satisfaction under missing measure-
ments has been studied with different formalisms model-
ing the data loss pattern, e.g., probabilistic distributions
[Amin et al. (2009)], finite languages [Rutledge et al.
(2020)], all-time-data-loss [Laine et al. (2020)]. While
Amin et al. (2009) only considers the satisfaction of a
chance constraint, a stronger result that ensures safety
for all time will require worst-case analysis as in Rutledge
et al. (2020); Laine et al. (2020), which may lead to conser-
vativeness when extended for solving infinite horizon prob-
lems. Missing data patterns over an infinite horizon can
be characterized by omega automata [van Horssen et al.
(2016)], and are used in controllability and observability
analysis [Jungers et al. (2017)]. The safety controller syn-
thesis in this case, however, has not been addressed to the
best of our knowledge.

We consider the infinite horizon safety control problem
where missing measurement patterns are specified by au-
tomata, and show that, in this setting, it is possible to
solve the problem without power set construction. The
key ingredients of our approach are twofold. First, we
introduce the notion of string automata to capture the
original automaton’s underlying structure that is relevant
to decision making, and to define the discrete dynamics
of the controller. Second, we use the fact that a controller
must be causal (i.e., at runtime, the controller does not
know how many measurements are going to be missed
consecutively), which we encode as safety constraints im-
posed on the control actions. We show that, with the above
reductions, the control synthesis problem for systems with
missing measurements can be solved as a full-information
safety game on a product system that is constructed from
the original system and the string automaton. Control
synthesis on product systems is standard for discrete state
systems. For dynamics with continuous state spaces, such
attempts have previously been made in Danielson et al.
(2019); Liu and Ozay (2019) and Li (2019) (Chapter 6).
The idea, however, has not been explored for solving the
synthesis problems with missing data. Moreover, unique
to this paper is the usage of the string automaton and
causality for the problem reduction.

2. PRELIMINARIES

Let S be a set, the set of finite and infinite sequences of
elements in S are denoted by S∗ and Sω, respectively,
and the set of sequences of length T is denoted by ST .
Throughout the paper, we will use bold font letters (e.g.,
s) to denote finite or infinite sequences. Small letter st
denotes the tth element in sequence s, and st := s1s2 . . . st.

Definition 1. A deterministic automaton is a tuple A =
(S,A, sinit, δ), where S is a finite set of states, A is a finite
set of letters called the alphabet, sinit ∈ S is the initial



state and δ ⊆ S × A × S is the transition relation. The
automaton is deterministic in the sense that the initial
state sinit is unique and |{s′ | (s, a, s′) ∈ δ}| ≤ 1 for
all s ∈ S and a ∈ A. Whenever (s, a, s′) ∈ δ, we write
s′ = δ(s, a) with a slight abuse of notation. A sequence a =
a1a2 · · · ∈ Aω is accepted by an automaton A if and only if
there exists an infinite state sequence s = s1s2s3 · · · ∈ Sω,
called a run, such that s1 = sinit and st+1 = δ(st, at) for all
t ≥ 1. The language accepted by an automaton A, denoted
by L(A), is the set of all sequences accepted by A.

We now review the safety control problem under full
state information. Consider a discrete-time system xt+1 =
f(xt, ut, wt) where xt ∈ X is the state, ut ∈ U is the
control input, wt ∈W is the (non-measured) disturbance.
The problem of safety control synthesis concerns finding a
state feedback controller and the set Xinv of all the initial
conditions starting from where the closed-loop trajectories
under all possible disturbance profiles are rendered within
a give set Xsafe of safe states. The set Xinv is called the
maximal controlled invariant set contained by the safe set.
In Bertsekas (1972), the following fixed-point iteration,
starting from X1 = Xsafe, is introduced:

Xn+1 = Projx
(
C(Xn)

)
, for n = 1, 2, 3 . . . (1)

where C(Xn) = {(x, u) ∈ Xn × U | ∀w ∈ W : f(x, u, w) ∈
Xn}. The intuition of the iteration in Eq. (1) is to remove
the states at which the disturbance can force the trajectory
to the unsafe set X \ Xsafe in finite steps. Formally, sets
Zn = X \Xn satisfy the following induction relation:

Zn+1 ={x ∈ X|∀u ∈ U :∃w ∈W :f(x, u, w)∈Zn}∪Zn. (2)

Under mild conditions, Xn defined by (1) converges to
Xinv. A control action u is admissible at state x ∈ Xinv

if (x, u) ∈ C(Xinv). An admissible controller C : X → U
(i.e., C(x) is admissible at all x ∈ Xinv) ensures safety.

