
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2024 1

Integrating Obfuscation and Control for Privacy
Andrew Wintenberg Graduate Student Member, IEEE , Necmiye Ozay Senior Member, IEEE ,

Stéphane Lafortune Life Fellow, IEEE

Abstract— Networked systems must often balance pri-
vacy in avoiding leaking sensitive information, with utility
in communicating the information that is needed by com-
ponents to operate correctly. We consider the problem of
enforcing privacy and utility with both obfuscation (altering
communications to mislead eavesdroppers) and control
(restricting system behavior to avoid information leakage).
We present a formulation of this problem which models
components of the networked system as interconnected re-
active processes. Tools from distributed reactive synthesis
are then used to automatically design obfuscators and con-
trollers which coordinate to enforce requirements. In par-
ticular we develop formal specifications capturing privacy
using the information flow property of opacity and utility
ensuring availability of information or imposing constraints
on the closed-loop system. This synthesis approach is
applicable to a large class of network architectures which
we demonstrate on three representative problems over a
building access control system.

Index Terms— Opacity, Discrete Event Systems, Reactive
Synthesis, Distributed Systems, Privacy and Security

I. INTRODUCTION

As barriers to communication are removed by new technolo-
gies, more systems are realizing both the benefits and draw-
backs of connectivity. This is especially apparent in cyber-
physical systems (CPS) which integrate physical processes
with dynamics over a computing infrastructure such as a
computer network. Many CPS such as location-based services
or smart devices on the Internet of Things handle sensitive data
that is subject to strict security requirements. Unfortunately,
many of these systems are vulnerable to eavesdropping by
malicious actors, potentially making them targets for cyber-
attacks.

In order to characterize how information flows and leaks
out of dynamic systems, many formal security properties have
been proposed in computer security, including observational
determinism [1] and non-interference [2] for example. In this
paper, we consider the privacy property of opacity, which
characterizes the inability of a passive eavesdropper to infer
“secrets” about a system’s behaviors [3]. Opacity has been
used extensively to express privacy requirements in computer
security and it has been applied in control engineering in the
areas of CPS [4] and discrete event systems (DES) [5].

This work was supported in part by NSF CPS Award # 1837680, NSF
award ECCS-2144416, and a sponsored research award from Cisco
Research.

A. Wintenberg, N. Ozay, S. Lafortune are with The University of
Michigan, Ann Arbor, MI 48109 USA (e-mail: [awintenb, stephane,
necmiye]@umich.edu).

When a system does not preserve a desired privacy prop-
erty, it is necessary to resort of an enforcement mechanism.
While many mechanisms for privacy enforcement have been
proposed, they generally take one of two approaches. The first
is to alter the behavior of the system by feedback control. For
example, supervisory control in DES restricts the behaviors
that result in information leakage [6]–[8]. The second mech-
anism is to alter the observations of the system, i.e., what is
communicated on the network. This often takes the form of
encryption, i.e., encoding information in unintelligible streams
of outputs. Alternatively, obfuscation encodes information in
outputs which mimic the original system but aims to enforce
privacy from the viewpoint of an eavesdropper. In DES, this
takes the form of edit functions that selectively insert and
delete events output by the system [9]–[11]. Obfuscation may
be advantageous or even required in a variety of settings. The
implementation of some systems may impose constraints on
communication, requiring outputs to preserve their original
format. For example, changing the size and type of data
reported by the system’s sensors may result in unexpected
errors in the system’s software. Obfuscation also enables in-
formation hiding, communicating private information without
eavesdroppers even being aware of privacy enforcement. In
this case, as long as the enforcement mechanism remains
unknown, attackers will not resort to more destructive methods
to obtain information from the system. Altering the system’s
observations may also be required when it is impractical to
restrict some aspects of a system’s behavior with control, such
as human actions in a physical system.

In altering either the system’s behavior or observations,
privacy enforcement mechanisms must also maintain the sys-
tem’s utility, e.g., a controller must maintain safe behavior
or observations must enable accurate monitoring. Utility con-
straints on obfuscators in prior work such as [10] require
that observers can infer some specified information about the
system’s state; however, it is assumed that all observers, both
intended and unintended, have the same capabilities and access
to information. This may not be the case when controllers
and observers are distributed across a network, or when
intended recipients need access to sensitive information while
unintended ones do not. Our previous work [12] considers
the enforcement of privacy and utility in such a distributed
setting, but it is limited to obfuscation within a simple linear
network topology (pipeline) like the one depicted in Fig. 1.
As we shall see, the addition of control in this paper imposes
a new challenge for privacy, as an eavesdropper may observe
all information transmitted across the network including both
sensor outputs and control commands.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2024 2

Plant
Plant

Obfuscator
Obf

Network
Net

Local

Recipient
Inf

Remote

Fig. 1. The architecture for obfuscation and inference without control
considered in [12].

In this paper, we address the problem of privacy and utility
enforcement with both obfuscation and control in distributed
discrete event systems in the context of three general system
architectures. We model the dynamic system of interest using
finite automata and show how to map privacy and utility
enforcement as a as a distributed reactive synthesis problem,
a problem studied in formal methods and reactive synthesis in
computer science [13]. While distributed reactive synthesis is
undecidable for general network architectures, we demonstrate
our approach on three representative architectures which we
show to be decidable. Specifically, we demonstrate how pri-
vacy and utility requirements can be expressed with ω-regular
specifications over the traces of the automaton model of the
system. We express privacy as an extended notion of language-
based opacity [14], which has been used to express many other
existing notions of opacity in DES [15]–[17]. By explicitly
modeling the eavesdropper’s beliefs about the system’s imple-
mentation, our framework can precisely express many practical
privacy requirements. Obfuscation is used to enforce privacy
and the obfuscator is realized as a finite transducer (or input-
output automaton). In parallel, a “decoder,” possibly together
with a controller, are also synthesized as finite (input-output)
automata. The role of the decoder is to provide the additional
inference mechanism required by an intended recipient (e.g.,
a controller) for “de-obfuscation” purposes to address the
utility requirement. Thus the obfuscator, the decoder, and
the controller (if one needs to be synthesized) constitute a
distributed solution, as a set of finite automata that work in
tandem for enforcement of privacy and utility.

To summarize, the main contribution of this paper is the
formulation of privacy and utility enforcement with obfusca-
tion and control as a distributed reactive synthesis problem
and the computation of the solution. This solution takes the
form of a set of finite (input-output) automata, which makes
it readily implementable. This methodology is demonstrated
over three practical network architectures that capture either
an existing or to-be-synthesized local or remote controller. To
set the stage for the description of the three architectures,
consider the following motivating example which will be used
as a running example throughout the paper.

Example 1 Consider the building depicted in Fig. 2 whose
doors are equipped with keypad sensors and controllable locks.
At each door, the keypad reports entry attempts to an autho-
rization server which responds with a signal to open the door
or not. These signals may contain sensitive information which
raises privacy concerns if the server is remote. For example,
an eavesdropper may use their knowledge of the building’s
layout to deduce room occupancy from their observation of
entry attempts at the keypads. While this risk can be mitigated
by keeping all information at the local site, it may be infeasible

Fig. 2. The layout of a building with two electronically-controlled locked
doors. At each door a keypad, shared by both of its sides, controls the
lock via a potentially remote authorization server.

to alter the system’s existing network architecture.
In this case, obfuscation can be employed to alter both the

keypad outputs sent to the server and control outputs sent back
to the building. At the same time, the system must maintain its
utility. This may concern a remote user’s access to information,
for example to diagnose a faulty door. Additionally, utility may
require that rooms are accessible by authorized users, i.e., after
using the keypad, the door is eventually signaled to open. Our
problem is then to design both obfuscators and controllers
for a given network architecture to enforce privacy and utility
reactively as an individual moves about the building. �

The paper is organized as follows. In subsection I-A below,
we discuss relevant related works. In Section II, we review
concepts from formal languages and discuss our methodology
using results from distributed reactive synthesis. Next, we
develop our modeling and synthesis approach for privacy and
utility enforcement in Section III, over a networked system
architecture employing both obfuscation and a local controller
(to be synthesized). In Section IV, we consider the second
architecture where the controller is no longer local but remote
and alongside obfuscation for privacy, the remote controller
needs to be synthesized for utility. In the third architecture
studied in Section V, the remote controller is now given
and it must be secured by a combination of obfuscation
and decoding, in order to achieve simultaneously privacy
and utility. The solution methodology for synthesizing the
automata solutions for the obfuscator, decoder, and controller
in all three architectures is explained in Section VI and applied
to the building access control example.

A. Related Works

There is a growing literature on privacy enforcement for
CPS and DES. In DES, edit functions are used to selectively
insert or delete events output by the system [9]–[11] in a
manner that mimics the original system behavior. In contrast,
the notion of event-based cryptography [18] mimics the sys-
tem’s events, but not its dynamics. Alternatively, methods like
dynamic masks [19], [20] disable a system’s sensors to prevent
access to sensitive information by anyone.

As was mentioned earlier, our previous work [12] considers
the enforcement of privacy and utility in a pipeline architecture

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2024 3

Control & Obf CONT OBS PRIV PUB ASYM COM
Supervisors [7] X X X X
Private Obf [25] X X X
Public Obf [26] X X X X
Asym. Obf [12] X X X X
Attribute Obf [21] X X X X
Co-synthesis [22] X1 X X X
PPRS [24] X X X X
Proposed herein X X X X X

Other CONT OBS PRIV PUB ASYM COM
Diff. Priv. [27] X X X X
Encryption [28] X X X X
EBC [18] X X2 X X X

1 Only architecture with control and obfuscation in one feedback loop;
2 Blocks of outputs are consistent with dynamics, not the entire output string

TABLE I.
TOP PART: A comparison of privacy enforcement works based on obfus-
cation for CPS and DES.
BOTTOM PART: Other mechanisms for privacy enforcement.
The column labels are as follows: modification of behavior with control
CONT, modification of observations OBS, privacy when mechanism
is private knowledge PRIV, privacy when mechanism is public knowl-
edge PUB, asymmetric information between recipients ASYM, algorithm
is complete COM. Row labels: privacy-preserving reactive synthesis
PPRS, event-based cryptography EBC.

without (local/remote) controllers. A similar problem as in [12]
with the same topology but with alternative assumptions is also
considered in [21].

