
Synchronous and Asynchronous Multi-Agent Coordination With cLTL+
Constraints

Yunus Emre Sahin, Petter Nilsson, Necmiye Ozay

Abstract— Planning trajectories for multiple agents in a way
to guarantee that their collective behavior satisfies a certain
high-level specification is crucial in many application domains.
Motivated by this problem, we introduce a new logic called
counting linear temporal logic plus (cLTL+). This logic enables
specifying multi-agent tasks over possibly infinite horizons
in a compact manner. We then propose an optimization-
based method that generates trajectories for individual agents
that, when implemented together, guarantee the satisfaction
of a given cLTL+ formula. In the second part of the paper,
we discuss how these results can be extended to generate
trajectories that can be asynchronously implemented by the
agents while preserving the satisfaction of the desired cLTL+
specification. In particular, we show that when the asynchrony
between agent trajectories is bounded, it is possible to generate
trajectories robust against such asynchrony with an appropriate
modification of the optimization problem. Finally, we demon-
strate these ideas on selected examples.

I. INTRODUCTION

Traditional motion planning algorithms focus on finding a
feasible and collision free path that takes a robot from a given
initial state to a goal region. More recently, usage of temporal
logic to describe more complex high-level specifications
such as coverage, formation control and emergency-response
has attracted considerable attention [1], [2]. Scalable design
methodologies with formal guarantees are needed, in partic-
ular in multi-agent settings, as the tasks get more complex
with the increasing number of agents.

One approach for synthesizing controllers that satisfy
given temporal logic specifications is to recast the problem
as a Mixed-Integer Linear Program (MILP) [3], [4]. Using
a similar approach, in [5] we introduced a new logic called
counting linear temporal logic (cLTL) that is convenient for
defining collective behavior for a group of agents and to
synthesize controllers that can coordinate large groups. In
cLTL synthesis, the agents are assumed to be identical and
task completion does not depend on the identity of individual
agents, which enables scalability in synthesis algorithms.
However, homogeneity and synchrony assumptions in cLTL
limit the expressiveness: it is for instance not possible to
require that “the property A must be satisfied by at least 5
agents” without requiring that A must be satisfied by at least
5 agents at the same time instant. For example, in a search
and rescue mission one might require each agent to charge
its batteries every now and then, but such a requirement can
not be expressed in cLTL.

This work is supported in part by NSF grants CNS-1239037, CNS-
1446298 and ECCS-1553873, and DARPA grant N66001-14-1-4045. The
authors are with the EECS Department, University of Michigan, Ann Arbor,
MI 48109, email: {ysahin,pettni,necmiye}@umich.edu.

To overcome this problem, in this paper we extend the
syntax of cLTL and propose a new logic, namely cLTL+. In
addition to introducing this new logic, our main contribu-
tions include an optimization based framework to synthesize
controllers from cLTL+ specifications to coordinate multiple
agents (i) with possibly heterogenous dynamics and (ii) that
move potentially asynchronously. One way of dealing with
asynchrony is to prioritize agents and to generate plans
sequentially [6]. However, such an approach depends highly
on the order of agents and feasible solutions can be missed if
priorities are not assigned correctly. In this paper, we take a
different approach and formally define robust satisfaction of
a cLTL+ formula. We then present necessary modifications to
our synthesis algorithm to generate solutions that are robust
against bounded asynchrony.

Notation: The set of nonnegative integers is denoted by N
and [N] = {1, 2, . . . , N} denotes the set of positive integers
up to N . The vector of all 1’s is denoted by 1. For a sequence
ν = ν0ν1 . . . of N -tuples, νt(k), k ∈ [N], denotes the kth

element of the tth tuple. We define an indicator function
for set membership such that given a set A, 1A(a) = 1 if
a ∈ A and 1A(a) = 0 otherwise. The cardinality of a set A
is denoted by #A.

II. SYSTEM AND BEHAVIOR DESCRIPTIONS

We model each agent’s dynamics with a transition system.
Definition 1: A transition system is a tuple T = (S,→

, AP, L) where S is a finite set of states, →⊆ S × S is a
transition relation, AP is a finite set of atomic propositions
and L : S → 2AP is a labeling function.

Transition systems used in this paper are assumed to be
non-blocking, i.e., for all s ∈ S, there exists at least one
state s′ ∈ S such that (s, s′) ∈→. The labeling function L
maps a state into a set of atomic propositions that hold in
that state. The labeling function is defined such that a ∈ AP
holds in state s ∈ S if and only if a ∈ L(s), and we say s
satisfies a in this case.

Definition 2: Given T = (S,→, AP, L), a transition
system for an individual agent, an infinite sequence π :
s0s1s2 . . . ∈ Sω of states such that (sk, sk+1) ∈→ is called a
path (trajectory). For a given path π, the corresponding trace
is defined as trace(π) = L(s0)L(s1)L(s2) . . . ∈ (2AP)ω .
We use σ to denote a trace when π is clear from the context.

In the multi-agent setting, we denote the transition system
and a path of the nth agent by Tn = (Sn,→n, AP, Ln)
and πn, respectively. Note that dynamics and transitions
of the agents can be different but they share the same
atomic propositions. This is without loss of generality as

one can define a global atomic proposition set by taking
the union of atomic propositions of individual agents. For
simplicity of notation, for collections of agents {Tn}n∈[N],
paths {πn}n∈[N], etc., we will drop n ∈ [N] and write {Tn},
{πn}, when the range of n is clear from the context.