Proposition 1. (Proposition 4 in Bertsekas (1972)) If
C(Xn) is compact for all positive integers n, limn→∞Xn =
∩∞n=1Xn = Xinv and limn→∞ Zn = ∪∞n=1Zn = X \Xinv.

3. PROBLEM STATEMENT

To define the safety control problem under missing state
measurements, consider a system Σ = (X,U,W, f),

xt+1 = f(xt, ut, wt), (3)

yt =

{
xt if at = 1

∅ if at = 0
, (4)

where xt ∈ X is the state, ut ∈ U is the control input,
wt ∈ W is the disturbance, yt ∈ Y = X ∪ {∅} is the state
measurement and the symbol ∅ denotes a measurement
loss, and at ∈ {0, 1} is a boolean indicator variable that
takes zero value when the measurement is missing and one
otherwise. Map f : X × U ×W → X defines the system’s
evolution. Let u ∈ UT , w ∈ WT and x ∈ XT+1 be the
system’s trajectory under u,w from state x1, we write x =
f(x1,u,w) and xτ+1 = fτ (x1,u,w) for τ = 1, 2, . . . , T .

Clearly, if there is no restriction on the indicator sequences,
it is allowed to have at ≡ 0 for all t, and the best strategy
that a controller can take is an open-loop control sequence,
which cannot effectively react to the disturbance w. In this
paper, we restrict the indicator sequence a1a2 . . . to be in
a set La ⊆ {0, 1}ω that satisfies the assumption below.

Assumption 1. Three conditions hold for the set La:

Fig. 1. Example automata: (a) (4, 2)-firm measurement
loss, (b) blocked (4, 2)-firm measurement loss, (c) at
most 2 consecutive missing measurements, (d) string
automaton for (4, 2)-firm measurement loss pattern.

i) the initial measurement is available, and the follow-
ing sequence is specified by an automaton A whose
alphabet is {0, 1}, i.e., La = {1a | a ∈ L(A)}.

ii) a measurement may be available under all circum-
stances i.e., ∀a ∈ La, t ≥ 1 : ∃a′ ∈ La : a′t+1 = at1,

iii) the number of consecutive zeros in any sequence
a ∈ La is no larger than a positive integer k.

Many missing data patterns satisfy Assumption 1, includ-
ing (but not restricted to):

(a) (m, k)-firm measurement loss [Jia et al. (2005)]: the
number of missing measurements within any time
window of length m is no greater than k, i.e.,

a1 = 1 and ∀t ≥ 1 :
∑t+m−1
τ=t aτ ≥ m− k, (5)

(b) blocked (m, k)-firm measurement loss:

a1 = 1 and ∀l ≥ 0 :
∑lm+m
τ=lm+1 aτ ≥ m− k, (6)

(c) at most k consecutive measurement loss:

a1 = 1 and ∀t ≥ 1 :
∧t+k−1
τ=t (aτ = 0)→ (at+k = 1) (7)

(d) finite union and finite intersection of any sets satisfy-
ing Assumption 1.

Example 1. Fig. 1 shows some example automata A and
La = {1a | a ∈ L(A)} in the above cases (a) (b) (c).
The arrow with a “T” on top is a simplified notation for
two transitions, one under a = 1 and the other under
a = 0. In Fig. 1 (a), the string within each state can be
interpreted as the last 3 digit of at observed. In Fig. 1 (b),
each node contains a pair (z1, z2) where z1 is the time steps
that has passed in the current time block of length four,
and z2 is the number of available measurements observed
so far in this block. In Fig. 1 (c), the number within a
node represents the number of consecutive missing points
observed.

The closed-loop behaviors of a system Σ are fully defined
given a set La and a controller C : Y × (Y × U)∗ → U ,
which maps y1y2 . . . yt and u1u2 . . . ut−1 to a control input
ut ∈ U . A trajectory x = x1x2 · · · ∈ Xω is generated under
the controller C from an initial state xinit if i) x1 = xinit,
and ii) there exists a ∈ La,w ∈ Wω,u ∈ Uω,y ∈ Y ω s.t.
for all t ≥ 1, xt+1 = f(xt, ut, wt), where ut = C(yt,ut−1)
and yτ , aτ , xτ satisfy Eq. (4) for all 1 ≤ τ ≤ t.