We summarize and compare in the top part of Table I a set
of relevant works on privacy (typically, opacity) enforcement
using obfuscation techniques that are related to our paper.
It is worth noting that the problem of opacity enforcement
considered in [22] utilizes control, obfuscation, and dynamic
masks in a fixed network topology. As such, it is closely
related to this paper; yet, our contribution differs in a few
key aspects. Importantly, our approach is applicable to general
network architectures, and furthermore, it is complete for the
three problems we focus on. In contrast, the synthesis method
of [22] is incomplete, potentially not finding a solution when
one exists. Secondly, [22] considers control with supervisors
which can realize nondeterministic behavior, whereas our
controllers are deterministic as implementations of reactive
processes. The complex relation between these two control
approaches are thoroughly discussed in [23]. Thirdly, [22]
employs dynamic masks and obfuscation with general edit
functions, while for simplicity we limit our discussion to
replacement functions. We also note that the recent work in
[24] aims to synthesize an implementation (aka, a controller)
that enforces a given (LTL) specification while simultaneously
enforcing a second privacy specification; namely, it addresses
the problem of privacy-preserving reactive synthesis. However,
unlike our set-up, there is no plant model and feedback loop.

The bottom part of Table I lists a few alternative methods for
privacy enforcement, for the sake of comparison. A thorough
discussion of these methods is beyond the scope of this paper.

II. METHODOLOGY

In this section, we review the topics of formal languages and
reactive systems, and then present results on distributed reac-
tive synthesis. A thorough introduction to formal languages

can be found in [29] and to discrete event systems in [30].
Results on distributed reactive synthesis are summarized in
[13], which are presented here with a similar notation for
convenience.

A. Formal Languages
Given a finite alphabet Σ, the set of finite sequences and

infinite sequences are denoted by Σ∗ and Σω , respectively. By
convention, the set Σ∗ contains the empty sequence ε. The
set of nonempty finite sequences of Σ is denoted by Σ+. A
language is a subset L ⊆ Σ∗ while an ω-language is a subset
M ⊆ Σω , whose elements are called strings. Given a string
t ∈ Σ∗ with length n, we write t = t0, · · · , tn−1 where ti ∈ Σ.
The set of finite prefixes of a string t or infinite string t is
denoted by t, t ⊆ Σ∗. Likewise, the set of finite prefixes of
all strings in a language L or ω-language M is denoted by
L,M ⊆ Σ∗.

A finite automaton is a tuple G = (Q,Σ, δ, Q0, Qm) with
a finite set of states Q, a finite alphabet Σ, a transition
relation δ ⊆ Q × Σ × Q, initial states Q0 ⊆ Q, and marked
or accepting states Qm ⊆ Q. A subautomaton of G is an
automaton whose states and transitions are a subset of those
in G. The size of an automaton G refers to its number of
states |Q|. A run of G over a string t = t0t1 · · · tn−1 ∈ Σ∗

is a sequence of states q0, q1, · · · , qn ∈ Q such that q0 ∈ Q0

and for all j ∈ {0, · · · , n − 1}, (qj , tj , qj+1) ∈ δ. The run
is said to be accepting if it ends in an accepting state, i.e.,
qm ∈ Qm. The language generated by G is the set L(G) ⊆ Σ∗

containing the strings for which there exists a corresponding
run over G. Similarly, the language accepted by G is the set
Lm(G) ⊆ L(G) containing strings with an accepting run. We
say a language L ⊆ Σ∗ is regular if it is accepted by some
finite automaton. We say that G is deterministic if its strings
each correspond to a unique run, i.e., if both |Q0| ≤ 1 and for
all q ∈ Q and t ∈ Σ, there is at most one q′ ∈ Q such that
(q, t, q′) ∈ δ.

Similar definitions are made for automata over infinite
strings with a Büchi acceptance condition. A Büchi automaton
is a standard automaton H = (Q,Σ, δ, Q0, Qm) with the
interpretation that an infinite run is accepting if it visits
an accepting state an infinite number of times. Using this,
the ω-language accepted by H is the set Lω(H) ⊆ Σω

of infinite strings with an accepting run over H . We say
an ω-language M ⊆ Σω is ω-regular if it is accepted by
some Büchi automaton. Linear temporal logic (LTL) provides
a succinct representation of ω-regular languages using the
temporal operators always �, eventually ♦, and next ©. A
formal presentation of its syntax and semantics can be found
in [29]. In a slight abuse of notation we will use the symbol ϕ
to denote a specification given by an ω-regular language or an
LTL formula encoding it. When the context is clear, we omit
the word infinite when referring to infinite strings and refer to
ω-languages simply as languages.

B. Distributed Systems
We consider distributed systems composed of intercon-

nected reactive processes. These processes generate outputs

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2024 4

dynamically according to the inputs they have previously
received. We model these inputs and outputs by assignments
to a subset of Boolean variables V , e.g., for variables V ′ ⊆ V
the set of possible inputs is 2V

′
. A behavior of a process

with variables Vp ⊆ V evolving over time is described
by an infinite sequence or trace t ∈

(
2Vp
)ω

. It is often
convenient to discuss the restriction of a trace t = t0t1 · · ·
to such a subset of variables V ′ ⊆ Vp which we define as
t|V ′ = (t0 ∩V ′)(t1 ∩V ′) · · · ∈

(
2V

′
)ω

. We can make similar
definitions for the restriction of finite traces and sets of traces.
Similarly, it is convenient to discuss the lifting of a set of
strings M ⊆

(
2Vp
)ω

to a larger set of variables V ′ ⊇ Vp

which we define by M |V ′
= {t ∈

(
2V

′
)ω
| t|Vp

∈ L}.
We can make a similar definition for a set of finite traces.
A deterministic implementation of a process is a strategy
ρ :
(
2I
)+ → 2O mapping a history of inputs i0 · · · in to a

single output ρ(i0 · · · in). The set of traces associated with
a strategy is defined by

Tr(ρ) = {t ∈
(
2I∪O

)ω | ∀n ∈ N. ρ(t0 · · · tn|I) = tn|O} .
(1)

Strategies can be represented with automata that accept
their set of traces. Such automata representing an input-output
relation are often called transducers. We say a strategy is finite
when there exists such an automaton that is finite.

We now present a framework for distributed reactive sys-
tems adapted from [13]. There, the system must react to
an unconstrained environment, producing arbitrary sequences
of outputs. As the environment is unconstrained, relations
between the environment and the system must be encoded
as a kind of assume-guarantee specification. As our focus is
feedback control of the environment, we present a framework
with constrained environments and make this encoding of
constraints as specifications explicit. For example, the envi-
ronment may represent plant under feedback control whose
dynamics must be encoded with such a specification.

The arrangement of processes and the interconnection of
their inputs and outputs in a distributed system is called an
architecture. The environment is a special process, with the
rest classified as either white-box with a fixed, known imple-
mentation or black-box otherwise. Formally, an architecture
over a set of variables V is a tuple A = (P,W, env, E,O,H)
with processes P , white-box processes W ⊆ P , environment
process env ∈ P\W , and interconnections E ⊆ P×P forming
a directed graph with nodes P and edges E. These edges are
labeled by the set of observable outputs O = {Oe ⊆ V |
e ∈ E} communicated along the corresponding connection.
Likewise, the nodes are labeled by a set of hidden outputs
H = {Hp ⊆ V | p ∈ P} produced in the corresponding
process but not communicated to others. For each process,
we require that the observable outputs are disjoint from the
hidden outputs. In addition, the set of both observable and
hidden outputs should be mutually disjoint for all processes.
For convenience we denote the set of outputs, both observable
and hidden, for a process p ∈ P by Op =

⋃
p′∈P O(p,p′)∪Hp.

Similarly, we denote the set of inputs of a process p ∈ P by
Ip =

⋃
p′∈P O(p′,p). The set of all variables for process p is

defined by Vp = Ip ∪ Op ∪ Hp. When the context is clear,
we may describe the interconnections using only the inputs Ip
and outputs Op of the processes p ∈ P .

In a given architecture A, white-box processes have a
known implementation represented as a set of strategies SW =

{ρp :
(
2Ip
)+ → 2Op | p ∈ W}, whereas non-environment

black-box processes will have an unknown implementation
denoted by S = {ρp :

(
2Ip
)+ → 2Op | p ∈ P \ (W ∪ env)}.

We say an implementation is finite if all of its strategies
are finite. To model the non-determinism of the environment,
we describe its behavior in relation to the other processes
as a set of traces Menv ⊆

(
2Venv

)ω
. The implementations

and environment interact with each other according to the
architecture. The behavior of the overall or composed system
is described by the set of traces consistent with each process’s
traces:

Tr(A,S, SW ,Menv) =
⋂
p∈P
p 6=env

Tr(ρp)|V ∩Menv|V . (2)

Remark 1 In this work as in previous work on obfuscation
[12], we consider distributed systems without delay, i.e.,
output from one process is available to the next immediately.
This is encoded in our definition of traces of a strategy in
Equation (1). In general, feedback in systems without delay
can result in inconsistent implementations, i.e., a process’s
input may depend on its outputs in a way that cannot be
resolved statically. However, there is a simple transformation
from this problem to the one with delay as discussed in
[13], [31]. Solutions to the transformed problem represent
exactly the consistent solutions to the problem with delay, i.e.,
those whose behavior can be expressed as a single monolithic
implementation.

C. Synthesis for Distributed Systems

We consider the problem of implementing a distributed
system to satisfy a given formal specification. We model these
specifications by ω-regular languages ϕ ⊆

(
2V
)ω

over the
set of traces Tr(A,S, SW ,Menv). The problem is then to find
an implementation S of the black-box processes so that the
composed system traces satisfy the specification.

Problem 1 Given an architecture A = (P,W, env, E,O,H)
over variables V with a white-box implementation SW and
environment traces given by the ω-regular language Menv ⊆(
2Venv

)ω
, find an implementation S for A such that

Tr(A,S, SW ,Menv) ⊆ ϕ . (3)

In general, this problem is known to be undecidable [13],
[31]; however, there are architectures for which it is decidable.
For example, the problem is decidable for pipeline archi-
tectures which consist of a directed, linear arrangement of
processes [31]. More generally it was shown in [13] that
the problem is decidable exactly for the architectures without
so-called information forks. Essentially, an information fork
occurs when two processes possess incomparable information,
i.e., each process has knowledge about the current behavior

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2024 5

that the other does not. In the absence of such forks, the pro-
cesses may be ordered by the level of information they possess.
Processes with the same information level can simulate each
other. This leads to a distributed synthesis algorithm, which
allows to show decidability for this class of architectures [13],
as summarized in the following result. This result considers
environments that are unconstrained, i.e., Menv =

(
2Venv

)ω
,

and without input or feedback, i.e., Ienv = ∅.

Theorem 1 (Adapted from Theorem 4.12 [13]) Let A =
(P,W, env, E,O,H) be an architecture over V without in-
formation forks such that Menv =

(
2Venv

)ω
and Ienv = ∅. Let

SW be a finite white-box implementation and ϕ ⊆
(
2V
)ω

be
an ω-regular language. Then the distributed synthesis problem
for A, SW , Menv, ϕ is decidable.

