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Abstract— In this paper we consider the problem of robust
control invariant set computation for discrete-time switched
affine systems. We consider additive disturbances and joint
state-input constraints. We provide several constructions of
N -step recurrent sets from which we derive an implicit de-
scription of invariant sets. This is done with a linear program
characterizing set recurrence and backwards reachability with
affine feedback controllers. The focus of these methods is
scalability to systems with high-dimension. The performance
of these methods is evaluated on a system modeling consensus
of unmanned aerial vehicles (UAVs) and a system modeling the
large-scale control of thermostatically controlled loads (TCLs).

I. INTRODUCTION

Set invariance is one of the main tools used to reason about
constraint satisfaction for dynamical systems. As such, com-
putation of invariant sets is crucial for safety analysis or safe-
by-design control [1], [2]. There are a variety of techniques
to compute invariant sets for different classes of systems
(e.g., linear [3] vs. switched [4]), using different types of
set representations (e.g., polytopic [5] vs. ellipsoidal [6]), or
different computational approaches (e.g., set iterations [7] vs.
optimization [8]). These methods generally exhibit a trade-
off between conservativity and computational complexity.
Within this trade-off space, there is a need for scalable
methods that can be applied to high-dimensional systems.
In this paper, we develop such a method for invariant set
computation for switched affine systems.

Recently [9], [10] have proposed an efficient optimization-
based computation of control invariant sets for constrained
deterministic linear systems. They relax the one-step invari-
ance condition and search for a set that can be driven into
itself in N -steps, which we call N -step recurrent. They then
construct invariant sets from these recurrent sets. Our main
contributions are to extend the results of [9], [10] to systems
with non-determinism in the form of additive disturbances
and discrete switches. We also provide several constructions
of recurrent sets. Although not presented in this way, [9],
[10] essentially characterize N -step recurrence in terms of
linear open-loop controllers. To account for non-determinism
in our setting, we characterize these sets with affine feedback
controllers. Using an appropriate parameterization of these
controllers, we derive a linear program to check set recur-
rence. Then we derive an implicit linear representation of an
invariant set from a given recurrent set. While these methods
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are conservative, they can be applied to high-dimensional
systems due to the scalability of linear program solvers. We
demonstrate this with several examples.

A. Notation and Preliminaries

A polytope is a set defined by linear constraints P =
{x ∈ Rn | Ax ≤ b} for some n ∈ Rn. In this definition,
polytopes are convex but need not be bounded. The convex
hull of a set S is denoted by convS. The Minkowski sum of
sets S, T is denoted by S ⊕ T . To avoid the computational
complexity of vertex enumeration in high dimensions, all
input polytopes are assumed to be in halfspace form. The
following standard lemma provides linear conditions for the
containment of polytopes in halfspace form.

Lemma 1.1 (H-Polytope in H-Polytope [11, Lemma 1]):
Let P = {x ∈ Rnp | Px ≤ p} and Q = {y ∈ Rnq | Qy ≤
q} be polytopes. Then the containment P ⊆ Q holds if and
only if there exists a nonnegative matrix T such that

TP = Q, (1)
Tp ≤ q. (2)

II. PROBLEM DESCRIPTION
Consider a discrete-time switched affine system:

x+ = Aσx+Bσu+ w + fσ , (3)

where x ∈ Rn is the system state, u ∈ Rm is the control
input, w ∈ Rn is the disturbance, and σ ∈ Σ is the
discrete switch mode. The disturbance and switch mode
are exogenous in this setting; they are not control inputs.
We assume that Σ is a finite set. Initially we assume that
the disturbance and switch mode are measured after the
controller selects an input. We later relax this assumption
in Section III-A.

We consider polytopic constraints on the state and input
XU ⊆ Rn+m that should be satisfied when the disturbance
is constrained to the polytope W ⊆ Rn. We represent
sets as polytopes because they can approximate any convex
set. We would like to compute an invariant set of states
x(0) for which we can guarantee for all times t and all
disturbances w(t) ∈ W and switching modes σ(t), it holds
that (x(t), u(t)) ∈ XU for some choice of u(t). To formalize
this notion, the predecessors of a set Ω ⊆ Rn constrained by
XU are defined by

Pre(Ω) = {x | ∃u (x, u) ∈ XU, ∀w ∈W,σ ∈ Σ x+ ∈ Ω} .
(4)

The states in Pre(Ω) can be guaranteed to reach Ω in one
step subject to all constraints. Invariance is then commonly
defined as follows.