Now we formally define the problem studied in this paper.

Problem 1. Given a system Σ in Eq. (3), (4), a set Xsafe ⊆
X of safe states and a set La of admissible measurement
loss indicator sequences that satisfy Assumption 1, find the
set Xwin of initial states, called the winning set, together
with a safety controller C, such that all trajectories x
generated under C starting from Xwin remain in the safe
set for all time, i.e., xt ∈ Xsafe for all t ≥ 1.

4. SOLUTION APPROACH

Missing measurements can be viewed as a special form
of partial information. Hence the complete solution to
Problem 1 can be obtained by solving a full-information
game using the power set of the original state space. Such
power set construction, however, is expensive and even
intractable when considering a system with continuous
state space. For safety control problems with imperfect
information, computationally efficient methods exist but
at the cost of completeness [Yang and Ozay (2020)].
For the instances studied in this paper, where La is
defined by an automaton, the synthesis problem can be
cast into a full-information safety game on a product
system, which is constructed from the original system
and a string automaton. The winning set and admissible
controllers can be then computed by applying the fixed-
point algorithm from Bertsekas (1972) to this product
system. The proposed algorithm is sound, complete, and
applicable to continuous-state systems.

4.1 String Automaton

We first introduce the string automaton. The purpose is to
remove the states irrelevant to decision making from the
state space of the automaton specifying language La.

A string automaton A = (S,A, sinit, δ) is nothing but a
deterministic automaton (see Definition 1), whose alpha-
bet A ⊆ A∗ is a set of finite sequences, called the strings,
of letters from some other alphabet A. The only difference
is that the language accepted by a string automaton A
is parsed over Aω instead of (A)ω. We let L(A) denote
the language accepted by A when parsed over Aω, and
conceptually distinguish it from L(A), which by Definition

1 is the language accepted by A when parsed over A
ω

. In
our case where the language to be characterized consists of
measurement loss indicator sequences, the string alphabet
A ⊆ {0, 1}∗. Particularly, for a reason that will become
clear later, we restrict A = {1, 01, 001, . . . , (0)k1} where
(0)k1 represents a sequence of k consecutive zeros followed
by a one, and k is the maximum number of consecutive
missing data in Assumption 1, bullet iii). We denote a
string from A by a.

Let A be the automaton that accepts a language La sat-
isfying Assumption 1, the following algorithm constructs
a string automaton A that accepts the same language. In
line 5 of Algorithm 1, we write s′ = δ(s, a) to mean that
there exists a sequence s1s2 . . . s|a|+1 such that s1 = s,
s|a|+1 = s′ and st+1 = δ(st, at) for all 1 ≤ t ≤ |a|, where
a = a1a2 . . . a|a| and |a| stands for the length of string a.

Example 2. Consider the language L(A) of (4,2)-firm mea-
surement loss patterns, which is accepted by the automa-
ton in Fig. 1 (a). The associated string automaton returned

Algorithm 1 A = StringAuto(A)

1: Q = {sinit}, S = ∅, A = {1, 01, . . . , (0)k1}, δ = ∅
2: while Q 6= ∅ do
3: pick s ∈ Q, Q = Q \ {s}, S = S ∪ {s}
4: for a ∈ A do
5: if s′ = δ(s, a) is defined then
6: δ = δ ∪ {(s, a, s′)}, Q = Q ∪ ({s′} \ S)

return A = (S,A, sinit, δ).

by Algorithm 1 is shown in Fig. 1 (d), where the binary
sequence in each node represents a state s, the sequence
on each arrow represents a letter a.

Proposition 2. Let A be an automaton over alphabet
{0, 1} such that L(A) satisfy Assumption 1, and let A =
StringAuto(A), we have L(A) = L(A).