Furthermore, if a solution implementation S exists, Section
4 of [13] presents a synthesis algorithm that is guaranteed
to find a finite solution. The complexity of the algorithm is
related to the number of information levels of the black-box
processes. If there are n information levels, the algorithm is
n-exponential in the size of the automata representing the
specification and implementation of the white-box properties.
For example, in a pipeline architecture with 2 black-box
processes and a specification represented with an automaton
of size m, the complexity would be O(22

m

). In what follows,
we show how several architectures relevant to privacy-aware
control can be transformed to this setting.

Remark 2 The synthesis algorithm of [13] considers more
general specifications given by µ-calculus formulas over the
computation tree of the composed system. While in this work
we only consider ω-regular specifications for simplicity, our
formulation as a distributed synthesis problem may also em-
ploy these more general specifications.

Remark 3 It is important to note that once the architecture
and specifications are formalized in the language of distributed
reactive synthesis, as is done in the remainder of the paper,
one can use any of the available distributed reactive synthesis
methods to obtain correct-by-construction automata that solve
the problem at hand [32]–[34]. This is essentially the flexibility
of this approach that allows us to solve obfuscation and
control problems in a unified way. The details of our specific
implementation will be given in Section VI and the Appendix.

III. INTEGRATING OBFUSCATION AND CONTROL

In this section, we present the first of three problems which
integrate obfuscation and control in a networked system to
enforce privacy and utility. We will discuss modeling with
distributed systems, then specifications for privacy and utility,
and finally, a method for synthesis. Our presentation follows
a logical progression from the ?local? element of the architec-
ture, where Architecture 1 is the same as in prior work [12]
but with the addition of local control, to the ?remote? element
of the architecture, as follows: (i) the inclusion of remote
control and obfuscation (Architecture 2 in Section IV); and (ii)
the securing of an existing remote controller with obfuscation
(Architecture 3 in Section V).

First, we build upon the system architecture discussed in
[12] and depicted in Fig. 1, in which a plant dynamically pro-
duces outputs which are obfuscated before being broadcast on
a network and acted upon by a recipient. Here, we additionally
consider that some behavior of the plant may be restricted
or controlled locally in order to better enforce privacy and
maintain utility for the plant and recipient. This controller uses
the observable outputs from the plant as feedback to generate
inputs to the plant. The components of this networked system
including the controller are modeled by processes in a dis-
tributed system whose architecture, referred to as Architecture
1, is depicted in Fig. 3. Note that the control action is assumed
to be communicated locally, i.e., not broadcast on the network.
As such, we are not concerned with the control action leaking
information as is considered in Sections IV and V.

A. System Model

The overall system is modeled as a distributed system
with architecture A = (P,W, env, E,O,H). The plant, ob-
fuscator, controller, network, and recipient are represented
by the processes P = {Plant,Obf ,Cont,Net, Inf}. The
interconnection of these processes E ⊆ P × P is depicted in
Fig. 3.

The plant drives the system, nondeterministically producing
outputs which must be conveyed to the recipient. As such,
it acts as the environment process, i.e., env = Plant. The
observable outputs of the plant are communicated to both the
obfuscator and controller, i.e., IObf = ICont ⊆ OPlant, while
its hidden outputs represent its internal state. The controller
process Cont provides feedback to the plant IPlant = OCont
in order to enforce privacy (e.g., restricting secret-revealing
behavior) and utility (e.g., restricting unsafe behavior). We
assume the dynamics relating the outputs from the plant to
inputs from the controller are described by the ω-regular
language MPlant over the plant variables VPlant.

The obfuscator process Obf modifies the outputs of the
plant before they are broadcast on the network to enforce
privacy. As the obfuscator seeks to mimic the plant, its outputs
are copies of the plant’s outputs. Formally, we define OObf =
{oObf | o ∈ IObf} where oObf denotes a distinct copy of the
plant output variable o which may take on different values.
We emphasize that an implementation of the obfuscator is a
strategy ρObf :

(
2IObf

)+ → 2OObf which in each step replaces a
single input from the plant with a single obfuscated output.
This corresponds to the notion of a deterministic edit function
using only replacement [10].

The network broadcasts the outputs it receives from the
obfuscator to all recipients on the network, both intended and
unintended. In order to capture the potential dynamics of the
network, such as a delay or bandwidth limitation, we model
the network as a white-box process Net. In Architecture 1
the network receives input from the obfuscator INet = OObf
and transmits copies ONet = {oNet | o ∈ INet}. We assume
the network has a fixed implementation as a deterministic
strategy ρNet :

(
2INet

)+ → 2ONet . As such, the network Net is
the only white-box process W = {Net} with SW = {ρNet}.
In the case that the network directly broadcasts its inputs

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2024 6

Plant
Plant

Obfuscator
Obf

Network
Net

Controller
Cont

Local

Recipient
Inf

Remote
Eavesdropper

Cut

Fig. 3. Architecture 1 featuring control and obfuscation at the local site which transmit information to the recipient at the remote site. The edge
labeled cut indicates the feedback eliminated in the transformation used for synthesis in subsection III-D. The black-box processes to be synthesized
are represented by parallelograms. The striped parallelograms denote processes unknown by the eavesdropper.

without delay as considered in our examples, we may omit
it from the architecture, directly connecting the obfuscator to
the recipient.

The final process Inf in the system models the actions of
the intended recipient of the plant’s information, for example
inferring sensitive plant information. It utilizes the obfuscated
outputs from the network IInf = ONet to take action at the
remote site modeled by its outputs OInf.

Example 2 In the building system from Example 1, the
authorization server controlling the locks may be local to
the building, but outputs from the keypads are shared over
a network with their manufacturers in order to diagnose faults
requiring maintenance. In particular, door 2 may experience a
fault preventing it from opening. We can model this system
with Architecture 1 utilizing obfuscation of the keypad signals
for privacy. In this model, the plant receives inputs IPlant given
by the control cj from the server signaling door j to unlock
for j ∈ {1, 2}. Likewise, the plant produces outputs OPlant
consisting of oj indicating door j is open, kj indicating
keypad j is pressed, and f indicating door 2 is faulty with
j ∈ {1, 2}.

We assume that locally, the keypad and door outputs kj , oj

are observed while the fault f is hidden. In addition, we assume
that the outputs of the plant are delayed by one step before
observation which can be represented by introducing delayed
copies of these variables; however, in an abuse of notation
we simply write ICont = IObf = {kj ,oj}. The outputs of the
keypads, but not whether the doors are opened, are nominally
communicated to the manufacturer to infer a fault with door
2. The obfuscator replicates these outputs over the network
with its own set of outputs OObf given by kj

Obf for j ∈ {1, 2}.
For simplicity, we assume the network communicates these
values unmodified without delay, i.e., in an abuse of notation
INet = ONet. Then finally, the manufacturer is the recipient of
these obfuscated outputs IInf = OObf and produces a single
output OInf = {f Inf} whenever the fault has been inferred.

Now we describe the plant dynamics MPlant. We assume
the user starting from room 0, always remains at a keypad
once pressed until the corresponding door is signaled to open,
moving through the door if it has opened. Furthermore, the

0

1

4

2

3

5

6

0f

1f

4f

2f

3f

5f

6f

Fault

∅

{k1}

{k2}

{k1}
{c1,o1}

{k2}
{c2,o2}

{c2, f}

∅

{k1}

∅

{k2}

{k1}

{c1,o1}{k2, c1,o1}

{k2}

{c2,o2}{k1, c2,o2}

{c2, f}

{f}

{k1, f}

{k2, f}

{k1, f}
{c1,o1, f}

{k2, f}
{k2, c2, f}

{k1, c2, f}

{c2, f}

{f}

{k1, f}

{f}

{k2, f}

{k1, f} {c1,o1, f}

{k2, c1,o1, f}

{k2, f}

{c2, f}

{k1, c1,o1}

{k2, c2,o2}

{k1, c1,o1, f}

Fig. 4. An automaton encoding the plant MPlant from Example 2. Not
depicted are transitions accepting invalid control outputs, e.g., when no
keypad is pressed. Background colors indicate which room from Fig. 2
corresponds to each state.

doors always open immediately once signaled unless the fault
forces door 2 to remain closed forever. In order to allow the
fault to be diagnosed, we must also assume a kind of liveness
that the user always eventually presses accessible keypads,
i.e., if the plant visits a state with a transition labeled with
ki infinitely often, then ki must occur infinitely often. The
resulting dynamics are represented by the automaton depicted
in Fig. 4. �

Remark 4 Beyond replacement, obfuscation can be imple-
mented with edit functions which also delete outputs or
insert fictitious ones. In [12], distributed synthesis is used
to design obfuscators with insertion. This work transformed
the system so the obfuscator outputs one insertion in each
step to fit the standard framework of synchronous systems
considered by distributed synthesis. To this end the obfuscator
was augmented with an additional output yield to indicate

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2024 7

the end of insertions, and the specification was modified
to ensure the plant holds its outputs until yield occurs.
This approach is conceptually similar to introducing a local
controller as in Architecture 1 with a single output yield.
We may utilize a similar approach to design obfuscators with
insertion; however, synchronization is more complex in the
presence of multiple feedback paths. So for simplicity, we only
discuss obfuscation by replacement.

B. Privacy Requirements
Knowledge about the current behavior of the plant or system

may be used by a malicious agent to damage the system or
harm its users. As such, we consider requirements on the
privacy of the plant’s behavior. We model privacy as the
opacity of a set of behaviors identified as secret. Opacity
requires that the occurrence of these behaviors can never
be deduced by an eavesdropper. In particular, we consider
the notion of private safety [26], where the eavesdropper
is aware of the plant’s dynamics but not of obfuscation,
i.e., the implementation and goals of obfuscation are private
knowledge. We adapt this notion of private safety to infinite
traces over distributed systems with obfuscation and control,
expressed as an ω-regular specification. In this more general
setting, we assume that the eavesdropper possesses a nominal
model of the system without obfuscation. Privacy requires that
the eavesdropper does not deduce secrets within this model,
regardless of what observations are made of the obfuscated
system.

In particular, we model these nominal and secret behaviors
as ω-languages, adapting of the notion of language-based
opacity (LBO) [14] to infinite strings. Formally, it is assumed
that the eavesdropper’s nominal model of the system is given
by a known language M̂ ⊆

(
2V
)ω

. Within this model, we
must ensure they cannot deduce some secret aspects of the
behavior given by the secret language MS ⊆

(
2V
)ω

. The
strings in the language M̂ \ MS are called nonsecret. We
assume the eavesdropper observes a subset of the output
variables Vobs ⊆ V shared between the nominal and actual
system, i.e., a string t ∈

(
2V
)ω

is observed as t|Vobs . Using
this nominal model, the eavesdropper deduces that they have
observed secret behavior if their observation could not have
resulted from nonsecret behavior. Formally, upon the occur-
rence of the string t, the eavesdropper cannot deduce if it was
secret if t|Vobs ∈ (M̂ \MS)|Vobs . So we make the following
definition for language-based privacy.