Individual paths alone are not sufficient to reason about
the collective behavior of a multi-agent system. The timing
of when agents transition from one state to another relative
to the other agents is also important. For this reason, we
define the following:

Definition 3: Given N agents with dynamics {Tn}, let
πn denote the path agent n follows. For a collection of
paths {πn}, a sequence Π = S0S1S2 · · · ∈ (

∏
n S

n)ω of
N -dimensional state vectors, where St = [s1

k1
t
. . . sN

kNt
]T , is

a collective execution consistent with {πn} if the following
inequalities hold for all n ∈ [N] and for all t:

kn0 = 0, knt ≤ knt+1 ≤ knt + 1 and lim
t→∞

knt =∞. (1)

The corresponding collective trace is defined as

ctrace(Π) = Σ0Σ1Σ2 · · · ∈ (2AP
N

)ω,

where Σt = L(St)
.
= [L1(s1

k1
t
) . . . LN (sN

kNt
)]T .

The first equality in (1) guarantees that agents start moving
synchronously while the second inequality guarantees that
no state which appears in an individual path is skipped and
the order of states in an individual path is preserved. Note
that the second inequality allows stuttering, i.e., agents can
choose not to move but the third limit guarantees that the
agents eventually make progress with respect to the global
time t. Since there are no further restrictions, agents can
move asynchronously and there are infinitely many collec-
tive executions corresponding to a collection of individual
paths. The set of all collective executions consistent with
{πn} is denoted by cexecs({πn}). Similarly, the set of
all collective traces consistent with {πn} is denoted by
ctraces({πn}) .

= {ctrace(Π) | Π ∈ cexecs({πn})}. To
exemplify, the following is a valid collective execution for
{πn : sn0 s

n
1 s
n
2 . . .}:

Π =


s1

0

s2
0
...
sN0



s1

1

s2
1
...
sN1



s1

2

s2
2
...
sN1



s1

2

s2
3
...
sN1



s1

2

s2
3
...
sN1

 · · · ∈ cexecs({πn}).
As previously mentioned, Definition 3 allows agents to

execute their paths asynchronously. However, unbounded
asynchrony would limit the use of a synthesis approach when
reasoning about collective behavior. Without run-time com-
munication or interaction, it is impossible to achieve a task
where more than one agents are needed to simultaneously
satisfy a proposition if there is no bound on asynchrony.
Hence we introduce the following definition.

Definition 4: Let {πn : sn0 s
n
1 s
n
2 . . .} be a collection of

agent trajectories and let Π = S0S1S2 . . . be a member of
cexecs({πn}), where St = [s1

k1
t
. . . sN

kNt
]T . Then Π is called

a τ -bounded execution of {πn} if

max
t∈N,n,m∈[N]

(|knt − kmt |) ≤ τ.

The set of all τ -bounded executions of {πn} is denoted by
cexecsτ ({πn}).

For the special case when τ = 0, a collective execution
Π ∈ cexecs0({πn}) is called a synchronous execution of
{πn}. That means, all agents move from their current state
to the next state simultaneously when Π is synchronous. An
execution Π∗ = S∗0S

∗
1S
∗
2 . . . is the globally synchronous

execution of {πn} if Π∗ ∈ cexecs0({πn}), and for all
n,m ∈ [N] and for all t, we have knt = kmt = t, where knt ’s
are indices in S∗t = [s1

k1
t
. . . sN

kNt
]T as before. A collection of

agents is called globally synchronous if all of their executions
are globally synchronous. Note that in this case there is a one
to one mapping between the collection {πn} of trajectories,
the corresponding collective execution and the corresponding
collective trace. (Globally) synchronous traces are defined
similarly.

Given a collective execution Π, the local execution π̃n of
agent n in the global time frame is defined using an extrac-
tion function locn such that π̃n = locn(Π) = s̃n0 s̃

n
1 s̃
n
2 . . .,

where s̃nt = Πt(n) for all t. We overload the extraction
function and use it also with collective traces. That is, given
a collective trace Σ = Σ0Σ1 . . . ∈ (2AP

N
)ω , the local

trace σ̃n of agent n in the global time frame is defined by
σ̃n = locn(Σ) = σ̃n0 σ̃

n
1 σ̃

n
2 . . ., where σ̃nt = Σt(n) for all t.

III. CLTL+: SYNTAX AND SEMANTICS

In this section we introduce a logic called counting linear
temporal logic plus (cLTL+) that is convenient for specifying
desired collective behaviors of multi-agent systems. The
logic cLTL+ is a two layer logic similar to censusSTL
[7]. The inner logic is identical to LTL and is used to
describe tasks that can be satisfied by a single agent. For
example, tasks such as “avoid collisions with obstacles” or
“eventually visit a charging station” can be described by the
inner logic. cLTL+ is then built on top and is used to specify
the evolution of the number of agents that needs to satisfy
an inner logic formula. Using the earlier examples, we can
specify tasks such as “All agents must avoid collisions with
obstacles” or “At least five agents should eventually visit
a charging station” using cLTL+. We now provide formal
definitions both for the inner and the outer logic.

An inner logic formula over a set AP of atomic proposi-
tions can be defined recursively as follows:

φ ::= True | ap | ¬φ | φ1 ∧ φ2 | ©φ | φ1 U φ2, (2)

where ap ∈ AP is an atomic proposition and φ, φ1 and
φ2 are inner logic formulas. The symbols ¬,∧,© and U
correspond to the logical operators negation, conjunction and
the temporal operators next and until, respectively. Other
commonly used operators can be derived from these opera-
tors, such as disjunction (φ1 ∨ φ2

.
= ¬(¬φ1 ∧ ¬φ2)), release

(φ1 R φ2
.
= ¬ (¬φ1 U ¬φ2)), eventually (♦φ

.
= True U φ),

always (�φ
.
= ¬(♦¬φ)), etc. We use Φ to denote the set

of all inner logic formulas defined according to (2). Note
that the inner logic is identical to LTL but for the sake of
completeness we present the semantics here.