By construction, the state set S of a string automaton
A = StringAuto(A) is a subset of that of the original
automaton A, while the two automata characterize the
same language. The significance of such reduction is that
the states in S are exactly the ones that are relevant to
the decision making. In fact, if A has just reads a sequence
ending with zero at time t (i.e., at = 0), the control
action at time t has to depend on the previous available
measurements and could have been determined when the
last available measurement was received. Moreover, it
only makes sense to make a new decision when the next
available measurement comes, i.e., after the automaton
reads a sequence in the form of (0)l1 for some l ≤ k.
This naturally leads to the the notion of string automata
constructed in Algorithm 1, whose alphabets are in form
of A = {1, 01, 001, . . . , (0)k1}.

4.2 Causality of the Controller

In this part, we discuss how to use string automata for de-
cision making. The main idea is based on a property of the
controller called causality. At runtime, a safety controller
does not know in advance how many consecutive missing
points are coming before the next available measurement.
Instead it can only plan (i.e., determine an open-loop
control sequence) for the worst-case scenario where the
maximum number of consecutive missing measurements
allowed by Assumption 1 is reached. We shall refer to this
property as the causality of the controller. This maximum
number is not necessarily k in Assumption 1 iii) and
also depends on the finite at-sequence observed by far. In
particular, this maximum number `(s) can be determined
by tracking the state s of the string automaton:

`(s):= maxa∈As
|a| where As:= {a| ∃s′ = δ(s, a)}. (8)

Take the string automaton in Figure 1 (d) as an example
and let the current system’s state be xt and the current
automaton state be st = 111. At this state, there could
be at most two consecutive missing measurements in the
future (i.e., `(st) = 3). The controller hence need to
determine an open-loop control sequence utut+1ut+2 ∈
U `(st) of length three based on yt = xt

1 , otherwise the
control inputs at time instants t + 1 and t + 2 are not
defined in case of a = 001. In practice, there could be
1 Since there is no measurement noise, it is sufficient for the
controller to base its decision on yt, but not the early measurements.



only one (corresponding to a = 01) or even no missing
measurements at all (corresponding to a = 1) before the
next available measurement, but the controller will execute
the first two (in case of a = 01) or the first one (in case
of a = 1) control input in the same open-loop sequence
utut+1ut+2 nonetheless, because it does not know the real
a until the next available measurement comes.

4.3 Product System

Since the decision is made based on both the system state
x and the string automaton state s, this naturally leads to
the following definition of product systems.

Definition 2. Let Σ = (X,U,W, f) be a system and A =
(S,A, sinit, δ) be a string automaton, the product system,
denoted by Σ⊗A, is a tuple (X,U,W, f), where

• the state set X := X × S,
• the control set U :=

⋃
s∈S U

`(s),

• the disturbance set W :=
⋃
s∈S As ×W

`(s),
• the transition relation f ⊆ X × U ×W × X is defined

to be such that
(
(x, s),u, (a,w), (x′, s′)

)
∈ f iff i)

u ∈ U `(s), ii) (a,w) ∈ As × W `(s), iii) s′ = δ(s, a)
and iv) x′ = f|a|(x,u,w). In this case we write

(x′, s′) = f
(
(x, s),u, (a,w)

)
.

The product system defined above is essentially the dy-
namics of the system state x and the string automaton
state s sampled at the time instants when a decision
occurs, i.e., when a available measurement has just been
received. The control set U contains open-loop sequences.
Disturbance set W consists of pairs (a,w) that are picked
by the environment, where w is the disturbance profile and
a determines which measurements are missing. In particu-
lar, to respect the missing data pattern La, the admissible
set of variable a depends on the current automaton state
s, and all the possible values of a that are allowed at state
s is defined by As.

A state-feedback controller C : X → U for the product
system is valid if C(x, s) ∈ U `(s). A controller C : Y ×
(Y × U)∗ → U for the original system can be induced by

C(y1) = C(y1, sinit), (9)

C(y1y2 . . . yt, u1u2 . . . ut−1) = u′t−t?+1, (10)

where u′1u
′
2 . . . u

′
`(s′) := C(yt? , s

′), s′ := δ(sinit,at?), t? :=

max{1 ≤ τ ≤ t | yτ 6= ∅} and at? = a2 . . . at? is such
that aτ = 1 if yτ 6= ∅ and aτ = 0 if yτ = ∅. Roughly, the
controller C first finds the time instant t? when the last
available measurement was received, find the associated
indicator sequence at? and compute the current string
automaton state by s′ = δ(sinit,at?), and extract the open-
loop control sequence by C(yt? , s

′). Finally the control
action at the (t− t?+1)th position in this control sequence
is applied at the current time t. The relation between
the closed-loop trajectories of the product system and the
original system is established by the following proposition.