Definition 1 (Privacy) Let M̂ ⊆
(
2V
)ω

be the nominal
language, MS ⊆

(
2V
)ω

the secret language, and Vobs ⊆ V the
observed variables. Then we say the language M ⊆

(
2V
)ω

enforces privacy if

M |Vobs ⊆ (M̂ \MS)|Vobs . (4)

The right side of this inclusion represents observations that
are both consistent with the eavesdropper’s model of behavior
and nonsecret, while the left side of the inclusion represents
the true system behavior. From this definition, we can derive
the following monotonicity result.

Theorem 2 Assume that M enforces privacy for secrets MS

in a fixed nominal model M̂ . If M ′ ⊆M and M ′S ⊆MS then
M ′ enforces privacy for M ′S.

Proof: This holds by the properties of set inclusion and
difference used in the definition of privacy.

We require that our distributed system enforce privacy, i.e.,
the infinite traces of the system are consistent with nonsecret
behavior.

ϕpriv =
(

(M̂ \MS)|Vobs

)
|V . (5)

While it is not the focus of this work, the standard notion
of LBO with respect to a language of finite nominal behaviors
L̂ = M̂ and finite secret behaviors LS [14] can be expressed
as a safety property ϕpriv with finite prefixes given by

ϕpriv =
(

(L̂ \ LS)|Vobs

)
|V . (6)

As shown in [15]–[17] many existing notions of opacity may
be expressed as LBO. Examples include current-state opacity,
initial-state opacity, and notions of K-step opacity.

In general, the nominal model can be any language repre-
senting the eavesdropper’s beliefs about the system’s behavior.
These beliefs may be uncertain. For example, an eavesdropper
may know the plant behaviors MPlant resulting in a nominal
model satisfying M̂ |VPlant ⊆MPlant. On the other hand, beliefs
about the system may also be incorrect. For example, the
eavesdropper may be unaware of some processes in the
system’s architecture, such as the obfuscator. We can model
this nominal belief by “shorting out” these processes, treating
them as white-box processes with a fixed implementation that
directly passes inputs to their corresponding output copies. In
this way, we can construct a nominal model over the same
variables as the true system model which captures knowledge
of the plant dynamics but only a subset of the system’s
processes denoted P̂ as follows.

Definition 2 Given an eavesdropper aware of some nominal
processes P̂ in the architecture A with plant dynamics MPlant,
this knowledge is captured by the base nominal model defined
by

M̂0 = MPlant|V ∩
⋂

p∈W∪P̂

Tr(ρp)|V , (7)

where the implementations ρp of processes p ∈ P \ P̂ pass
their inputs to corresponding output copies.

We demonstrate constructing the privacy specification with the
following example.

Example 3 Returning to the building system, we suppose the
eavesdropper is unaware of obfuscation in Architecture 1, but
is aware of the plant dynamics MPlant. So they model the
system as in Fig. 3 with the indicated process Obf unknown.
Formally, this means P \ P̂ = {Obf} which defines the base
nominal language M̂0 as in Definition 2. Likewise, they may
assume that the doors are eventually controlled to open after
the keypad is pressed. This requirement is expressed by the
LTL formula

ϕCont =
∧

j∈{1,2}

�
(
kj ⇒ ♦ cj

)
(8)

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2024 8

k1 k1
Obf, c

1,o1 k1
Obf,k

1 c1,k2
Obf,o

1,k2 k1
Obf,k

2

...(i)

k2 k2
Obf,k

2 c2,k2
Obf,o

2,k2 k2
Obf c2,k2

...(ii)

k2 k2
Obf,k

2 c2,k2
Obf, f k1

Obf, f k1
Obf, f ,k

2

(iii)

k2
Obf, f ,k

2 k2
Obf, f ,k

2 c,k2
Obf, f k1

Obf, f , f Inf k1
Obf, f , f Inf

...

Fig. 5. Possible traces of the building system in Architecture 1. In
the first trace, the user passes through door 1 to room 1 and then
returns the same way to room 0. During this movement, the obfuscator
violates privacy. In step 4, the eavesdropper believes keypad 1 was
used immediately after keypad 2 was used from room 0. This could only
happen in the original system if a fault prevented door 2 from opening.
The remaining traces are drawn from this system implemented as in
Fig. 6. The second trace represents non-faulty behavior as the user
passes through door 2, whereas the third trace, displayed over two lines,
contains the fault f . After the user tries to use door 2 again, the recipient
has observed 5 occurrences of k2

Obf (an odd number) followed by k1
Obf,

and thus correctly infers a fault has occurred and output f Inf.

Then the nominal language reflecting their beliefs is given by
M̂ = M̂0 ∩ ϕCont. If the occurrence of the fault f should be
hidden from the eavesdropper for security reasons, we consider
the secret language MS expressed by the LTL formula ♦ f . One
can show that this induces the admissible language

(M̂ \MS)|Vobs =
(
L+
1 L

+
2

)ω ∪ (L+
2 L

+
1

)ω
, (9)

where Li =
(
{∅}∗ {{ki

Obf}}
+
)2

corresponds to observations
of the user going through door i ∈ {1, 2} twice. Roughly
this requires the eavesdropper to observe at least two presses
of the keypad at a door before one at the other door, and
that both keypads are pressed infinitely often. Otherwise, the
eavesdropper knows the user left the keypad before the door
was opened or that the user was not able to open the door, so a
fault is believed to have occurred. This is used to construct the
specification ϕpriv as in Equation (5), which describes traces
of the system enforcing privacy. Fig. 5 depicts selected traces
of the system when the plant in Fig. 4 is connected to an
obfuscator that can successfully enforce privacy and to one
that fails to preserve privacy. �

Remark 5 While this framework can include knowledge
about obfuscation, conceptually, one must be careful that the
nominal model accurately reflects this knowledge. An issue
arises if the eavesdropper knows why obfuscation is being
implemented, i.e., the privacy specification. In this case, a
direct description of the nominal model and privacy speci-
fication are self-referential: the nominal model encompasses
systems satisfying the privacy requirement which is in turn
defined with respect to the nominal model. A similar challenge
arises when the eavesdropper knows the specification for the
controller, which we address in Section IV. One way to resolve
the issue with the privacy requirement is to make stronger
assumptions on the eavesdropper’s knowledge, namely that the
implementation of obfuscation is public knowledge. Privacy
in this case is referred to as public safety in [26] which also
presents corresponding synthesis methods.

C. Utility Requirements

Utility refers both to desirable behavior of the plant as
well as the recipient’s access to information. For example the
utility constraints proposed in [10], roughly require that all
observers unaware of obfuscation are still able to infer which
region of states the system currently inhabits. In order to allow
for information about the plant to be hidden from unintended
observers unaware of obfuscation yet revealed to intended ones
that are aware, [12] proposed an alternative utility requirement
which we discuss now.

To model this type of specification, we identify a subset
of the plant outputs Data ⊆ OPlant that should be inferred
by the recipient. We model the inference of the recipient
explicitly with the output of the process Inf . As such the
recipient outputs should match the plant outputs Data. To
ensure the output sets are disjoint, we define the outputs
OInf = {oInf | o ∈ Data} as copies of the variables in Data.
The utility requirement that the recipient infers the outputs
Data from the plant can be modeled with the LTL formula

ϕData = �
∧

o∈Data

(o ⇔ © oInf) . (10)

In general, the complete utility specification ϕutil will be the
conjunction of an inference specification ϕData with a control
specification ϕCont.

More generally, instead of requiring the recipient to infer the
current plant output after a one step delay, we may consider
more temporally complex relations as demonstrated in the
following example.

Example 4 In the building system, we require that the remote
recipient must be able to monitor the building and diagnose
door lock faults. Formally, they must eventually infer if f
occurs in the current trace, i.e., Data = {f}. The diagnosis
specification can then be expressed with the LTL formula

ϕdiag = ♦ f ⇔ ♦ f Inf . (11)

In addition, we will also require that the controller eventu-
ally signals the doors to open if the keypads have been pressed.
This is captured by the previous specification ϕCont defined in
Equation (8). The utility requirement is then the combination

ϕutil = ϕdiag ∩ ϕCont. (12)

A sample trace of the system when the plant in Fig. 4 is
connected to an obfuscator and an inference function that
achieves this specification is depicted in Fig. 5 (iii). �

D. Synthesis

With this system model and these specifications we can state
the design problem for Architecture 1.

Problem 2 (Architecture 1) Given an instance A of Archi-
tecture 1 and ω-regular privacy and utility specifications ϕpriv
and ϕutil, find an implementation S for Obf , Cont, and
Inf solving the distributed synthesis problem for A with
specification

ϕ = ϕpriv ∩ ϕutil . (13)

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2024 9

To apply the distributed synthesis algorithm we must trans-
form our problem to match the conditions of Theorem 1.
Specifically, we must eliminate the constraints on the plant and
the feedback from the controller while maintaining the same
set of solutions. To do this, we utilize two ideas from [13] for
simplifying system architectures. First, due to the strict order
of informed processes, feedback edges from less informed
to more informed processes may be eliminated as they are
redundant. Intuitively, as the non-environment processes are
deterministic, such feedback outputs from them can simply be
predicted. In particular as the environment (the plant in our
case) is the most informed processes as the source of non-
determinism in the system, feedback from our controller is
redundant. Second, white-box processes may be eliminated by
combination with more informed processes and encoding their
implementation as part of the specification. Likewise, we can
incorporate our plant dynamics in the specification. With these
ideas, we transform the architecture and specification to the
form used in Theorem 1 without altering the set of solution
implementations. We describe this transformation in general
now.

Let A = (P,W, env, E,O,H) be an architecture over
V with a finite white-box implementation SW , environment
traces Menv ⊆

(
2Venv

)ω
and an ω-regular specification ϕ ⊆(

2V
)ω

. We create a new architecture by cutting any feedback
to the environment process. Outputs communicated from a
process only to the environment are replaced by hidden
outputs in the process. For a given process p 6= env, let
H ′p = Hp ∪

(
O(p,env) \

⋃
p′ 6=env O(p,p′)

)
, O′(p,env) = ∅, and

O′(p,p′) = O(p,p′) for p′ 6= env. Likewise, let E′ = {(p, p′) ∈
E | p′ 6= env}, O′ = {O′e | e ∈ E′}, and H ′ =
{H ′p | p ∈ P}. The transformed architecture is denoted
by A′ = (P,W, env, E′, O′, H ′). Note that the output set
of each process is unchanged, while only the inputs of the
environment process were changed by removal. As such, the
two architectures support the same implementations.