Definition 2.1: A set Ω ⊆ Rn is said to be robust control
invariant or simply invariant with respect to the constraints
XU if Ω ⊆ Pre(Ω).

A set is invariant if it can return to itself in one step, so we
say that invariant sets are one-step recurrent. As in [10], it
can be useful to consider sets that can return to themselves
in exactly N steps. These sets can be easier to construct
with simpler representations. Let PreN denote the N -fold
composition of Pre. We say Ω ⊆ Rn is N -step recurrent
if Ω ⊆ PreN (Ω). We can relate N -step recurrent sets to
invariant sets with the following key observation. If Ω is
N -step recurrent and we define

Ωτ =

τ⋃
i=1

Prei(Ω) for τ ≥ N , (5)

then Ωτ is invariant. Here the set Ωτ is the set of states
that can reach Ω in exactly t steps for some t ∈ {1, · · · , τ},
i.e., it is a type of backwards reachable set 1. Additionally
using the properties of switched affine systems with convex
constraints, if S is invariant then the convex hull convS is
also invariant. So then conv Ωτ is a polytopic invariant set.

A. Invariant set computation approach

These observations motivate the following approach to
compute invariant sets: first determine an N -step recurrent
set Ω and then approximate the backwards reachable set Ωτ
for a horizon τ ≥ N . This is related to the approach used in
[10] in the context of linear systems without disturbances.
While this approach need not generate the maximal invariant
set even as τ →∞, it can provide efficient representations of
invariant sets. However, direct computation of the Pre opera-
tor may be intractable in higher-dimensional systems. This is
because the standard method of computation involves lifting
to a higher-dimensional space followed by projection [12],
[13]. Projection of polytopes with halfspace representations
quickly becomes intractable in higher dimensions. In fact,
there is no polynomial-time algorithm for projection [14].

To avoid this issue in directly verifying the set inclusion
Ω ⊆ PreN (Ω) and in computing Ωτ , we consider the
action of explicit controllers. The set Ω is recurrent if and
only if there exists a controller that drives states of Ω into
itself in N -steps. While such a controller may necessarily
be nonlinear, we can perform efficient but conservative
computations by restricting our attention to affine feedback
controllers. We apply ideas from finite horizon control [2],
[15] and system level synthesis [16] to first develop a linear
program to conservatively verify N -step recurrence and then
to construct an implicit representation of an invariant set that
approximates Ωτ .

1We may be able to guarantee a state can reach Ω within τ steps, but
due to nondeterminism not be able to provide a specific time t ≤ τ when
this is accomplished. Such states are not contained in Ωτ . While the set of
states that can reach Ω within τ steps is invariant under the assumptions
and contains Ωτ , its computation would require computing the predecessors
of unions of polytopes, which may be intractable.

III. AFFINE FEEDBACK CONTROL

In order to describe recurrent and invariant sets, we
consider controllers that achieve recurrence or invariance.
To this end, we consider a general controller design problem
with parameters 〈XI , XF , N〉 representing the initial state
polytope, target state polytope, and horizon, respectively. A
solution to this problem is a controller that guarantees for any
initial state in XI and any realization of disturbances in WN

and switch modes in ΣN , the system reaches XF in N -steps
while always satisfying the constraints in XU . A controller
maps state, disturbance, and switching measurements into
control inputs. To formalize the problem, we define

x = (x(0), · · · , x(N − 1), x(N)) (6)
u = (u(0), · · · , u(N − 1)) (7)
w = (w(0), · · · , w(N − 1)) (8)
σ = (σ(0), · · · , σ(N − 1)) . (9)

We also define

Z = {(x,u) | ∀t ∈ {0, · · · , N − 1},
(x(t), u(t)) ∈ XU, x(N) ∈ XF } . (10)

Note Z is simply a permutation of XUN × XF that
represents admissible state-input trajectories and is also a
polytope. As in [16], a controller uniquely induces a map
Φ : XI × WN × Σn → XN+1 × UN representing the
closed-loop system’s state-input response to the initial state,
disturbances, and switching over the horizon N so (x,u) =
Φ(x(0),w,σ). We can then define solutions to the design
problem in terms of the closed-loop response.

Definition 3.1: A controller inducing the closed-loop
response Φ is a solution to the design problem for
〈XI , XF , N〉 if

∀σ ∈ ΣN Φ(XI ,W
N ,σ) ⊆ Z. (11)

That is for every initial state and sequence of disturbances
and switch modes, the closed-loop dynamics produce an
admissible trajectory satisfying the constraints. Furthermore,
it is clear that the design problem has a solution if and
only if XI ⊆ PreN (XF ). To make the problem tractable,
we only consider controllers that are affine in x(0) and
w(0), · · · , w(t− 1) for a fixed (σ(0), · · · , σ(t− 1)):

u(t) = Kt(σ(0), · · · , σ(t− 1))x(0)+
t−1∑
i=0

Lt,i(σ(0), · · · , σ(t− 1))w(i)+

rt(σ(0), · · · , σ(t− 1)) .