Proposition 3. Let C be a valid controller for the product
system and C be the induced controller for the original
system. Let xinit ∈ X,w ∈ Wω be arbitrary and a ∈
{0, 1}ω be such that 1a ∈ La. Define ti so that ati is
the ith one in sequence a. and define a = a1a2 . . . with
a1 = (0)t1−11 and ai = (0)ti−ti−1−11 for i ≥ 2. Now let

s ∈ Sω be the run with which A accepts a, and let x be the
original system’s trajectory initiated at x1 = xinit under
a,w and the induced controller C. The trajectory of the
product system under a,w and controller C is then given
by (xt1 , s1)(xt2 , s2) . . . .

4.4 Safety Control Synthesis on the Product System

Now we are in the position to describe our solution
approach. Given an instance of Problem 1 defined by the
original system Σ, a string automaton A and a safe set
Xsafe, it can be converted to a standard safety problem
with full information on the product system Σ ⊗ A. This
standard safety control problem can be solved by fixed-
point algorithm defined by Eq. (1), starting from the
product system safe set Xsafe := Xsafe × S. This leads
to a sequence of sets Xn in the state space of the product
system. Under mild conditions, we show that Xn converges
to the maximal controlled invariant set Xinv ⊆ Xsafe on the
product system.

Proposition 4. Assume that sets Xsafe, U are compact and
f is continuous, we have limn→∞ Xn = Xinv.

Proof. All we need to show is that C(Xn) is compact for
all n, then Proposition 4 follows from Proposition 1.

We first prove that C(Xn) is compact when Xn is compact.
Let Xs := {x | (x, s) ∈ Xn}, set C(Xn) can be written as⋃

s ∈ S

⋂
(s, a, s

′
) ∈ δ,

w ∈ W
`(s)

{
(x, s,u)

∣∣∣∣ u ∈ U `(s), x ∈ Xs

f|a|(x,u,w) ∈ Xs′

}
︸ ︷︷ ︸

Cs,a,s′,w(Xn)

. (11)

Since Xs, Xsafe, U are compact and f (hence f|a|) is
continuous, set Cs,a,s′,w(Xn) is also compact, hence so is
C(Xn) because the union in Eq. (11) is taken over a finite
set S. Now it remains to show Xn to be compact for all n.

1◦ Xsafe is assumed compact, thus so is X1 = Xsafe.
2◦ Assuming that Xn is compact, we know that C(Xn)

is compact by the above argument. This implies that
Xn+1 = Proj(x,s)

(
C(Xn)

)
is also compact, which

completes the induction step and hence the proof. �

It still remains to prove that finding the maximal con-
trolled invariant set on the product system will indeed
solve Problem 1.

Proposition 5. Suppose that Assumption 1 holds. Let Xinv

be the maximal controlled invariant set of the product
system contained by Xsafe, under controller C. For all
s ∈ S, define Xs := {x | (x, s) ∈ Xinv}. The winning
set Xwin under the missing measurement setting is equal
to Xsinit , whose associated controller C is induced from C
by Eq. (10).

Proof. We first prove soundness, i.e., Xsinit ⊆ Xwin. Let
xinit ∈ Xsinit and 1a ∈ La,w ∈Wω be arbitrary. Define x
be the original system’s trajectory generated under 1a,w
and C. Define ti, si from a as in Proposition 3, we know
that (xt1 , s1) = (x1, s1) = (xinit, sinit) ∈ Xinv. Since Xinv is
invariant under C, we know (xti , si) ∈ Xsafe for all i. Thus
xti ∈ Xsafe for all i.

It remains to show that the intermediate states xτ ∈ Xsafe

for all ti < τ < ti+1. By Assumption 1 iii), we know that



∀ti < τ < ti+1 : ∃s′ ∈ S : (si, (0)τ−ti−11, s′) ∈ δ. (12)

Also note that
(
xti , si,C(xti , si)

)
∈ C(Xinv), hence

∀(si, a, s′) ∈ δ:f|a|
(
xti ,C(xti , si), wti . . . wti+1

)
∈Xs′ . (13)

Combing Eq. (12), (13), we have

∀ti < τ < ti+1 : ∃s′ ∈ S :

xτ = fτ−ti
(
xti ,C(xti , si), wti . . . wti+1

)
∈ Xs′ (14)

Since Xs′ ⊆ Xsafe by construction, we have xτ ∈ Xsafe.