To capture the environment dynamics Menv, observe that the
solution only needs to enforce the specification ϕ over traces
agreeing with Menv. So we define a new specification

ϕ′ = ϕ ∪
((

2V
)ω \Menv|V

)
. (14)

Thus, this new specification is also ω-regular as it is con-
structed from the union, complement, and restriction of ω-
regular languages. Then as desired, the environment of the
transformed system is unconstrained, i.e., Menv

′ =
(
2Oenv

)ω
.

We then have the following result.

Theorem 3 Given a distributed synthesis problem over
A,SW ,Menv, ϕ, consider the transformed problem
A′, SW ,Menv

′, ϕ′ be constructed as described above.
Then the two problems have the same set of solution
implementations.

Proof: Consider an implementation S for both systems.
Note that the trace sets for each strategy in the implementa-
tions are the same for both architectures. So from the definition
of the trace set for distributed systems in equation (2), we see

Tr(A,S, SW ,Menv) = Tr(A′, S, SW ,Menv
′) ∩Menv|V .

Hence we can compare satisfaction of the specifications:

Tr(A,S, SW ,Menv) ⊆ ϕ ⇔

Tr(A′, S, SW ,Menv
′) ⊆ ϕ ∪

((
2V
)ω \Menv|V

)
= ϕ′ .

So by the definition of Problem 1, S is a solution for
the original problem if and only if it is a solution for the
transformed one.
As a consequence of this result, if the transformation results in
a decidable problem, then we can apply distributed synthesis
to find a solution implementation.

Theorem 4 Problem 2 can be solved in 2-exponential time.

Proof: After eliminating the feedback in the transforma-
tion of Architecture 1, the only potential fork is between the
Obf and Cont. However, as they observe the same inputs and
hence possess the same information, this is not an information
fork. Thus we may apply the results of Theorem 1 to the
transformed architecture. Note the number of the information
levels excluding the environment is 2, one for Inf and one
for both Obf and Cont as they share the same information.
Thus the synthesis algorithm runs in 2-exponential time in the
size of the automata representing MPlant, ρNet, ϕpriv, and ϕutil.
If a solution implementation S is found, Theorem 3 states that
it is also a solution for Problem 2. Likewise if no solution is
found, Problem 2 has no solution.

Thus distributed synthesis provides a sound and complete
method for designing the obfuscator, controller, and actions
for the recipient simultaneously to enforce privacy and utility.
We detail the specific algorithms we leverage for distributed
synthesis in Section VI. We next demonstrate the outcome of
the synthesis procedure with the building system.

Example 5 A solution to the distributed synthesis problem
for the building system in Architecture 1 is depicted in Fig. 6.
In particular, we see that after the corresponding keypad is
pressed, the controller immediately opens door 1 while it
delays opening door 2. This delay demonstrates coordination
of the controller with the obfuscator, allowing the obfuscator to
fabricate an extra press of the keypad providing deniability to
which room the user is in. Indeed, distributed synthesis could
be employed to verify that there exists no solution utilizing
control or obfuscation alone. From the solution, we also see
that the obfuscator always outputs an even number of presses
to keypad 2, unless a fault has occurred, which is precisely
what allows the intended recipient to eventually diagnose the
fault. These behaviors are demonstrated by the selected traces
of the system in Fig. 5. �

IV. REMOTE NETWORK CONTROL AND OBFUSCATION

In some cases, the infrastructure to implement a controller
for the plant may only be present at a remote site. As the
inputs to the controller and the feedback from the controller
are transmitted over the network, they may potentially need to
be obfuscated to preserve privacy. In Architecture 2 depicted
in Fig. 7, the controller takes the place of the recipient from
Architecture 1, implicitly inferring information from obfus-
cated plant outputs and selecting a control action which is then

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2024 10

∅

k2
Obf c1,k1

Obfc2,k2
Obf

k1
Obf k2

Obf

Obf and Cont ¬k1 ∧ ¬k2

k1k2 ¬k1 ∧ ¬k2

k1
k2>

o2 ∧ ¬k1 ∧ ¬k2

o2 ∧ k2

¬o2 ∨ k1

k1

k2

¬k1 ∧ ¬k2

k2

∅

∅

f Inf

Inf

¬k2
Obf

k2
Obf k2

Obf

¬k1
Obf ∧ ¬k

2
Obf

k1
Obf

>

Fig. 6. Automata implementing the combined obfuscator Obf and controller Cont (left) and inference function Inf (right) in the solution to
Example 5. For compactness, transitions are labeled by formulas over the plant variables rather than the corresponding sets which satisfy the
formulas. The symbol > denotes true, the formula accepting all labels.

obfuscated. To allow the plant to interpret obfuscated outputs
from the controller, an additional process called a decoder is
introduced that processes outputs from the controller before
passing them along to the plant.

A. System Model and Specifications

As with Architecture 1, we model the system with a dis-
tributed architecture A = (P,W, env, E,O,H) with processes
P = {Plant,Obf ,Net,Netb,Cont,Dec} representing the
plant, obfuscator, both directions of the network, the controller,
and the decoder. Later on, we will discuss why the two
channels of the network are modeled with separate processes.
The interconnections E are depicted in Fig. 7.

The sets of input and output variables of Plant, Obf ,
and Net are the same as in Architecture 1. Now instead of
receiving inputs from the plant directly, the controller receives
obfuscated inputs from the plant over the network, i.e., ICont =
ONet. Conversely, it produces outputs which are fed back
through the network, i.e. INetb = OCont. The eavesdropper
may observe these control outputs on the network and use
them to refine their beliefs about the plant behavior. As such,
it may be advantageous for the controller to output obfuscated
commands which are then interpreted at the local site by the
decoder. So as the control outputs should mimic the plant
inputs, we define OCont = {iCont | i ∈ IPlant}. Likewise, the
return network process reports the controller outputs to the
decoder, so we define ONetb = {iNetb | i ∈ IPlant}. Finally, the
decoder de-obfuscates these outputs to provide to the plant
with ODec = IPlant. Again, the only white-box processes are
from the network W = {Net,Netb} which each have fixed
implementations.

We now discuss the specifics of formulating privacy and
utility specifications in this architecture. In particular, we
suppose the controller is designed such that the closed-loop
behavior of the system satisfies some utility requirement
ϕutil reflecting safety or liveness in the plant for example.
As the controller is more apparent in this architecture, the
eavesdropper may possess knowledge about both it and the
plant. In particular, we assume the eavesdropper knows the

utility requirement ϕutil. We would like to construct the privacy
specification ϕpriv capturing privacy with respect to this new
knowledge. Unaware of obfuscation, the eavesdropper derives
their nominal model from the plant dynamics and Architecture
2 in Fig. 7 with the indicated unknown processes P \ P̂ =
{Obf ,Dec}. This defines the base nominal model M̂0 as in
Definition 2. At this point, the eavesdropper expects behavior
from M̂0 that not only satisfies ϕutil, but belongs to an im-
plementation solving the corresponding distributed synthesis
problem for Architecture 2 over the nominal processes P̂ . The
correct nominal model should then consist of the union of the
trace sets of all such solutions.

In this case where the plant is in a simple feedback loop
with the controller, we can use ideas from ω-supervisory
control [35] to construct the nominal model M̂ as an ω-regular
language. If the plant is completely observed by the controller,
the union of all deterministic solutions to the reactive synthesis
problem form a maximally permissive supervisor. Specifically,
we take M̂ to be the supremal closed-loop behavior with
respect to M̂0 describing the plant and the language ϕutil
describing the specification. More generally in the partial ob-
servation case, there is no unique maximal solution. However,
for regular specifications over finite strings, the union of all
correct supervisors can be constructed as a regular language as
shown in [36] and Theorem 2 of [37]. Under mild conditions,
these results may be extended to the ω-regular case. With this,
we can now discuss the building example in detail.

Example 6 We now consider that the building is instead
controlled remotely as in Architecture 2 subject to the same
specification ϕCont from Example 3. Removing the requirement
that the remote site infers the fault, the utility specification is
simply ϕutil = ϕCont. We construct the privacy specification in
a manner similar to before, identifying the fault as the secret
behavior and assuming the processes related to obfuscation,
i.e., Obf and Dec, are unknown to the eavesdropper. The
key differences are that now the eavesdropper observes the
control actions over the network and knows about the control
specification ϕutil. Thus the nominal model is constructed as all
closed-loop behaviors of all implementations ensuring the base

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2024 11

Plant
Plant

Obfuscator
Obf Network

Net

NetbDecoder
Dec

Local

Controller
Cont

Remote
Eavesdropper

Cut

Fig. 7. Architecture 2 featuring a controller at the remote site which operates on obfuscated data produced by the obfuscator and consumed by
the decoder at the local site. The processes are styled as in Fig. 3.

nominal model M̂0 satisfies the specification ϕutil as discussed
above. In this case, it turns out that this nominal model M̂ and
secret language LS are the same as the one from Example 3 for
Architecture 1 (up to the addition and renaming of variables).
However, as the obfuscated controls c1Obf and c2Obf are now
observed by the eavesdropper, the admissible observations are
different, now given by

(M̂ \MS)|Vobs =
((
L+
1 L

+
2

)ω ∪ (L+
2 L

+
1

)ω)
, (15)

where Li =
(
{∅}∗ {{ki

Obf}}∗{{ciObf,k
i
Obf}}

)2
corresponds to

observations of the user going through door i ∈ {1, 2} twice.
This defines the privacy specification ϕpriv as in Equation (5).

�

B. Synthesis
With the system model and specifications we can state the

design problem for Architecture 2.

Problem 3 (Architecture 2) Given an instance A of Archi-
tecture 2 and ω-regular privacy and utility specifications ϕpriv
and ϕutil, find an implementation S for Obf , Cont, and
Dec solving the distributed synthesis problem for A with
specification ϕ = ϕpriv ∩ ϕutil.

As before, we can transform the system with Theorem 3 to
match the conditions of Theorem 1.

Theorem 5 Problem 3 can be solved in 3-exponential time.

Proof: After eliminating the feedback from the decoder
as depicted in Fig. 7, the resulting architecture is a pipeline,
free of information forks. Thus we may apply the results of
Theorem 1 to the transformed architecture. As there are 3
black-box processes in the pipeline, the synthesis algorithm
runs in 3-exponential time in the size of the automata repre-
senting MPlant, ρNet, ρNetb , ϕpriv, and ϕutil.

Here we see why the two channels of the network must be
modeled as separate processes. If instead they are modeled
with a single process, there is an information fork between
the decoder and controller rooted at the hypothetical merged
network process. This is because the network may transmit

different information from the plant to the controller and
decoder. Alternatively, we can also avoid information forks
with a single network process by requiring it to transmit the
same outputs to each receiving process.