(12)

Note that because the dynamics are switched affine, the
state x(t) can be written as an affine function of x(0) and
u(τ), w(τ) for τ < t for a fixed switching sequence. Hence
controllers that are affine in x(τ) for τ ≤ t can be written
in the form of (12). As such, we refer to the disturbance-
feedback controllers in the form of (12) simply as affine
feedback controllers. For any such controller, we can write

u = K(σ)x(0) + L(σ)w + r(σ) , (13)



where L is lower block triangular and the blocks of K,L, r
are for i < t < N given by

Kt(σ) = Kt(σ(0), · · · , σ(t− 1)) (14)
Lt,i(σ) = Lt,i(σ(0), · · · , σ(t− 1)) (15)

rt(σ) = rt(σ(0), · · · , σ(t− 1)) (16)

This parameterization avoids the difficulty of multiplicative
composition of gains in state feedback. For a more thorough
discussion of this see [15]. The set of affine controllers
solving the design problem for 〈XI , XF , N〉 is defined by

C = {(K,L, r) | ∀σ ∈ ΣN Φ(XI ,W
N ,σ) ⊆ Z} (17)

To characterize these solutions we observe the following.
Proposition 3.2: C is a polytope.

Proof: Consider an affine controller defined by
(K,L, r) and its induced system response Φ. By gathering
terms, we can rewrite the dynamics over the horizon as

x = Gx(σ)x(0) +Gu(σ)u +Gw(σ)w + g(σ) . (18)

Then we see that Φ is affine in x(0) and w for a fixed σ:[
x
u

]
= Φ(x(0),w,σ) = Φx(σ)x(0) + Φw(σ)w + φ(σ) ,

(19)
where

Φx(σ) =

[
Gx(σ) +Gu(σ)K(σ)

K(σ)

]
(20)

Φw(σ) =

[
Gw(σ) +Gu(σ)L(σ)

L(σ)

]
(21)

φ(σ) =

[
g(σ) +Gu(σ)r(σ)

r(σ)

]
. (22)

Given the polytopes XI ,W
N ,Z in halfspace form as

XI ×WN = {z | Hz ≤ h}, Z = {q | Sq ≤ s}, (23)

we define

A(σ) = {(x,w) | Φ(x,w,σ) ∈ Z}
= {(x,w) | S(Φx(σ)x+ Φw(σ)w) ≤ s− Sφ(σ)}

Rearranging the definition of C, note that (K,L, r) ∈ C
holds if and only if ∀σ ∈ ΣN XI ×WN ⊆ A(σ) which
is a polytope containment. By expressing this with linear
constraints using Lemma 1.1 we have

C = {(K,L, r) | ∀σ ∈ ΣN ∃T (σ) ≥ 0, (24)

T (σ)H = S
[
Φx Φw

]
, (25)

T (σ)h ≤ s− Sφ(σ)} . (26)

Because (K(σ),L(σ), r(σ)) enter linearly into
Φx(σ),Φw(σ), φ(σ), C is the projection of a polytope
defined over (K,L, r, T ). Thus C is a polytope itself.

This result also shows that affine controller satisfying
the design problem can be found by solving a linear pro-
gram over (K,L, r, T ). The number of constraints and
decision variables in this linear program are polynomial
n,m, l and in the number of halfspace constraints defining

XI , XF ,W,XU , and exponential in the horizon N . For
systems without switching, these quantities are polynomial
in the horizon. Despite the exponential complexity in the
presence of switching, solving this linear program is tractable
for small horizons and number of switching modes.

A. Unmeasured disturbance and switch mode

Now we consider the setting where the disturbance and
switch mode are not measured. Given an affine feedback
controller that satisfies the design problem, we construct a
controller satisfying the design problem that only depends
upon state measurements. Such a controller will then satisfy
the design problem on the system without measurements.
This is done by applying the affine feedback controller to an
estimated history of disturbances and switch modes that is
consistent with the state history,

Proposition 3.3: Given (K,L, r) defines an affine con-
troller inducing a system response Φ that satisfies design
problem for 〈XI , XF , N〉, then there exists a controller
whose inputs only depend on state measurements inducing
a system response Φ̂ that satisfies the same problem.