Let σ ∈ (2AP)ω and let φ be an inner logic formula.
Satisfaction of φ by σ at step t is denoted by σ, t |= φ and
is defined as follows:
• σ, t |= True ,
• for any atomic proposition ap ∈ AP , we say σ, t |= ap

if and only if ap ∈ σt,
• σ, t |= ϕ1 ∧ ϕ2 if and only if σ, t |= ϕ1 and σ, t |= ϕ2,
• σ, t |= ¬ϕ if and only if σ, t 6|= ϕ,
• σ, t |=©ϕ if and only if σ, t+ 1 |= ϕ, and
• σ, t |= ϕ1 U ϕ2 if and only if there exists l ≥ 0 such

that σ, t+ l |= ϕ2 and σ, t+ l′ |= ϕ1 for all 0 ≤ l′ < l.
If σ, 0 |= ϕ, then we say that σ satisfies ϕ and write σ |= ϕ

for short. We say that a path π satisfies ϕ if trace(π) |= ϕ,
and write π |= ϕ.

Having defined the inner logic we can now present the
syntax for cLTL+ which is based on a new proposition type:
a temporal counting proposition tcp is an inner logic formula
paired with a nonnegative integer, i.e., tcp = [φ,m] ∈ Φ×N
where φ ∈ Φ and m ∈ N.

The following grammar can now be used to recursively
define cLTL+ formulas.

µ ::= True | tcp | ¬µ | µ1 ∧ µ2 | ©µ | µ1 U µ2, (3)

where tcp ∈ Φ×N is a temporal counting proposition and
µ, µ1 and µ2 are cLTL+ formulas. Identical to inner logic,
other commonly used operators can be derived from (3).

Formulas in cLTL+ are evaluated over collective traces of
a multi-agent system. In order to define the semantics, we
first define a counting function.

Definition 5: Given an inner logic formula φ ∈ Φ and a
collective trace Σ, the counting function ξφ,t : ((2AP)ω)N →
N maps Σ to the number of local traces that satisfy the inner
formula φ at step t in the global time frame, that is, ξφ,t :
Σ 7→ #{n | locn(Σ), t |= φ}.

Next we define the semantics for cLTL+, which is almost
identical to inner logic. Satisfaction of a cLTL+ formula µ
by a collective trace Σ at step t, denoted as Σ, t |= µ, is
defined as follows:
• Σ, t |= True ,
• for any temporal counting proposition tcp = [φ,m] ∈

Φ× N, we say Σ, t |= tcp if and only if ξφ,t(Σ) ≥ m,
• Σ, t |= µ1 ∧µ2 if and only if Σ, t |= µ1 and Σ, t |= µ2,
• Σ, t |= ¬µ if and only if Σ, t 6|= µ,
• Σ, t |=©µ if and only if Σ, t+ 1 |= µ, and
• Σ, t |= µ1 U µ2 if and only if there exists l ≥ 0 such

that Σ, t+ l |= µ2 and Σ, t+ l′ |= µ1 for all 0 ≤ l′ < l.
If Σ, 0 |= µ, then we say that the collective trace Σ satisfies µ
and write Σ |= µ for short. We say that a collective execution
Π satisfies µ if ctrace(Π) |= µ, and write Π |= µ.

Example 1: Consider the following set of similar cLTL+
formulas: µ1

.
= �♦[Cs,m], µ2

.
= [�♦Cs,m], and µ3

.
=

�[♦Cs,m] for Cs ∈ AP .
In the first formula µ1—which is also a cLTL formula—

the inner formula [Cs,m] requires at least m agents to
simultaneously satisfy Cs. Combined with the temporal
operators; in order for the cLTL+ formula µ1 to be satisfied

there should be an infinite number of instances where Cs is
simultaneously satisfied by more than m agents.

On the other hand, µ2 relaxes the simultaneity require-
ment. The inner formula �♦Cs requires an agent to satisfy
Cs infinitely many times, hence the cLTL+ formula µ2 is
satisfied if the number of agents that satisfy Cs infinitely
many times is greater than or equal to m. Note that the agents
can satisfy Cs at different times—the number of agents that
satisfy Cs might never exceed 1 for any given time and µ2

can still be satisfied. This implies that any collective path
that satisfies µ1 also satisfies µ2 but the converse is not true.

The difference between µ3 and µ2 is more subtle: when
the number of agents are finite they are equivalent, meaning
that any collective path that satisfies one will also satisfy the
other. However, in the hypothetical case where the number
of agents is infinite 1, µ3 can be satisfied even if no agent
satisfies Cs more than once. This implies that solutions to
µ2 will also satisfy µ3 but the converse is not true. �

Remark 1: As a comparison, cLTL corresponds to the
fragment of cLTL+ where the inner logic is constrained to
the grammar φ ::= ap.

IV. SYNCHRONOUS COORDINATION PROBLEM AND ITS
SOLUTION

Now we are in a position to formally pose the first multi-
agent coordination problem we are interested in; which is
in the synchronous setting. After the problem statement, we
propose a solution.

Problem 1: Given N agents with dynamics {Tn =
(Sn,→n, AP, Ln)}, initial conditions {sn0}, and a cLTL+
formula µ over AP , synthesize individual paths πn starting
at sn0 for each agent n such that the globally synchronous
collective execution Π∗ corresponding to the collection {πn}
satisfies µ, i.e., Π∗ |= µ.