Example 7 A solution to the distributed synthesis problem for
the building system with Architecture 2 is depicted in Fig. 8.
From the solution, we see the obfuscator communicates to
the controller the use of keypad 1 by the absence of output
and of keypad 2 by two consecutive k2

Obf. Similarly, the
controller communicates the open command to the decoder
for door 1 by the absence of output and for door 2 by two
consecutive c2Obf. All the while these processes intersperse the
outputs k1

Obf and c1Obf to mimic the nominal system without
obfuscation. In addition by removing fault diagnosis from the
utility specification, we can observe that the remote site can
no longer infer the occurrence of the fault. �

V. SECURING AN EXISTING REMOTE CONTROLLER WITH
OBFUSCATION

In this section, as in the previous one, we consider a
plant that is controlled from the remote site. However, we
assume that this controller has an existing implementation
which cannot be altered. As this implementation may not have
been designed with security in mind, it may leak sensitive
information. We now consider the problem of securing such
a controller by obfuscating its outputs in addition to those of
the plant while maintaining the original closed-loop behavior.
As in Architecture 2, the obfuscated controller outputs must
be de-obfuscated before they can be input into the plant.
Conversely, because the controller has a fixed implementation
that was designed without obfuscation, its inputs must also
be de-obfuscated. Unlike Architecture 2, for simplicity we
model both obfuscation and decoding with a single process at
each site. Similarly, we model both channels of the network
with a single process as well. By merging these processes,
we can avoid the information fork between the obfuscator
and decoder present in Architecture 2. While both of these
processes perform obfuscation and decoding, for consistency

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2024 12

k1
Obf

k1
Obf

∅

k2
Obf

k2
Obf

Obf

>¬k1 ∧ ¬k2

k1

k2

>

>

>
c1Obf

c1Obf

∅

c2Obf

c2Obf

Cont

>k1
Obf

¬k1
Obf∧¬k

2
Obfk2

Obf

>

>

>
∅

∅

c1

∅

c2

Dec

>c1Obf

¬c1Obf∧¬c2Obfc2Obf

>

>

>

Fig. 8. Automata implementing the obfuscator Obf (left), controller Cont (middle), and decoder Dec (right) in the solution to Example 7.

with the Architecture 2 we will refer to the local process as
the obfuscator Obf and the remote process as the decoder
Dec. We refer to this architecture as depicted in Fig. 9 as
Architecture 3.

A. System Model and Specifications

We model the system with a distributed architec-
ture A = (P,W, env, E,O,H) with processes P =
{Plant,Obf ,Net,Dec,Cont} representing the plant, ob-
fuscator, network, obfuscator, and controller. These obfuscator
processes also take the role of the decoder from Architecture
2. The interconnection of these processes E is depicted in
Fig. 9.

While the plant remains unchanged, the obfuscator, decoder,
and network now receive inputs and produce outputs mirroring
both the inputs and outputs of the plant. Formally, OObf,Net,
ONet,Dec, and ODec,Cont are distinct copies of OPlant. Likewise
ONet,Obf, ODec,Net, and OCont,Dec are distinct copies of IPlant.

Unlike in the previous architectures, the controller is added
as a white-box process W = {Cont,Net} with a fixed
implementation ρCont :

(
2ICont

)+ → 2OCont . We assume that the
closed-loop behavior for this controller must be maintained by
the obfuscators. We can express this utility requirement with a
specification ϕutil ensuring the plant and controller inputs are
exactly recovered by corresponding decoders after obfuscation.
We can express this with an LTL formula

ϕutil =
∧

i∈IObf

� (i ↔ © iCont)︸ ︷︷ ︸
Control input is

delayed plant output

∧
∧

i∈IPlant

� (i ↔ iDec)︸ ︷︷ ︸
Plant input is
control output

.

(16)

Example 8 We again consider the building utilizing a con-
troller at the remote site; however, we now assume that its
implementation is fixed due to practical considerations. This
implementation simply immediately sends the signal for the
door to open once the corresponding keypad signal is re-
ceived. Without obfuscation, this controller satisfies the utility
specification from Example 6, requiring doors be signaled to
open after the keypad is pressed. We will assume that this
specification forms the eavesdropper’s knowledge about the
controller. Given the processes related to obfuscation, i.e.,
P \ P̂ = {Obf ,Dec}, are unknown to the eavesdropper, this
results in the same privacy specification ϕpriv as in Example 6
(up to renaming variables). In order to maintain the existing
closed-loop behavior, we must ensure the plant and controller
recover their respective inputs exactly from obfuscation. As

explained above, this is captured by the utility specification
ϕutil from Equation (16). �

B. Synthesis

With the system model and specifications we can state the
design problem for Architecture 3.

Problem 4 (Architecture 3) Given an instance A of Archi-
tecture 3 and ω-regular privacy and utility specifications ϕpriv
and ϕutil, find an implementation S for Obf and Dec solving
the distributed synthesis problem for A with specification
ϕ = ϕpriv ∩ ϕutil.

As before, we can transform the system with Theorem 3 to
match the conditions of Theorem 1.

Theorem 6 Problem 4 can be solved in 2-exponential time.

Proof: While there are many forks in this architecture,
none of them constitute information forks. This is because
information from the plant, i.e., the environment, propagates
linearly to the other processes inducing a strict order on
the processes levels of information. Indeed, after removing
the feedback edges which are redundant and applying the
transformation in Theorem 3, the resulting architecture is a
pipeline. Thus we may apply the results of Theorem 1 to the
transformed architecture. As there are 2 black-box processes
in the pipeline, the synthesis algorithm runs in 2-exponential
time in the size of the automata representing MPlant, ρNet, ρCont,
ϕpriv, and ϕutil.

Example 9 Analysis of the building system with Architec-
ture 3, shows that there are in fact no solutions to the
distributed synthesis problem. We note that while under non-
faulty conditions, there are enough possible messages that
the obfuscator can send to convey which key pads have
been pressed: the obfuscator can transmit its inputs without
modification. However, such a solution is no longer possible
once we consider the occurrence of a fault. This possibility in
the source of information, i.e., the plant, along with decrease
in bandwidth from mimicking non-faulty behavior renders the
problem unfeasible. Alternatively, if we assume that the fault
has already occurred which reduces the amount of information
that needs to be conveyed, a solution exists which is depicted
in Fig. 10. In fact this solution guarantees privacy even when
the eavesdropper knows the implementation of the controller.

�

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2024 13

Plant
Plant

Obfuscator
Obf

Network
Net

Local

Decoder
Dec

Controller
Cont

Remote
Eavesdropper

Cut

Fig. 9. Architecture 3 featuring a controller with a fixed implementation at the remote site which must be secured by combination obfuscator-
decoders at both the local and remote site. The processes are styled as in Fig. 3.

∅ k1
Obf, c

1

k2
Obf, c

2 k2
Obf

Obf
¬k1∧¬k2

k1

k2

k1

¬k1∧¬k2

k2

>

k1

k2

∅ k1
Dec, c

1
Obf

k2
Dec, c

2
Obf c2Obf

Dec
¬k1

Obf∧¬k
2
Obf

k1
Obf

k2
Obf

k1
Obf

¬k1
Obf∧¬k

2
Obf

k2
Obf

>

k1
Obf

k2
Obf

Fig. 10. Automata encoding the implementation of the obfuscator Obf
(left) and decoder Dec (right) for Example 9.

Remark 6 Instead of combining obfuscation and decoding
into a single process in Architecture 3, we may instead main-
tain two separate processes like in Architecture 2. This alter-
native architecture is depicted in Fig. 11. While conceptually
similar, there are a number of practical differences between
these architectures. This alternative ensures, for example, that
the local decoder only uses information transmitted from the
remote obfuscator. In contrast, decoding at the local site
in Architecture 3 may use all information available locally,
including the direct outputs from the plant. In addition, the
alternative architecture contains 4 black-box process arranged
linearly after eliminating feedback to the environment. As a
result, the synthesis algorithm for the alternative requires 4-
exponential time, compared to the 2-exponential time required
for Architecture 3.

VI. IMPLEMENTATION DETAILS

In this section, we describe how distributed reactive synthe-
sis problems can be solved in practice. In particular, we explain
at a high level the approach used to design the solutions for
the building access control examples presented in the previous
sections. Additional details about the implementation can be
found in the appendix.

We observed that the original algorithm for distributed
synthesis proposed in [13], [31] does not scale to the ex-
ample problems considered here. This is due in part to the
algorithm’s explicit construction of automata of n-exponential
size. Instead, we employed a similar approach to [12] used for
the synthesis of obfuscators and inference functions. This ap-
proach is based upon the reduction from distributed synthesis
to synthesis for hyperproperties described in [38]. Hypeprop-
erties generalize the concept of specifications for individual
traces such as LTL properties, to relations of multiple traces.

Arch. States Hyper States Synth. Time (s)
1 59 2 149
2 81 3 72
3 31 2 548

TABLE II. Information for the synthesis of the reduced examples
for each architecture, including the number of states in the automata
describing the property and hyperproperty specifications.

In short, the reduction constructs a hyperproperty encoding the
information flow induced by the distributed architecture as a
relation of the input and output variables of different traces.

We then solved the reduced synthesis problem for hyper-
properties using the tool BoSyHyper [39]. This tool achieves
improved performance by taking advantage of the existence of
small solutions with bounded synthesis as well as advanced
heuristics employed within modern constraint solvers. Unfor-
tunately, even with these optimizations, the tool was unable to
synthesize solutions for the building access control problems
discussed in Examples 5, 7, and 9. In order to obtain solutions
for these problems, we manually abstracted the plant and
specifications, simplifying the problems and reducing their
complexity for the synthesis tool. The tool was then able
to synthesize solutions for the reduced problem which were
then manually lifted to the original problems. These solutions,
depicted in Fig. 6, 8, and 10, were then formally verified
for correctness in enforcing privacy and utility. Information
about the synthesis for the reduced problems is provided in
Table II. Counterintuitively, the smaller sized examples result
in longer synthesis times. This demonstrates the observed fact
that smaller problem sizes do not necessarily correspond to
easier problems for the constraint solvers.

In addition to improved performance, the hyperproperty
approach is also more extensible. While the original explicit
algorithm cannot be applied to architectures with an informa-
tion fork, the information flow of arbitrary distributed archi-
tectures can be expressed with hyperproperties. This problem
is undecidable in general; however, synthesis algorithms for
hyperproperties provide a sound but incomplete method for
more general architectures. In our framework this would
enable synthesis for problems with non-deterministic network
delays as well as plants distributed across multiple sites.