Proof: At each time t ∈ [N ], the dynamics enforce that
there is a solution ŵ(t− 1) = w(t− 1), σ̂(t− 1) = σ(t− 1)
to the equation

x(t) = Aσ̂(t−1)x(t−1)+Bσ̂(t−1)u(t−1)+ŵ(t−1)+fσ̂(t−1) .
(27)

At time t, the controller knows x(t), x(t− 1), u(t− 1) and
can compute estimates ŵ(t−1) ∈W, σ̂(t−1) ∈ Σ satisfying
this equation by evaluating linear inequalities. Using the
estimates, consider the controller defined by

u(t) = Kt(σ̂(0), · · · , σ̂(t− 1))x(0)+
t−1∑
i=0

Lt,i(σ̂(0), · · · , σ̂(t− 1))ŵ(i)+

rt(σ̂(0), · · · , σ̂(t− 1)) .

(28)

This controller depends only on the observed state history.
Next we show that this controller satisfies the design require-
ments. Let Φ̂ denote the system response induced by this
controller. Consider any x(0) ∈ XI ,w ∈ WN ,σ ∈ ΣN . By
construction, it holds that Φ̂(x(0),w,σ) = Φ(x(0), ŵ, σ̂).
As we assume that equation (11) holds for Φ which states
∀σ ∈ ΣN Φ(XI ,W

N ,σ) ⊆ Z , in particular it holds that
Φ(x(0), ŵ, σ̂) ∈ Z . Thus Φ̂ is a solution to the problem for
〈XI , XF , N〉.
So the linear program constructed in Proposition 3.2 can be
used to solve the design problem with only state feedback.
We can now characterize recurrent sets using this general
controller design problem.

IV. RECURRENT SET ANALYSIS

While it is difficult to directly check if the set Ω is N -
step recurrent with the set inclusion Ω ⊆ PreN (Ω), we can
effectively check the stronger condition that there exists an
affine feedback controller driving Ω into itself. This is exactly
the design problem of Section III for 〈Ω,Ω, N〉 which can be
solved with a linear program. This result can be viewed as



an extension of Theorem 2 in [9] to switched affine systems
with additive disturbances. While we can test if a given set
is recurrent with this result, we must now address the harder
problem of constructing recurrent sets in order to compute
invariant sets.

The construction of N -step recurrent sets is conceptually
simpler than the construction of invariant sets, or 1-step re-
current sets. Even for simple systems, the maximal invariant
set may be quite complex. As such, methods approximating
the maximal invariant set often suffer from complex set
representations. However for large N , N -step recurrent sets
can be found with significantly simpler representations. For
example, consider an autonomous system with an asymptot-
ically stable equilibrium point. The region of attraction of
this point is necessarily invariant, but may have arbitrarily
complex geometry. Yet any sufficiently small neighborhood
of the equilibrium point is a recurrent set. With this in mind,
a naive but effective method for constructing recurrent sets
is to select Ω with simple geometry, such as a hyperbox,
about a desired operating point. We can efficiently iterate
over a collection of simple candidates with the recurrent
linear program to identify a recurrent set.

A. Heuristic generation of recurrent sets

In some cases, we can use known properties of the system
to aid in the construction of recurrent sets. For example, in
Section VI-B we can explicitly construct a recurrent set for a
discrete-state system. We then use this set as a starting point
to find a recurrent set for a linear relaxation of the system
dynamics.

We can also use knowledge of the system to derive suitable
parameterizations for candidate recurrent sets. For example
in Section VI-A, we identify a number of linear constraints
relevant to recurrence by analyzing the system dynamics. In
such cases we can apply a heuristic algorithm inspired by the
inside-out algorithm from [17] that tries to find a recurrent set
with a given parameterization. While the original algorithm
attempts to grow a fixed set into a invariant set containing
it, our version grows a fixed set into the “smallest” recurrent
set containing it.

Let Q ∈ Rnq×n be a set of halfspace normals such that
for all q ∈ Rnq with q ≥ 0 the polytope

Ω(q) = {x | Qx ≤ q} (29)

contains the point x = 0. We initialize the algorithm
with a small set, for example q(0) = 0 corresponding to
Ω(q(0)) = {0}. In each iteration, we find a set Ω(q(i+ 1))
that we can guarantee is reachable in N steps from Ω(q(i))
with q(i + 1) ≥ q(i). To do this, we consider the design
problem for 〈Ω(q(i)),Ω(q(i + 1)), N〉 and the associated
linear program. Because q(i+ 1) enters into the constraints
linearly, we can use q(i + 1) as a decision variable in this
linear program. As there is not a unique minimal choice of
q(i + 1), we define costs c ∈ Rnq with c ≥ 0 associated
with each constraint, and solve the linear program with the
objective to minimize cT q(i+1). We terminate the algorithm

when q(i + 1) = q(i) as this implies that Ω(q(i)) is N -
step recurrent, or when no feasible q(i + 1) is found. This
method is shown in Algorithm 1. This heuristic algorithm is
applicable to systems with natural parameterizations as seen
in Section VI-A..