In order to solve Problem 1, we encode the agent dynamics
and the cLTL+ constraints using integer linear constraints
and pose the synthesis problem as an integer linear program
(ILP). This is similar to the approach adopted in [5] for
cLTL, and inspired by the bounded model-checking literature
[8]. In particular, we focus the search to individual paths in
prefix-suffix form. That is, for a given integer h, we aim to
construct individual paths of the form πn = sn0 s

n
1 . . . s

n
h . . .

and find an integer l ∈ {0, . . . , h−1} such that for all k ≥ h,
snk = snk+l−h.

A. Globally synchronous agent dynamics

Given the transition system Tn = (Sn,→n, AP, Ln) that
represents the dynamics of agent n, consider the adjacency
matrix An corresponding to the transition relation →n. We
use a Boolean vector wnt ∈ {0, 1}#S

n

with a single nonzero
component to denote the state of agent n at time t. For
example, assume Sn = {vn1 , vn2 , vn3 } and that agent n is
at vn2 at time t. Then, wnt =

[
0 1 0

]T
. With slight

abuse of notation, we equivalently write, wnt (vn2) = 1 and
wnt (vni) = 0 for i 6= 2.

1The rest of the paper assumes that the number of agents is finite.

Given sn0 , the following constraints encode the transi-
tions of individual agents when they execute globally syn-
chronously:

wnt+1 ≤ Anwnt ,
wn0 (sn0) = 1, 1Twnt = 1,

(4)

for all n ∈ [N] and for all t ∈ {0, . . . , h − 1}. The path
πn corresponding to a sequence wn = wn0w

n
1 . . . can then

be extracted by locating the nonzero component in each wnt .
When paths of all agents are combined, there is a one to
one correspondence between {wn} and Π∗—the globally
synchronous collective execution corresponding to {πn}.
B. Loop constraints

In order to impose prefix-suffix form on the gener-
ated paths, we introduce h binary variables zloop =
{zloop0 , . . . zlooph−1} and the following constraints:

wnt − 1(1− zloopt) ≤ wnh ≤ wnt + 1(1− zloopt), (5)

for all n ∈ [N] and for all t ∈ {0, . . . , h− 1}, together with∑h−1
t=0 z

loop
t = 1.

C. Inner logic constraints
Let φ ∈ Φ be an inner logic formula given according

to (2) and h be the horizon length. For each agent n, we
generate h binary decision variables zφ,nt ∈ {0, 1} for t ∈
{0, 1, . . . , h − 1} and ILP constraints such that zφ,nt = 1 if
and only if trace(locn(Π∗)), t |= φ. Hence, satisfaction of
an inner formula φ by the agent n is equivalent to zφ,n0 being
1. We use the following encodings in a recursive manner to
create the corresponding ILP constraints.

ap (atomic proposition): Let φ = ap ∈ AP be an atomic
proposition and the states of Tn be given by the set Sn =
{vn1 , vn2 , . . . , vn#Sn}. We define the vector vnφ ∈ {0, 1}#S

n

such that vnφ(i) = 1 if and only if φ ∈ L(vni). That is,
vn encodes the labeling function Ln. Then we introduce the
following constraints for all n ∈ [N]:

zφ,nt < (vnφ)Twnt < zφ,nt + 1. (6)

¬ (negation): Let φ = ¬ϕ. Then for all n ∈ [N],

zφ,nt = 1− zϕ,nt , t = 0, . . . , h− 1. (7)

∧ (conjunction): Let φ =
∧I
i=1 ϕi. Then for all t =

0, . . . , h− 1 and for all n ∈ [N],

zφ,nt ≤ zϕi,nt , for i = 1, . . . , I and,

zφ,nt ≥ 1− I +

I∑
i=1

zϕi,nt .
(8)

With slight abuse of notation, we also use Boolean operators
on these optimization variables. For example, for φ =∧I
i=1 ϕi, we say zφ,n =

∧I
i=1 z

ϕi,n instead of stating the
inequalities in (8). Encoding of the temporal operators is as
follows: © (next): Let φ =©ϕ, then for all n ∈ [N]

zφ,nt = zϕ,nt+1, t = 0, . . . , h− 2 and,

zφ,nh−1 =

h−1∨
t=0

(zϕ,nt ∧ zloopt).
(9)

U (until): if φ = ϕ1 U ϕ2, then for all n ∈ [N]

zφ,nt = zϕ2,n
t ∨

(
zϕ1,n
t ∧ zφ,nt+1

)
, t ≤ h− 2,

zφ,nh−1 = zϕ2,n
h−1 ∨

(
zϕ1,n
h−1 ∧

(
h−1∨
t=0

(
zloopt ∧ z̃φ,nt

)))
,

z̃φ,nt = zϕ2,n
t ∨

(
zϕ1,n
t ∧ z̃φ,nt+1

)
, t ≤ h− 2,

z̃φ,nh−1 = zϕ2,n
h−1 ,

(10)

where z̃φ,nt are auxiliary binary variables. As shown in [8],
not introducing auxiliary variables results in trivial satisfac-
tion of the until formula φ.

D. Outer logic constraints

Similar to the inner logic we proceed by transforming a
cLTL+ formula into ILP constraints. Given a cLTL+ formula
µ and a time horizon h, we create h binary decision variables
ycLTL+ = {yµt } where t ∈ {0, 1, . . . , h − 1} and ILP
constraints ILP (µ) such that yµt = 1 if and only if Σ, t |= µ
where Σ is a synchronous collective trace. We remind the
reader that since ILP constraints are created recursively,
creating the constraints for the formula µ will create the
constraints for all the inner logic formulas appearing in µ.
We denote by ILP (µ) the set of all resulting constraints that
encode satisfaction of µ, and by (z,y)cLTL+ the set of all
variables created in this process.