VII. CONCLUSION

In this work, we have addressed the problem of enforcing
privacy and utility over networked systems with both ob-
fuscation and control. The joint consideration of obfuscation
and control (present in a feedback loop), along with the

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2024 14

Plant
Plant

Obfuscator
Obf1 Network

Net1

Net2Decoder
Dec1

Local

Obfuscator
Obf2

Decoder
Dec2

Controller
Cont

Remote
Eavesdropper

Cut

Fig. 11. An alternative to Architecture 3 for securing an existing network controller.

completeness property of our solution procedure, distinguish
our results from prior work. Specifically, we considered three
distinct networked system architectures with feedback, with
a local or a remote controller given or to-be-designed. In
each case, we showed how to map our synthesis problem,
which involves an obfuscator, a controller, and a decoder, to a
decidable instance of a distributed reactive synthesis problem.
We were therefore able to leverage the algorithmic solution
procedures and tools for finite automata system models in
distributed reactive synthesis to solve the three architectures,
i.e., to synthesize automata implementations for the obfuscator,
controller, and decoder.

There are many directions for future work. The primary
limitation for the application of our approach is the scalability
of distributed reactive synthesis. This is an active area of
research where a variety of techniques are being investigated
to design more efficient algorithms. For example, recently
proposed algorithms take advantage of a system’s modularity
[40] or analyze the information flow needed to satisfy the sys-
tem’s specifications [41]. While not considered here, stochastic
systems and stochastic privacy requirements are frequently
encountered in practice. For example while an eavesdropper
may not be able to disprove behavior was not secret, they
may use stochastic knowledge about the system to infer the
corresponding probability is vanishingly small. It may be
possible to adapt our framework to this setting using stochastic
notions of opacity for privacy like those proposed in [42], [43].

In addition, while our approach enforces privacy under the
assumption that the eavesdropper is unaware of the goals of
obfuscation, stronger security guarantees may be required in
practice. In particular, we may assume that the attacker knows
everything about the system and specifications except for its
specific implementation just as encryption algorithms typically
assume the attacker knows everything except the key. Future
work should account for privacy against such obfuscation-
aware eavesdroppers.

APPENDIX

This appendix details the synthesis of solutions to the
building access control problems presented in Examples 5, 7,
and 9.

A. Specifications for Examples

We now discuss the trace specifications for the example
problems in detail. In particular, we represent the specifications
with Büchi automata as needed by the synthesis tool. The
desired specification used for each of the three examples is
of the form ϕ = ϕutil ∩ ϕpriv as in Equation (13). Here ϕutil
describes utility requirements for each problem while privacy
is described by ϕpriv =

(
(M̂ \MS)|Vobs

)
|V as in Equation (5)

depending on the nominal model M̂ . In light of Theorem 3,
the specification input to the synthesis tool must incorporate
the plant dynamics MPlant constructed as in Equation (14) as
ϕ′ = ϕ ∪

((
2V
)ω \Menv|V

)
.

Each example utilizes the same plant dynamics MPlant
encoded by the automaton depicted in Fig. 4 which represents
a single user’s movement throughout the building. The liveness
condition that all persistently accessible keypads are eventually
used can be expressed as a Streett acceptance condition
over the states of this automaton. Formally, for j ∈ {1, 2}
we define Bj as the set of states where keypad j can be
pressed, i.e., states with an outgoing transition labeled by
kj . Specifically, B1 = {0, 1, 2, 3, 0f, 1f, 2f, 3f} and B2 =
{0, 4, 5, 6, 0f, 4f, 5f, 6f}. Likewise, we define Gj as the set of
states where keypad j is pressed, i.e., the destination of these
transitions labeled by kj . Specifically, G1 = {1, 3, 0f, 3f}
and G2 = {4, 6, 4f, 6f}. The acceptance condition for liveness
requires for each j, that if the states of Bj are visited infinitely
often then so are the states of Gj . In words, if keypad j
can always eventually be pressed, then it is always eventually
pressed. It is well-known that such Streett conditions can be
transformed into a Büchi conditions [44] which are used by
the synthesis tool.

Next, we discuss the construction of the privacy specifi-
cation. In all three examples, we assume the eavesdropper’s
model of the system architecture is the plant with dynamics
MPlant in direct feedback with the controller with a unit delay.
As such, the base nominal models M̂0 in each problem are the
same up to the renaming of variables. Furthermore, we assume
that the eavesdropper knows that the closed-loop system
satisfies the control specification ϕCont defined in Equation (8)
which requires door j to eventually be signaled to open with
Contj after the corresponding keypad has been pressed with
output kj . In this case, we know that feasible traces must

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2024 15

belong to the intersection M̂ = M̂0 ∩ ϕCont which is used by
the eavesdropper as their nominal model in the example for
Architecture 1.

However, the question remains whether all of such traces
of the plant satisfying the control specification are realized
by a controller, as pondered by the more astute eavesdroppers
considered in Architecture 2 and Architecture 3. In this case,
the question can be answered in the affirmative by inspection,
any trace in M̂0 ∩ ϕCont can be achieved by a controller by
appropriately inserting delays in opening doors as necessary.
We see that the eavesdroppers in all three examples utilize the
same nominal model which can be expressed by the plant
automaton with an additional Streett acceptance condition
modeling ϕCont. In particular given the secret language MS
defined by the occurrence of the fault, the language M̂ \MS
can be expressed by the non-faulty (left) half of the plant
automaton where each room must be visited infinitely often.
This is described by the Streett condition with Bi is given by
all states and Gi is given by the states of room i ∈ {0, 1, 2}.
Specifically, G0 = {0, 1, 4}, G2 = {2, 3}, and G2 = {5, 6}.
Again, this Streett automaton is then converted to a Büchi
automaton. Finally, a single Büchi automaton accepting ϕ′

may be constructed using the standard constructions for the
complement and intersection.

B. Synthesis of Examples

Next, we present the details of how solutions for the
example problems were designed. While the classical tree-
automaton based algorithm [13], [31] is useful for theoretic
analysis of distributed reactive synthesis, its explicit construc-
tion of large automata results limits applicability. Unfortu-
nately, there are not many tools available for the purpose of
distributed synthesis. Alternatively, solving the reduction to
the more general problem of synthesis for hyperproperties
has been observed to improve performance. For example,
this is the approach taken in [12] to synthesize obfuscation
and inference functions for privacy and utility enforcement.
Hyperproperties generalize the concept of trace specifications
such as LTL or ω-regular properties. Whereas properties de-
scribe individual traces, hyperproperties describe relations of
multiple traces. For example, HyperLTL is a formal logic for
expressing hyperproperties which extends LTL with explicit
trace quantifiers [45]. It is capable of expressing classical
information flow properties such as non-interference as well
as information flow within a distributed architecture [39].

Using this fact, we can reduce the distributed synthesis
problem to a HyperLTL synthesis problem by introducing a
HyperLTL formula capturing the architecture. This formula is
built using the following HyperLTL formula which expresses
the causal dependence of the output variables O ⊆ V on the
input variables I ⊆ V without delay

DI→O = ∀π. ∀π′.
(∨
o∈O

O[π]↔ O[π′]
)
W
(∨
i∈I

I[π]↔ I[π′]
)
,

where W denotes the weak until operator. In words, this
formula requires the outputs of any two traces to be the same
until their inputs differ. A similar definition for DI→O is

made in [39] for processes with delay. Given a distributed
architecture A = (P,W, env, E,O,H), we can construct a
HyperLTL formula encoding its information flow as

ΦA =
∧
p∈P
p 6=env

DIp→Op
. (17)

We then aim to solve the synthesis problem for the trace
property ϕ′ and the hyperproperty ΦA.

We solve this problem using the tool BoSyHyper [38], an
extension of the well-known LTL bounded synthesis tool BoSy
to HyperLTL [46]. In particular BoSyHyper supports synthesis
for HyperLTL formulas with only universal quantifiers, which
includes the formulas needed for distributed synthesis. The
tool was modified to accept as input the trace specification ϕ′

represented by an explicit Büchi automaton and the HyperLTL
formula ΦA. If found by the tool, solutions are given as a
monolithic model of the realized system in the Aiger format
[46]. Such solutions can be converted into automata models
implementing each process of the system. The construction
and manipulation of automata input and output by BoSyHyper
was performed with the automata library M-DESops [47].

REFERENCES

[1] M. Huisman, P. Worah, and K. Sunesen, “A temporal logic characteri-
sation of observational determinism,” in 19th IEEE Computer Security
Foundations Workshop (CSFW’06), Jul. 2006, pp. 13 pp.–3.

[2] S. Zdancewic and A. C. Myers, “Secure Information Flow and CPS,” in
Programming Languages and Systems, ser. Lecture Notes in Computer
Science, D. Sands, Ed. Berlin, Heidelberg: Springer, 2001, pp. 46–61.

[3] J. Bryans, M. Koutny, and P. Ryan, “Modelling Opacity Using Petri
Nets,” Electr. Notes Theor. Comput. Sci., vol. 121, pp. 101–115, Feb.
2005.

[4] X. Yin, M. Zamani, and S. Liu, “On Approximate Opacity of Cyber-
Physical Systems,” IEEE Transactions on Automatic Control, vol. 66,
no. 4, pp. 1630–1645, Apr. 2021.

[5] R. Jacob, J.-J. Lesage, and J.-M. Faure, “Overview of discrete event
systems opacity: Models, validation, and quantification,” Annual Reviews
in Control, vol. 41, pp. 135–146, Jan. 2016.

[6] E. Badouel, M. Bednarczyk, A. Borzyszkowski, B. Caillaud, and
P. Darondeau, “Concurrent Secrets,” Discrete Event Dynamic Systems,
vol. 17, no. 4, pp. 425–446, Dec. 2007.

[7] J. Dubreil, P. Darondeau, and H. Marchand, “Supervisory Control for
Opacity,” IEEE Transactions on Automatic Control, vol. 55, no. 5, pp.
1089–1100, May 2010.

[8] Y. Tong, Z. Li, C. Seatzu, and A. Giua, “Current-state opacity en-
forcement in discrete event systems under incomparable observations,”
Discrete Event Dynamic Systems, vol. 28, no. 2, pp. 161–182, Jun. 2018.

[9] Y.-C. Wu and S. Lafortune, “Synthesis of insertion functions for en-
forcement of opacity security properties,” Automatica, vol. 50, no. 5,
pp. 1336–1348, May 2014.

[10] Y.-C. Wu, V. Raman, B. C. Rawlings, S. Lafortune, and S. A. Seshia,
“Synthesis of Obfuscation Policies to Ensure Privacy and Utility,”
Journal of Automated Reasoning, vol. 60, no. 1, pp. 107–131, Jan. 2018.

[11] Y. Ji, Y.-C. Wu, and S. Lafortune, “Enforcement of opacity by public
and private insertion functions,” Automatica, vol. 93, pp. 369–378, Jul.
2018.

[12] A. Wintenberg, M. Blischke, S. Lafortune, and N. Ozay, “A Dynamic
Obfuscation Framework for Security and Utility,” in 2022 ACM/IEEE
13th International Conference on Cyber-Physical Systems (ICCPS), May
2022, pp. 236–246.