Algorithm 1 Inside-Out algorithm for computation of recur-
rent sets with a given parameterization
Input: Number of steps N , Normals Q, Costs c ≥ 0
Output: A recurrent parameterization qf

1: q ← 0
2: while true do
3: qf ← arg minq̃≥q c

T q̃ s.t. Ω(q) can reach Ω(q̃)
4: if Infeasible then
5: return ∅
6: end if
7: if qf == q then
8: return qf

9: end if
10: end while

V. BACKWARDS REACHABLE SET ANALYSIS

We can now construct invariant sets based upon the
recurrent sets generated with the above methods. Recall if
Ω is N -step recurrent, then the τ -step backwards reachable
set Ωτ defined by equation (5) is invariant for any τ ≥ N .
Again direct computation of the Pre operator to construct
Ωτ may be intractable in higher dimension. However, by
restricting to affine feedback control, we can construct an
implicit representation of an invariant set that approximates
Ωτ . Consider a set of states Ω ⊆ Rn and a horizon length
N . Note that x∗ ∈ PreN (Ω) if and only if there is a solution
to the design problem 〈{x∗},Ω, N〉. We then consider the
set of points that can reach Ω with an affine controller

PN = {x∗ | ∃(K,L, r) ∀σ ∈ ΣN Φ({x},WN ,σ) ⊆ Z}
(30)

We can efficiently represent PN using the following result.
Proposition 5.1: PN is a polytope.

Proof: Given any (K,L, r) defining a solution to the
design problem for 〈{x∗},Ω, N〉, we can define another
controller that is a solution by (0,L′, r′) where L′ = L and
r′ = Kx∗ + r. So it suffices to consider affine controllers
with K = 0. For such a (0,L, r), we can write the system
response as in equation (19) as[

x
u

]
= Φ(x∗,w,σ) = Φx(σ)x(0) + Φw(σ)w + φ(σ) .

(31)
Given the polytopes WN ,Z in halfspace form as

WN = {z | Hz ≤ h}, Z = {q | Sq ≤ s}, (32)

we define

A(σ) = {w | Φ({x∗},w,σ) ∈ Z} (33)
= {w | SΦw(σ)w ≤ s− S(φ(σ) + Φx(σ)x∗)}.

(34)



So x∗ ∈ PN if and only if there exists a solution (0,L, r) to
the design problem or equivalently ∀σ ∈ ΣN WN ⊆ A(σ).
So as in Proposition 3.2, we can use Lemma 1.1 to express
PN with linear constraints by

PN = {x∗ |∃(0,L, r) ∀σ ∈ ΣN ∃T (σ) ≥ 0, (35)
T (σ)H = SΦw(σ), (36)
SΦx(σ)x∗ + T (σ)h ≤ s− Sφ(σ)} . (37)

Because Φx(σ) is constant and Φw(σ), φ(σ) enter linearly
into L(σ), r(σ) for a fixed σ, we see PN is the projection
of a polytope. Hence PN is a polytope itself.

Using the PN we can construct an invariant set as a
backwards reachable set restricted to affine control. Suppose
that Ω is N -step recurrent with an affine controller, i.e., the
linear program associated with the design problem 〈Ω,Ω, N〉
is feasible. Using the same reasoning for why Ωτ is invariant,
we observe that

⋃τ
i=1 Pi is invariant for τ ≥ N . Although

this set is a union of polytopes and may not be convex, we
can again apply the result that the convex hull of an invariant
set is invariant for these systems. So we define the set

Ω̃τ = conv
τ⋃
i=1

Pi , (38)

which is invariant for τ ≥ N . We can now implicitly describe
this set with linear constraints.

Proposition 5.2: Given representations of Pi as projec-
tions of polytopes as in Proposition 5.1

∀i Pi = {x ∈ Rn | ∃y ∈ Rni , Qix+Riy ≤ pi} , (39)

where y is a vector encoding L, r, T then

Ω̃τ = {x ∈ Rn |∃λ ≥ 0,

τ∑
i=1

λi = 1

∀i ∈ [τ ] ∃x̃i ∈ Rn ỹi ∈ Rni ,
τ∑
i=1

x̃i = x,

∀i ∈ [τ ] Qix̃i +Riỹi ≤ piλi} .