Next, we prove the completeness, i.e., Xwin ⊆ Xsinit . Let
xinit /∈ Xsinit

be arbitrary, we will show that xinit /∈
Xwin by contradiction. Assume for a contradiction that
xinit ∈ Xwin, then there exists a controller C such that
all closed-loop trajectories starting from xinit stay in
Xsafe indefinitely. But since xinit /∈ Xsinit

, we know that
(xinit, sinit) /∈ Xinv. Hence, by Proposition 1, there exists
integer N s.t. (xinit, sinit) ∈ ZN , where Zn = {Zs,n}s∈S
is defined by applying the iteration in (2) to the product
system starting from Z1 = X\Xsafe for n steps. This means
either i) (xinit, sinit) ∈ ZN−1, i.e., xinit ∈ Zsinit,N , or ii)

∀u ∈ U `(sinit) : ∃(a,w) ∈ Asinit
×W `(sinit) :

f
(
(x, sinit),u, (a,w)

)
∈ ZN−1 (15)

m
∀u ∈ U `(sinit) : ∃(sinit, a, s′) ∈ δ,w ∈W `(sinit) :

f|a|(x,u,w) ∈ Zs′,N−1. (16)

Now consider control sequence u1u2 . . . u`(sinit) where

ut = C(xinit(∅)t−1). Clearly u1u2 . . . ut will be applied
sequentially by controller C if a = (0)t−11 is ob-
served. But by Eq. (16), we know that there exists
a, s′,w ∈ W `(sinit) such that s′ = δ(sinit, a) and x|a|+1 =
f|a|(x, u1u2 . . . u`(sinit),w) ∈ Zs′,N−1. Combining case i)
and ii) above, we know that the closed-loop system’s states
under controller C can be forced into Zs′,N−1 for some s′

in finite steps. Applying such argument inductively proves
that the closed-loop trajectory initiated at xinit under C
can be forced into Zs′′,1 = X \ Xsafe for some other s′′

in finte steps, which contradicts that controller C ensures
safety when the system starts from xinit. �

Remark 1. We conclude this part by some computational
remarks. First, the conditions in Proposition 4 can cover
systems with discrete or continuous state spaces. For these
systems, in principle, the set C(Xn) in Eq. (11) (and the
associated finite open-loop strategy) can be computed in a
very similar way as proposed in Laine et al. (2020). For lin-
ear systems with additive control actions and disturbances,
the computation reduces to Minkowski sum and differences
(see Example 4), and finite termination of the fixed-point
iteration can be enforced at the cost of completeness (i.e.,
finding a inner approximation of the maximal controlled
invariant set), using the technique proposed by Rungger
and Tabuada (2017). For discrete-state system, the fixed-
point iteration terminates in finite time.

4.5 Systems with Partially Missing State Measurements

In practice, different from the output map in Eq. (4), the
controller may access part of the state x1 perfectly for all
time, while occasionally miss the rest part of the states x2

with a pattern specified by La. That is

yt =

{
(x1t , x

2
t ) if at = 1

(x1t , ∅) if at = 0
. (17)

This will in general lead to more complicated information
structures that requires constructing an observer. How-
ever, our approach applies directly whenever the dynamics
of x1 is undisturbed and not affected by x2, i.e., x1t+1 =
f1(x1t , ut). In this case, there is no better decision time
other than the instants whenever x2 is properly measured.

5. EXAMPLES

We illustrate our approach with two examples, one with
finite state space and one with continuous state space. The
goal is to show how the winning set and the admissible
control actions are affected by measurement loss.