We only provide encodings for counting propositions since
the rest of the semantics are identical. Let µ = [φ,m] ∈
AP × N be a counting proposition. Then

m−M ≤
N∑
n=1

zφ,nt −Myµt < m, (11)

where M is a sufficiently large positive number, in particular,
M > N+1. Note that when yµt = 1; the inequality on the left
reduces to m ≤

∑N
n=1 z

φ,n
t , and the inequality on the right is

trivially satisfied. Conversely, when yµt = 0 the inequality on
the left is trivially satisfied and the right inequality reduces
to
∑N
n=1 z

φ,n
t < m. This implies that yµt = 1 (yµt = 0)

if and only if the number of agents that satisfy φ at time
t is greater than or equal to (less than) m. Therefore the
ILP constraints in (11) are correct and consistent with the
semantics of cLTL+.

E. Overall optimization problem and its analysis

A solution to an instance of Problem 1 for a horizon length
h is generated via the following optimization problem:

Find w1:N
1:h , z

loop, (z,y)cLTL+

s.t. (4), (5), ILP (µ) and yµ0 = 1.
(12)

Next we analyze this solution approach.
Proposition 1: Given an instance of Problem 1, if (12) is

feasible, paths generated from w1:N
1:h solves Problem 1.

Proof: The constraint (4) guarantees that individ-
ual trajectories {πn} generated from {wn0:h} are feasi-
ble. Furthermore, (5) makes sure that these solutions can
be extended to infinite trajectories of the form πn =

sn0 s
n
1 . . . s

n
l−1

(
snl . . . s

n
h−1

)ω
. The ILP encodings (6)-(10) of

LTL formulas are sound [8] and the same encodings are
also used for cLTL+ formulas by replacing zφ,nt with zµt
where µ is any cLTL+ formula. The only exception is that
(6) is replaced with (3) which we showed to be correct. This
implies that, enforcing the constraint zµ0 = 1 together with
ILP (µ) guarantees that Σ |= µ where Σ ∈ ctraces({πn}) is
globally synchronous. Hence, if (12) is feasible, the globally
synchronous execution of {πn} solves Problem 1.

As a corollary, it is easy to show that stutter invariance
of formulas (theorem 7.92 in [9]) allows to generalize the
soundness result from globally synchronous executions to
synchronous executions:

Corollary 1: If µ does not contain any next operator ©,
neither in the inner nor in the outer logic, then Σ |= µ for
all synchronous Σ ∈ ctraces({πn}).

Proposition 2: If there is a solution to Problem 1, then
there exists a finite h such that (12) is feasible.

Proof: In order to show that prefix-suffix form solutions
are complete, we reduce Problem 1 to a regular LTL control
synthesis problem, for which prefix-suffix solutions have
been shown to be complete [9].

Let Φ be the set of all inner logic formulas defined
according to (2) over AP . Given any cLTL+ formula µ,
one can define an equivalent LTL formula over a new set
of atomic propositions AP ′ =

⋃
a∈AP {a1, a2, . . . aN}. For

each temporal counting proposition tcp = [φ,m] in µ, we
define a new set {φ1, φ2, . . . φN} of LTL formulas over AP ′

where φn is obtained by replacing every atomic proposition
a ∈ AP with the corresponding an ∈ AP ′. Then we can
define tcp′ .=

∨I
i=1(

∧
j∈Ji φj) that is equivalent to tcp such

that Ji ∈ J where J is the set of all m-element subsets of
[N] and I = #J . Even though this method increases the
number of atomic propositions linearly and the length of the
formula combinatorially with the number of agents, it could
transform cLTL+ formula into a regular LTL formula over a
finite set of atomic propositions.

Next we create a product transition system T ′
.
= ΠnTn

with the set AP ′ as its atomic propositions. Now that
Problem 1 is reduced to a standard LTL synthesis problem,
it can be solved using a model-checker to generate a prefix-
suffix solution or to declare non-existence of solutions (see
e.g., [10]).

Remark 2: The proof of Proposition 2 highlights the ad-
vantages of using cLTL+ in scenarios where agent identity
is not critical to accomplish the collective task. Although the
problem can be reduced to a standard LTL synthesis problem
as the proof suggests, the reduction results in a synthesis
problem on a product transition system with size exponential
in the number of agents, and with an LTL formula that
is combinatorially longer than the cLTL+ formula. Indeed,
without a convenient logic, even writing that LTL formula
would be a very tedious and error-prone task.

V. ROBUSTNESS TO ASYNCHRONY

We continue with incorporating the concept of time-
robustness into our algorithm. Small modification to the

original algorithm allow us to synthesize trajectories that are
robust to bounded asynchrony.

The notion of robustness is useful since it is difficult
to perfectly synchronize the motion of agents in real life
applications. To exemplify, consider a task that requires
more than a single agent to simultaneously satisfy a certain
proposition. Let µ = ♦tcp for tcp = [ap,m] ∈ AP ×N and
assume that Π ∈ cexecs0({πn}) is a synchronous collective
trajectory with trace Σ in which tcp fails to hold for all
time steps except for a single step k, i.e., Σ, t 6|= tcp for
all t 6= k and Σ, k |= tcp. Note that Π is a solution to
Problem 1 but not very desirable: if for some reason one
of the agents gets delayed and Π becomes asynchronous,
correctness guarantees will no longer be valid.