(40)

Proof: It is known that

conv
τ⋃
i=1

Pi =
⋃
λ≥0∑τ
i=1 λi=1

τ⊕
i=1

λiPi . (41)

Next using the substitutions x̃i = λixi and ỹi = λiyi,
observe that

λiPi = {λixi | ∃yi, Qxi +Ryi ≤ pi} (42)
= {x̃i | ∃ỹi, Qx̃i +Rỹi ≤ λipi} (43)

Using this form of λiPi in the right side of equation (41)
yields the form in equation (40).

So we can represent the invariant set Ω̃τ as the projection
of a polytope. Hence we can test if a given point is an
element of Ω̃τ by solving a linear program. In the absence
of switching, the size of the program is polynomial. Also
using the arguments from section III-A, we see Ω̃τ is

invariant for systems with only state measurements. This
result can be viewed as a generalization of Theorem 3 in
[9] to switched affine systems with additive disturbances.
This type of implicit representation is useful for certain
applications where it is only necessary to test if a point
is in the invariant set, such as in supervisory control. We
can recover an explicit representation of Ω̃τ as a polytope
in halfspace form by projection, but this may be intractable
due to the large number of constraints defining Ω̃τ . Less
conservative invariant sets can be achieved by selecting a
larger horizon τ .

VI. CASE STUDIES

In this section we demonstrate our approach to compute
invariant sets for two system models. The YALMIP interface
[18] and the Gurobi solver [19] were used to solve the
linear programs. The MPT3 library was used for polytopic
computations [20]. All computations were performed on an
Intel i7-8550 CPU laptop with 16GB of RAM. The code is
available at https://github.com/arw12625/padf.

A. UAV consensus

In this example, we consider the dynamics of a group
of d unmanned aerial vehicles (UAV) that employ an alti-
tude consensus protocol. The UAVs attempt reach the same
altitude by using the consensus protocol from [21] In this
protocol, each UAV uses linear feedback on the difference
between its and its neighbors’ altitudes and velocities. These
neighborhoods are determined by the UAVs’ communication
topology. We consider two cases where the topology is fixed
and where the topology is subject to unknown dynamics,
switching between the two topologies in Figure 2. Each of
the UAVs are modeled by double integrator dynamics. For
each UAV i ∈ [d], we denote its altitude as hi and its vertical
velocity as vi. Each UAV controls its velocity with an input
ûi that is subject to a disturbance wi so that its open-loop
dynamics are described by[

hi(t+ 1)
vi(t+ 1)

]
=

[
1 1
0 1

] [
hi(t)
vi(t)

]
+

[
0
1

]
ûi(t) + wi(t) (44)

The communication topology of the system at time t is
described by a graph with adjacency matrix Aadj(t). The
consensus protocol for each UAV is described by

ûi(t) = u(t) +

d∑
j=1

Aadj(t)ijKf

1 + di(t))

([
hj(t)
vj(t)

]
−
[
hi(t)
vi(t)

])
,

(45)
where Kf =

[
1 1

]
is a fixed gain, di(t) denotes the degree

of node i in Aadj(t), and u(t) is a group reference velocity
input. Modeling the dynamic communication topology as
exogenous switching and this linear feedback protocol, the
closed-loop system is a switched linear system with the sin-
gle reference input u to be controlled. The absolute altitudes
and velocities of each UAV are constrained to lie within a
certain range hi(t) ∈ [−Mh,Mh] and vi(t) ∈ [−Mv,Mv].

First we consider the problem of computing an invariant
set for the system with fixed grid topologies with N =

https://github.com/arw12625/padf


UAV Grid topology 1x1 2x2 3x3 3x4 2x7
Dimension (n) 2 8 18 24 28

Inside-Out Time 0.86 10.0 548 3415 10446
Membership test Time 1.4 6.0 51 342 671

TABLE I
COMPUTATION TIMES IN SECONDS FOR THE INSIDE-OUT ALGORITHM

WITH N = 10 APPLIED TO THE UAV SYSTEM WITH A FIXED GRID

COMMUNICATION TOPOLOGY.

τ = 10. Recurrent sets were constructed using the inside-out
algorithm with a parameterization Q constraining the abso-
lute and relative altitudes and velocities of the UAVs. Then
implicit descriptions of invariant sets were constructed. The
applicability of these implicit descriptions are demonstrated
by recording the time taken to test if randomly generated
points for membership in the invariant set. These times are
reported in Table I.