Example 3. Consider a finite state system that abstracts
the car-pedestrian dynamics at an uncontrolled intersec-
tion. The state x = (c, v, p) ∈ X := {1, 2, . . . , cmax} ×
{0, 1, . . . , vmax} × {1, 2, . . . , pmax}, where c and v are the
position and velocity of the ego car, and p is the position
of a pedestrian. The intersection is at c = c∗ < cmax and
p = p∗ < pmax. The control input u ∈ U := {−1, 0, 1}
is the acceleration of the car, while uncontrolled input
(i.e., disturbance) w ∈ W := {0, 1} is the velocity of the
pedestrian. The goal is to determine u to prevent collision,
i.e, enforcing xt ∈ Xsafe := X \Xunsafe for all t, where

Xunsafe:=

{
(c, v, p)

∣∣∣∣∣
(
(c=c∗)∧(p=p∗)

)
∨(

(c<c∗)∧(c+v>c∗)∧(p=p∗−1)
)} (18)

The transition is defined as follows:

• ct+1 = ct if ct = cmax, and ct+1 = ct + vt otherwise.
• vt+1 = max{vt + ut, vmax}.
• pt+1 = pt + wt, where wt is state-dependent:

wt ∈


{0} if pt = pmax

{1} if (ct=c
∗)∧(vt = 0)∧(pt∈{p∗,p∗ − 1})

{0, 1} otherwise

. (19)

The positions of the car and the pedestrian will be fixed
once hitting cmax and pmax as their changes beyond the
upper limit are not of our interest. To avoid deadlocks,
the car will let the pedestrian pass first whenever it stops
at the intersection and the pedestrian is also close enough.
This corresponds to the second line in the definition of wt,
Eq. (19). The ego car’s position c and speed v are known

Fig. 2. Illustration of Example 3.

exactly for all time, while the pedestrian’s position p might
be missing because, e.g., the perception module fails to
detect the pedestrian due to occlusion. The loss of p is
assumed to follow a (4, 2)-firm pattern. Since the ego car’s
dynamics is neither perturbed by w nor affected by the
pedestrian’s position, the system falls into the category
discussed in Section 4.5, and our approach is directly
applicable. In this example, the winning set under missing
data is identical to that under full information of x. This



is because the car can always slow down and stop at the
intersection, and this open-loop strategy does not depend
on the knowledge of pedestrian’s position p. However, in
case of measurement loss, the admissible actions at each
state are more restrictive. For example, if we want the car
to cross the intersection as soon as possible, the decision
under missing measurements will be more conservative and
tends to slow down even if the pedestrian stops moving,
in which case a controller with full information will be
more aggressive and accelerate. This is demonstrated in
Figure 3. The simulation starts at (c, v, p) = (5, 7, 4), with
c∗ = 39, p∗ = 9. Comparing to the control decisions
under (4, 2)-firm measurement (blue dotted), an open-loop
strategy (green dashed) only ensures safety, but forbids
the ego car to pass the intersection without knowing the
pedestrian’s position.

Fig. 3. The position of the ego car under w = 0(1)ω. The
vertical lines remark the time instants when the car
crosses the intersection.

Example 4. Consider linear systems in the following form

Σ : xt+1 ∈ Axt +But ⊕ EW (20)

where sets U,W and Xsafe are polytopes. In this case,
the set iteration on the product system reduces to poly-
tope operations. Let Xn+1 = Projx

(
C(Xn)

)
be the nth

iteration, and define Xs,n := {x | (x, s) ∈ Xn} and
Xs,n+1 := {x | (x, s) ∈ Xn+1} for every string automaton

state s ∈ S, we have

Xs,n+1=

x ∈ Xsafe

∣∣∣∣∣
(
∀a ∈ A, s′ ∈ S : s′ = δ(s, a)

)
:

A|a|x ∈ Xs′,n 	 (
⊕|a|−1

i=0 AiEW )

⊕(−
⊕|a|−1

i=0 AiBU)

 ,

(21)

where the Minkowski sum (“⊕”) and difference (“	”) are
implemented by MPT3 toolbox [Herceg et al. (2013)]. In
this example, U = [−1, 1], W = [−0.9, 0.9],

A =

[
0.9930 0.03584
−0.2240 0.9930

]
, B = E =

[
−0.005324

0.1205

]
. (22)

The lossy measurements follow a (7, 4)-firm pattern. Fig-
ure 4 shows the obtained winning sets. It can be seen that,
after convergence, set Xs (blue transparent) varies slightly
with s, and there is a gap between the winning set under
missing measurements (black dashed line)and that under
full information (red solid line).

Fig. 4. Example 4: winning sets.
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