In the globally synchronous case the time scales of indi-
vidual agent trajectories and the collective execution coincide
(up to stuttering), but with asynchrony this is no longer the
case. In the asynchronous case we will interpret formulas
over the anchor time, defined as follows:

Definition 6: Let Π ∈ cexecs({πn}) be a collective
execution. The associated anchor time mapping is bΠ(t)

.
=

minn k
n
t , where knt is the local time of agent n at the t’th

step of the collective execution.
For Π ∈ cexecsτ ({πn}) and a given global time t, at least

one agent has local time bΠ(t) and all other agents have local
times in the interval [bΠ(t), bΠ(t) + τ], for bΠ(t) + τ ≤ t.
For the globally synchronous collective execution Π∗, the
anchor time mapping is the identity mapping on N. To further
illustrate the concept, b−1

Π (0) = {0, . . . , t1− 1}, where t1 =
min{t : knt ≥ 1∀n ∈ [N]} is the first time in the time
scale of Π when all individual agents have made at least
one move. Below is an illustration of the anchor times and
the “anchoring agents” (in bold) for a collective 2-bounded
execution Π constructed from four agent trajectories:

Π =


s10
s20
s30
s40


bΠ(0)=0


s10
s2

1

s3
1

s4
1


bΠ(1)=0


s10
s2

1

s3
2

s4
2


bΠ(2)=0


s11
s2

2

s3
3

s4
3


bΠ(3)=1


s12
s22
s3

4

s4
4


bΠ(4)=2


s1

3

s22
s3

4

s4
4


bΠ(5)=2

. . .

(13)
We can now define the concept of robust satisfaction for

a collection of agent trajectories.
Definition 7: A collection of agent trajectories {πn} τ -

robustly satisfies µ at time T , denoted

{πn}, T |=τ µ, (14)

if and only if for all Π ∈ cexecsτ ({πn}),

∀ t ∈ b−1
Π (T); Π, t |= µ. (15)

In other words, a specification µ is τ -robustly satisfied
at time T by {πn} if every collective execution Π ∈
cexecsτ ({πn}) satisfies µ at all time instances t for which
the anchor time is T . Consider for example a specification
{π1, . . . , π4}, 0 |=2 µ; then for Π in (13) above we must
have Π, 0 |= µ, Π, 1 |= µ, and Π, 2 |= µ since b−1

Π (0) =
{0, 1, 2}. In addition the same must hold for every possible
Π ∈ cexecsτ ({π1, . . . , π4}).

We propose slight modifications to the encodings pre-
sented in Section IV in order to generate agent trajectories
that are τ -robust. First, we require the cLTL+ formula to be
given according to the following syntax:

µ ::= True | tcp | ©µ | µ1 ∧ µ2 | µ1 ∨ µ2

| µ1 U µ2 | µ1 R µ2.
(16)

Remark 3: The negation operator can be omitted without
loss of generality because of two reasons. First, we remind
the reader that any LTL formula can be transformed into
positive normal form (PNF) [9] where the negation operator
appears only before atomic propositions. Since the syntax of
cLTL+ is identical to LTL, any cLTL+ formula can also be
written in PNF, where negation only appears before tcp’s. An
arbitrary µ = ¬[φ,m] for φ ∈ Φ and m ∈ N can equivalently
be written as µ′ = [¬φ,N + 1−m]. Clearly, if there are at
least N + 1−m robots satisfying ¬φ, then φ is satisfied by
less than m robots, hence µ ≡ µ′.

We further limit the inner logic to LTL\{©} to remove
ambiguity resulting from asynchrony. In the (outer) cLTL+
logic ‘©’ is by Definition 7 interpreted over anchor time:
©φ holds at anchor time T if φ holds when the slowest
agent(s) has made T + 1 time steps.

To help us define the robust encodings, for each n we
define additional state vectors wnh+k for k ∈ [τ] and t ≥ k :

wnt − 1(1− zloopt−k) ≤ wnh+k ≤ wnt + 1(1− zloopt−k), (17)

and use these to define the zφ,nh+ks for k ∈ [τ] via (6).
Equipped with these additional variables we introduce robust
versions rφ,nt of the inner binary variables zφ,nt . Let µ =
[φ,m] for φ ∈ Φ, then

rφ,nt =

τ∧
k=0

zφ,nt+k, for 0 ≤ t ≤ h. (18)

In order to generate robust solutions, we modify the encoding
of an outer temporal counting proposition µ = [φ,m] as a
binary variable yµt given in (11) as follows:

m−M ≤
N∑
n=1

rφ,nt −Myµt < m. (19)

Robustification ensures that a temporal counting proposition
which would normally be satisfied only at a synchronous
instant, is now also satisfied for all possible asynchronous
states that are τ -bounded. This way, even in the worst
case scenario where the maximum bound on asynchrony is
achieved, the corresponding proposition will be satisfied.

Higher level outer binary variables yµt for ∧, ∨, © and
U are defined with the standard encodings from before, and
“release” is encoded with the following standard encoding:
if φ = µ1 R µ2, then

yµt = yµ2

t ∧
(
yµ1

t ∨ y
µ
t+1

)
, t ≤ h− 2,

yµh−1 = yµ2

h−1 ∧

(
yµ1

h−1 ∨

(
h−1∨
t=0

(
yloopt ∧ ỹµt

)))
,

ỹµt = yµ2

t ∧
(
yµ1

t ∨ ỹ
µ
t+1

)
, t ≤ h− 2,

ỹµh−1 = yφ2

h−1.

Proposition 3: The robustification (18) - (19) is sound
with respect to the robust synthesis problem for a cLTL+
specification µ given on positive normal form. That is, if
the resulting ILP is feasible a collection of agent trajectories
{πn} can be extracted such that {πn}, 0 |=τ µ.