It is difficult to evaluate the conservativity of the invariant
sets computed with this method as they are implicitly de-
scribed in high dimensions. We can approximately evaluate
these sets by sampling if points of the maximal invariant
set are contained in the computed set. In the system with
the 2x2 grid topology, it is possible to compute the maximal
invariant set using set iteration methods. The test points were
sampled from the vertices of the maximal invariant with a
moderate tolerance. All points sampled were found to be
contained in the invariant set Ω̃τ with τ = 20 where Ω was
constructed with the inside-out method with N = 10. So
for long horizons, this method can approximate the maximal
invariant set well.

Next we consider a system with 6 UAVs corresponding to
a 12-dimensional system, switching between the two topolo-
gies depicted in Figure 2. We select horizons N = τ = 8
and apply the inside-out algorithm with the parameterization
from before to determine an N -step recurrent set. This
procedure was performed in 560 seconds. The heights of the
UAVs over several runs of the system under the recurrent
controller are plotted in Figure 1. Using this set, an implicit
description of an invariant set was constructed. Testing if
a point in the invariant set was a member with the linear
program was computed in an average of 1.93 seconds.

B. Large-scale TCL control

In this example, we consider large-scale coordination of
thermostatically controlled loads (TCL). This includes ap-
pliances like air conditioners and water heaters that regulate
temperatures within a desired range. Coordinating TCLs to
provide a desired demand response while limiting power
drawn from the distribution network is difficult due to the
high dimension of the system.

Counting abstractions as in [22] have been used to reduce
the dimension of this problem. These abstractions approx-
imate the original system with a discrete transition graph
where nodes represent a certain TCL mode and temperature

Fig. 1. The heights of the UAVs over several runs with the recurrent
controller found for the system with topologies in Figure 2.

1 2 3

4 5 6

1 2 3

4 5 6

Fig. 2. The dynamic topologies used in the model of UAV consensus.

range. A new system is constructed whose states are the
counts of TCLs present in each node and control inputs
represent the number of TCLs that should switch modes.
This system’s dynamics are linear, and furthermore counting
constraints, like limiting the number of loads that are active,
can be expressed as polytopes. However as states and inputs
correspond to counts, this system has integral constraints.
Discrete cycles in the transition graph of the abstracted
system can be composed to construct closed trajectories
of the linear system. Using this observation, [22] construct
controllers to guarantee safety. However, these controllers
are inherently open-loop and cannot account for uncertainty
or disturbances in the TCL system.

Invariant sets for TCL systems could be used to develop
supervisors for tracking controllers with feedback to ad-
dress this. However, while counting abstractions shift the
complexity of the control problem from the number of
TCLs, which can be thousands, to the size of abstraction
graph, the resulting invariant set computation problem can be
prohibitively large. Here we show that our method provides
a preliminary solution to compute safe controllers for the
linear TCL system. Although the computed set is implicit,
requiring a solving a linear program to test membership, it
is still useful in the construction of tracking controllers.

To address the integral constraints of the linear system,
we consider a continuous relaxation. We can then apply the
methods presented in this paper to construct invariant sets
using recurrent sets for the relaxed system. By introducing a
disturbance to model rounding of the control input to the
nearest integral point, the integral points of an invariant
set for the relaxed system will form an invariant set for
the system with integral constraints. In order to construct



recurrent sets for the relaxed system, we observe that the
cycles considered in [22] form recurrent sets for the linear
system without disturbances. To account for disturbances, we
used enlarged versions of these sets as candidate recurrent
sets.

We consider a counting abstraction system similar to the
application example of [22] where the abstraction graph has
24 nodes. After pruning unused states, the resulting linear
system has n = 19 states and m = 16 inputs. We consider
polytopic constraints that bound the number of loads that are
on, bound the number of loads switching from a given node
by the number of loads in that mode, and ensure all states
and inputs are nonnegative. The disturbance set modelling
rounding is given by W = [−0.5, 0.5]m. From the abstracted
system, we can compute a set C of points forming a closed
trajectories of the linear system as in [22]. We construct a
candidate recurrent set as Ω = conv(C) ⊕ αW for some
α ≥ 1. For the choice of N = τ = 8 and α = 2, the linear
program to verify Ω is N -step recurrent was solved in 47.0
seconds. Next the implicit representation for the backwards
reachable set Ω̃τ was computed. The linear program to test
if a point is an element of the invariant set Ω̃τ was solved
in an average of 55.3 seconds.