[13] B. Finkbeiner and S. Schewe, “Uniform Distributed Synthesis,” in 20th
Annual IEEE Symposium on Logic in Computer Science (LICS’ 05).
Chicago, IL, USA: IEEE, 2005, pp. 321–330.

[14] F. Lin, “Opacity of discrete event systems and its applications,” Auto-
matica, vol. 47, no. 3, pp. 496–503, Mar. 2011.

[15] Y.-C. Wu and S. Lafortune, “Comparative analysis of related notions
of opacity in centralized and coordinated architectures,” Discrete Event
Dynamic Systems, vol. 23, no. 3, pp. 307–339, Sep. 2013.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2024 16

[16] A. Wintenberg, M. Blischke, S. Lafortune, and N. Ozay, “A general
language-based framework for specifying and verifying notions of
opacity,” Discrete Event Dynamic Systems, vol. 32, no. 2, pp. 253–289,
Jun. 2022.

[17] J. Balun and T. Masopust, “Comparing the notions of opacity for
discrete-event systems,” Discrete Event Dynamic Systems, vol. 31, no. 4,
pp. 553–582, Dec. 2021.

[18] P. M. Lima, L. K. Carvalho, and M. V. Moreira, “Networked Automa-
tion Systems: A new cryptographic scheme,” Simpósio Brasileiro de
Automação Inteligente - SBAI, vol. 1, no. 1, Oct. 2021.

[19] F. Cassez, J. Dubreil, and H. Marchand, “Synthesis of opaque systems
with static and dynamic masks,” Formal Methods in System Design,
vol. 40, no. 1, pp. 88–115, Feb. 2012.

[20] X. Yin and S. Li, “Synthesis of Dynamic Masks for Infinite-Step
Opacity,” IEEE Transactions on Automatic Control, pp. 1–1, 2019.

[21] R. Liu, J. Lu, and C. N. Hadjicostis, “Opacity Enforcement via Attribute-
Based Edit Functions in the Presence of an Intended Receiver,” IEEE
Transactions on Automatic Control, vol. 68, no. 9, pp. 5646–5652, Sep.
2023.

[22] R. Tai, L. Lin, Y. Zhu, and R. Su, “Privacy-preserving co-synthesis
against sensor–actuator eavesdropping intruder,” Automatica, vol. 150,
p. 110860, Apr. 2023.

[23] A.-K. Schmuck, T. Moor, and R. Majumdar, “On the relation between
reactive synthesis and supervisory control of non-terminating processes,”
Discrete Event Dynamic Systems, vol. 30, no. 1, pp. 81–124, Mar. 2020.

[24] O. Kupferman, O. Leshkowitz, and N. Shamash Halevy, “Synthesis with
privacy against an observer,” in International Conference on Foundations
of Software Science and Computation Structures. Springer, 2024, pp.
256–277.

[25] Y. Wu and S. Lafortune, “Enforcement of opacity properties using
insertion functions,” in 2012 IEEE 51st IEEE Conference on Decision
and Control (CDC), Dec. 2012, pp. 6722–6728.

[26] Y. Ji, X. Yin, and S. Lafortune, “Opacity Enforcement Using Non-
deterministic Publicly Known Edit Functions,” IEEE Transactions on
Automatic Control, vol. 64, no. 10, pp. 4369–4376, Oct. 2019.

[27] B. Chen, K. Leahy, A. Jones, and M. Hale, “Differential privacy for
symbolic systems with application to Markov Chains,” Automatica, vol.
152, p. 110908, Jun. 2023.

[28] M. J. Dworkin, E. B. Barker, J. R. Nechvatal, J. Foti, L. E. Bassham,
E. Roback, and J. F. Dray Jr, “Advanced encryption standard (AES),”
2001, updated in 2023.

[29] C. Baier and J.-P. Katoen, Principles of Model Checking. Cambridge,
Mass: The MIT Press, 2008.

[30] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, 2nd ed. New York, NY: Springer, 2008.

[31] A. Pnueli and R. Rosner, “Distributed reactive systems are hard to
synthesize,” in FOCS, Nov. 1990, pp. 746–757 vol.2.

[32] P. Madhusudan and P. Thiagarajan, “Distributed controller synthesis for
local specifications,” in Automata, Languages and Programming, ser.
Lecture Notes in Computer Science, F. Orejas, P. Spirakis, and J. van
Leeuwen, Eds. Springer Berlin, 2001, vol. 2076, pp. 396–407.

[33] K. Chatterjee, T. A. Henzinger, J. Otop, and A. Pavlogiannis, “Dis-
tributed synthesis for LTL fragments,” in 2013 Formal Methods in
Computer-Aided Design. IEEE, 2013, pp. 18–25.

[34] B. Finkbeiner and S. Schewe, “Bounded synthesis,” International Jour-
nal on Software Tools for Technology Transfer, vol. 15, no. 5, pp. 519–
539, 2013.

[35] A.-K. Schmuck, T. Moor, and R. Majumdar, “On the relation between
reactive synthesis and supervisory control of non-terminating processes,”
Discrete Event Dynamic Systems, vol. 30, no. 1, pp. 81–124, 2020.

[36] K. Inan, “Nondeterministic supervision under partial observations,” in
11th International Conference on Analysis and Optimization of Systems
Discrete Event Systems, ser. Lecture Notes in Control and Information
Sciences, G. Cohen and J.-P. Quadrat, Eds. Berlin, Heidelberg:
Springer, 1994, pp. 39–48.

[37] T.-S. Yoo and S. Lafortune, “Solvability of Centralized Supervisory
Control Under Partial Observation,” Discrete Event Dynamic Systems,
vol. 16, no. 4, pp. 527–553, Dec. 2006.

[38] B. Finkbeiner, C. Hahn, J. Hofmann, and L. Tentrup, “Realizing omega-
regular Hyperproperties,” in Computer Aided Verification, ser. Lecture
Notes in Computer Science, S. K. Lahiri and C. Wang, Eds. Cham:
Springer International Publishing, 2020, pp. 40–63.

[39] B. Finkbeiner, C. Hahn, P. Lukert, M. Stenger, and L. Tentrup, “Syn-
thesizing Reactive Systems from Hyperproperties,” in Computer Aided
Verification, H. Chockler and G. Weissenbacher, Eds. Cham: Springer
International Publishing, 2018, vol. 10981, pp. 289–306.

[40] B. Finkbeiner and N. Passing, “Compositional synthesis of modular
systems,” Innovations in Systems and Software Engineering, vol. 18,
no. 3, pp. 455–469, Sep. 2022.

[41] B. Finkbeiner, N. Metzger, and Y. Moses, “Information flow guided
synthesis,” in International Conference on Computer Aided Verification.
Springer, 2022, pp. 505–525.

[42] J. Chen, M. Ibrahim, and R. Kumar, “Quantification of Secrecy in Par-
tially Observed Stochastic Discrete Event Systems,” IEEE Transactions
on Automation Science and Engineering, vol. 14, no. 1, pp. 185–195,
Jan. 2017.

[43] C. Keroglou and C. N. Hadjicostis, “Probabilistic system opacity in
discrete event systems,” Discrete Event Dynamic Systems, vol. 28, no. 2,
pp. 289–314, Jun. 2018.

[44] E. Grädel, W. Thomas, and T. Wilke, Automata, logics, and infinite
games: a guide to current research. Springer, 2003, vol. 2500.

[45] M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe,
and C. Sánchez, “Temporal Logics for Hyperproperties,” in Principles
of Security and Trust, ser. Lecture Notes in Computer Science, M. Abadi
and S. Kremer, Eds. Berlin, Heidelberg: Springer, 2014, pp. 265–284.

[46] P. Faymonville, B. Finkbeiner, and L. Tentrup, “Bosy: An experimenta-
tion framework for bounded synthesis,” in International Conference on
Computer Aided Verification. Springer, 2017, pp. 325–332.

[47] R. Meira-Góes, A. Wintenberg, S. Matsui, and S. Lafortune, “MDESops:
an open-source software tool for discrete event systems modeled by
automata,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 6093–6098, 2023.

Andrew Wintenberg (Graduate Student Mem-
ber, IEEE) received his B.S. degree in Electrical
Engineering and Mathematics from The Univer-
sity of Tennessee, Knoxville, USA, in 2018 and
his M.S. and Ph.D. degrees in Electrical and
Comnputer Engineering from the University of
Michigan, Ann Arbor, in 2020 and 2024, respec-
tively. His research interests include the safety
and security of of discrete-event and cyberphys-
ical systems through formal methods and ab-
straction.

Necmiye Ozay (Senior Member, IEEE) Necmiye
Ozay received the B.S. degree from Bogazici
University, Istanbul in 2004, the M.S. degree
from the Pennsylvania State University, Univer-
sity Park in 2006 and the Ph.D. degree from
Northeastern University, Boston in 2010, all in
electrical engineering. She was a postdoctoral
scholar at California Institute of Technology,
Pasadena between 2010 and 2013. She is cur-
rently the Chen-Luan Family Faculy Develop-
ment Professor of Electrical and Computer En-

gineering at University of Michigan, Ann Arbor, where she is also an
associate professor of Electrical Engineering and Computer Science
and of Robotics. Her research interests include control of dynamical
systems, optimization, and formal methods with applications in cyber-
physical systems, system identification, verification & validation, and
autonomy.

Stéphane Lafortune (Life Fellow, IEEE) is the
N. Harris McClamroch Collegiate Professor of
Electrical Engineering and Computer Science at
the University of Michigan, Ann Arbor, USA. He
obtained his degrees from École Polytechnique
de Montréal (B.Eng., 1980), McGill University
(M.Eng., 1982), and the University of California
at Berkeley (PhD, 1986), all in electrical engi-
neering. He is a Fellow of IEEE (1999) and of
IFAC (2017). His research interests are in dis-
crete event systems and include multiple prob-

lem domains: modeling, diagnosis, control, optimization, and applica-
tions to computer and software systems. He co-authored, with Christos
Cassandras, the textbook “Introduction to Discrete Event Systems -
Third Edition” (Springer, 2021).

	Introduction
	Related Works

	Methodology
	Formal Languages
	Distributed Systems
	Synthesis for Distributed Systems

	Integrating Obfuscation and Control
	System Model
	Privacy Requirements
	Utility Requirements
	Synthesis

	Remote Network Control and Obfuscation
	System Model and Specifications
	Synthesis

	Securing an Existing Remote Controller with Obfuscation
	System Model and Specifications
	Synthesis

	Implementation Details
	Conclusion
	Appendix
	Specifications for Examples
	Synthesis of Examples

	References
	Biographies
	Andrew Wintenberg
	Necmiye Ozay
	Stéphane Lafortune