The proof of Proposition 3 relies on reasoning over quanti-
fiers; for convenience we introduce some additional notation.
There is an infinite number of τ -bounded executions but each
execution is uniquely defined by the local time series {knt },
n ∈ [N], t ≥ 0. Given an anchor time T , the set of possible
local times is

Tτ (T) =

{
(T + δ1, . . . , T + δN)

∣∣ 0 ≤ δn ≤ τ ∀n;

∃n s.t. δn = 0

}
.

We can then define the set of all collective execution suffixes
beyond an anchor time T as

Cτ (T, {πn}) =

{
S0S1, . . .

∣∣ S0 = [s1
k1

0
, . . . , sNkN0

]T ,

(k1
0, . . . , k

N
0) ∈ Tτ (T)

}
.

The following lemma is now merely a restatement of Defi-
nition 7 which is convenient for conversion between robust
satisfaction and a quantified traditional satisfaction relation.

Lemma 1: For any T ′ ≤ T , {πn}, T |=τ µ if and only if

∀ Π̃ ∈ Cτ (T − T ′, {πn}); ∀t′ ∈ b−1

Π̃
(T ′); Π̃, t′ |= µ.

We point out the special case

{πn}, T |=τ µ ⇐⇒
∀Π ∈ Cτ (T, {πn}); ∀t′ ∈ b−1

Π (0); Π, t′ |= µ,

which essentially means that ensuring robust satisfaction at
(anchor) time T is equivalent to ensuring satisfaction at
times with anchor time 0 for all suffixes of paths Π ∈
ctraceτ ({πn}) that start at an anchor time T .

Proof: [Proposition 3] We first note that (18) results
in binary variables rφ,nt that are equal to 1 if and only if
πn, t+ δ |= φ for all δ ∈ [0, τ].

By the restriction to PNF it is enough to prove soundness
for the operators in (16), we do so recursively starting with
a temporal counting proposition µ = [φ,m] ∈ Φ × N. By
Lemma 1, {πn}, T |=τ µ if and only if

∑N
n=1 1φ(L(snkn0

)) ≥
m, for all {kn0 } ∈ Tτ (T). From (19), we have that yµT = 1
if and only if

m ≤
N∑
n=1

min
0≤∆n≤τ

zφ,nT+∆n
=

N∑
n=1

min
0≤∆n≤τ

1φ(L(snT+∆n
))

= min
{kn0 }∈Tτ (T)

N∑
n=1

1φ(L(snkn0)),

where the last equality follows from an argument comparing
minimizers. Thus yµT = 1 if and only if {πn}, T |=τ µ.

The rest of the proof consists in applying Lemma 1 and
manipulating quantifiers to show that robust satisfaction is
propagated soundly for the LTL operators ∧,©,∨, U , R :

1) {πn}, T |=τ µ1 and {πn}, T |=τ µ2 if and only if
{πn}, T |=τ µ1 ∧ µ2,

2) {πn}, T + 1 |=τ µ if and only if {πn}, T |=τ ©µ,

F D F

A
E

F

D

B

D

C

Fig. 1. Workspace: A, C, and E represent different neighborhoods, B
represents a fragile bridge, F represents charging stations and D represents
inaccessible zones.

3) If ({πn}, T |=τ µ1)∨({πn}, T |=τ µ2), then it follows
that {πn}, T |=τ µ1 ∨ µ2,

4) There exists l ≥ 0 such that {πn}, T + l |=τ µ2 and
{πn}, T + l′ |=τ µ1 for 0 ≤ l′ < l, implies that
{πn}, T |=τ µ1 U µ2,

5) If there exists l ≥ 0 such that ({πn}, T + l |=τ µ1) ∧
(∀0 ≤ l′ ≤ l; {πn}, T + l′ |=τ µ2) OR for all l ≥ 0
T + l |=τ µ2, then it holds that {πn}, T |=τ µ1 R µ2.

Note that ∧ and © are sound and complete, whereas ∨, U ,
and R are merely sound.

For space reasons we omit the last four and only show
that encoding of ∧ in (8) is sound and complete:

({πn}, T |=τ µ1) ∧ ({πn}, T |=τ µ2) ,

⇐⇒
(
∀Π ∈ Cτ (0, {πn}); ∀t ∈ b−1

Π (T); Π, t |= µ1

)
∧
(
∀Π ∈ Cτ (0, {πn}); ∀t ∈ b−1

Π (T); Π, t |= µ2

)
,

⇐⇒ ∀Π ∈ Cτ (0, {πn}); ∀t ∈ b−1
Π (T);

(Π, t |= µ1) ∧ (Π, t |= µ2) ,

⇐⇒ ∀Π ∈ Cτ (0, {πn}); ∀t ∈ b−1
Π (T); (Π, t |= µ1 ∧ µ2) ,

⇐⇒ ({πn}, T |=τ µ1 ∧ µ2) .

Due to these relations soundness is propagated through
the PNF LTL formula from the level of temporal counting
proposition which we showed was sound, thus the soundness
of the whole encoding procedure follows as before from
soundness of ILP encodings of LTL.

VI. RESULTS

We revisit the emergency response example in [5], where
10 robots are to be deployed in an environment depicted
by Fig.1. The area marked A represents the only region
where the atomic proposition a holds, and similarly for the
regions B, C, D, E, and F . We discretize the workspace
into 10 × 10 identical cells and model each robot with
a transition system with 100 states corresponding to these
cells. Robots can either choose to travel to any of the four
neighboring cells without leaving the workspace, or stay put.
Note that a monolithic LTL solution for this problem will
require constructing a transition system with 10010 states.