Remark 6.1: It is important to note that for both the
high-dimensional UAV examples and the TCL example, the
common backwards reachable set iteration to compute the
maximal invariant set is intractable, requiring projections of
polytopes in high dimensions. Additionally, a more recent
method like [23] is not applicable as the systems are not
controllable (even when restricted to non-switched version).
Also due to the presence of disturbances and/or switching,
the methods from [10], [9] cannot be used.

VII. CONCLUSION
We presented a linear programming based method to

compute N-Step backward reachable sets via affine feedback
for switched affine systems subject to polytopic constraints
and disturbances. Given a recurrent sets, we showed how
to construct implicit representations of invariant sets as a
backwards reachable set. We also provided several construc-
tions for recurrent sets. While the invariant sets are implicit,
membership in the set can be efficiently tested with a linear
program. The scalability of this approach is demonstrated
with applications to physical system models. Future work
includes improved methods for constructing recurrent sets
as this remains a difficult and important problem for broader
applicability of the approach. On the application side, we
plan to interface the computed invariant sets with tracking
controllers to build safety supervisors for hierarchical TCL
control.

REFERENCES

[1] F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11,
pp. 1747–1767, 1999.

[2] E. Kerrigan and J. Maciejowski, “Invariant sets for constrained non-
linear discrete-time systems with application to feasibility in model
predictive control,” in Proceedings of the 39th IEEE Conference on
Decision and Control (Cat. No.00CH37187), vol. 5. Sydney, NSW,
Australia: IEEE, 2000, pp. 4951–4956.

[3] M. Rungger and P. Tabuada, “Computing Robust Controlled Invariant
Sets of Linear Systems,” IEEE Transactions on Automatic Control,
vol. 62, no. 7, pp. 3665–3670, Jul. 2017.

[4] E. D. Santis, M. D. D. Benedetto, and L. Berardi, “Computation
of maximal safe sets for switching systems,” IEEE Transactions on
Automatic Control, vol. 49, no. 2, pp. 184–195, Feb. 2004.

[5] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear
and hybrid systems. Cambridge University Press, 2017.

[6] B. Legat, P. Tabuada, and R. M. Jungers, “Computing controlled
invariant sets for hybrid systems with applications to model-predictive
control,” arXiv:1802.04522 [math], Feb. 2018.

[7] D. Bertsekas, “Infinite time reachability of state-space regions by using
feedback control,” IEEE Transactions on Automatic Control, vol. 17,
no. 5, pp. 604–613, 1972.

[8] F. Tahir and I. M. Jaimoukha, “Low-complexity polytopic invariant
sets for linear systems subject to norm-bounded uncertainty,” IEEE
Transactions on Automatic Control, vol. 60, no. 5, pp. 1416–1421,
2014.

[9] M. Fiacchini and M. Alamir, “Computing control invariant sets in high
dimension is easy,” arXiv:1810.10372 [cs], Oct. 2018.

[10] ——, “Computing control invariant sets is easy,” arXiv:1708.04797
[cs], Aug. 2017.

[11] S. Sadraddini and R. Tedrake, “Linear Encodings for Polytope Con-
tainment Problems,” arXiv:1903.05214 [cs, math], Mar. 2019.

[12] S. Keerthi and E. Gilbert, “Computation of minimum-time feedback
control laws for discrete-time systems with state-control constraints,”
IEEE Transactions on Automatic Control, vol. 32, no. 5, pp. 432–435,
May 1987.

[13] F. Blanchini, “Minimum-time control for uncertain discrete-time linear
systems,” in [1992] Proceedings of the 31st IEEE Conference on
Decision and Control, Dec. 1992, pp. 2629–2634 vol.3.

[14] H. R. Tiwary, “On the Hardness of Computing Intersection, Union
and Minkowski Sum of Polytopes,” Discrete & Computational Geom-
etry, vol. 40, no. 3, pp. 469–479, Oct. 2008.

[15] P. J. Goulart, E. C. Kerrigan, and J. M. Maciejowski, Optimization over
State Feedback Policies for Robust Control with Constraints, 2005.

[16] J. Anderson, J. C. Doyle, S. Low, and N. Matni, “System Level
Synthesis,” arXiv:1904.01634 [cs, math], Apr. 2019.

[17] Y. Chen, H. Peng, J. Grizzle, and N. Ozay, “Data-Driven Computation
of Minimal Robust Control Invariant Set,” in 2018 IEEE Conference
on Decision and Control (CDC). Miami Beach, FL: IEEE, Dec. 2018,
pp. 4052–4058.
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