The specification is of the form µ =
∧7
i=1 µi, including:

• collision with obstacles, which are marked with D,
should be avoided (µ1 = �(¬[d, 1])).

• the bridge, marked by B, must never be occupied by
more than 2 robots (µ2 = �(¬[b, 3])).

• each robot should visit charging stations, marked by F ,
infinitely many times (µ3 = [�♦f, 10]).

• regions A and C must be populated with more than 5
robots and should be left empty, infinitely many times
(µ4 = �♦[a, 5], µ5 = �♦[c, 5], µ6 = �♦(¬[a, 1]) and
µ7 = �♦(¬[c, 1])).

We posit a time horizon h = 30 and the resulting
optimization problem is solved in 362 seconds on a laptop
with Intel i7 processor and 16 GB RAM, and our implemen-
tation can be found at https://github.com/sahiny/
cLTL-synth. Important frames from the obtained solution
that illustrate that the specifications are met are shown in
Fig. 2. Note that region C is populated with more than five
robots only for a single time step at t = 14. Furthermore,
even though the bridge is never occupied by more than
two robots, at time t = 13, one new robot (olive) enters
the bridge as one of the two robots (navy blue) present
on the bridge exits. Even though this solution is valid
for a synchronous execution, it can easily break with the
introduction of asynchrony. A single step delay of one of
the agents could result in violation of the aforementioned
specifications.

To overcome this problem, we solve the robustified op-
timization problem for a robustification τ = 2 with the
same specifications. The solution is found in 9.5 hours and
relevant solution frames are shown in Fig. 3. Note that this
time number of robots in A and C are greater than five
starting from t = 14 until t = 16 and from t = 30 until
t = 32 (corresponds to frame t = 3 since the loop starts
at t = 2), respectively. This implies that even in the worst
case of asynchrony, there is going to be at least a single
time step where the number of robots in A is greater than
five. Additionally, robots are more careful when crossing the
bridge. The number of agents robustly staying outside the
bridge is always greater than or equal to 8, meaning that the
bridge would never be populated by more than 2 robots even
in the worst case asynchrony.

Also note that, tasks that do not require synchrony, as in
the case of µ3, are not robustified. No matter what the asyn-
chrony is, as long as each agent visits one of the charging
stations for a single time step, µ3 will be satisfied. The robust
solution does not enforce agents to spend unnecessary time
in charging station as can be seen from Fig. 3.

VII. CONCLUSIONS

In this paper, we proposed a new logic cLTL+ for multi-
agent coordination and presented an optimization-based tra-
jectory generation method that guarantees that the collective
behavior of the agents satisfy the given cLTL+ formula. We
discussed an extension of the trajectory generation method
for the case agents move asynchronously.

t = 1 t = 9 t = 10 t = 13 t = 14 t = 15

t = 17 t = 20 t = 21 t = 22 t = 23 t = 31

Fig. 2. Important frames from the synthesized non-robust agent trajectories, where arrows indicate direction of movement. The loop starts at frame t = 9,
thus the state at t = 9 is identical to the state at t = 31. Time t = 14 is the only time step where region C is populated with more than 5 robots. Every
agent visits the charging station, and, at time t = 13, one robot enters the bridge while another one exits.

t = 1 t = 2 t = 3 t = 6 t = 7 t = 8

t = 14 t = 15 t = 16 t = 20 t = 30 t = 31

Fig. 3. Important frames from the synthesized robust agent trajectories, where arrows indicate direction of movement. The loop starts at frame t = 2,
which is identical to frame t = 31. Every agent visits the charging station and other specifications, such as populating (emptying) region A and C with
greater than or equal to 5 agents, are performed robustly.

There are several possible extensions. A trivial extension
would be to allow discrete-time linear or piecewise-linear
systems instead of finite transition systems for each agent
as done for single agent LTL synthesis in [3], [4]. Another
straight-forward extension is to expand the temporal counting
constraints to contain a subset of agents, which are capable
or responsible for specific tasks, and require the count
m to be selected from this subset, similar to censusSTL
syntax [7]. A less trivial extension is on the analysis of
asynchronous behaviors. We conjecture that completeness
of the asynchronous case can be achieved with slightly
more complicated encodings. This is the subject of current
research.

REFERENCES

[1] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2,
pp. 343–352, 2009.

[2] A. Bhatia, L. E. Kavraki, and M. Y. Vardi, “Sampling-based motion
planning with temporal goals,” in Proc. IEEE ICRA, 2010, pp. 2689–
2696.

[3] E. M. Wolff, U. Topcu, and R. M. Murray, “Optimization-based
trajectory generation with linear temporal logic specifications,” in
Proc. IEEE ICRA, 2014, pp. 5319–5325.

[4] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. Seshia, “Model predictive control with signal
temporal logic specifications,” in Proc. IEEE CDC, 2014, pp. 81–87.

[5] Y. E. Sahin, P. Nilsson, and N. Ozay, “Provably-correct coordination of
large collections of agents with counting temporal logic constraints,”
in Proc. ICCPS, 2017, pp. 249–258.

[6] A. Desai, I. Saha, J. Yang, S. Qadeer, and S. A. Seshia, “Drona:
a framework for safe distributed mobile robotics,” in Proc. ICCPS.
ACM, 2017, pp. 239–248.

[7] Z. Xu and A. A. Julius, “Census signal temporal logic inference for
multiagent group behavior analysis,” IEEE Trans. Autom. Sci. Eng.,
vol. PP, no. 99, pp. 1–14, 2016.

[8] A. Biere, K. Heljanko, T. Junttila, T. Latvala, and V. Schuppan, “Linear
encodings of bounded LTL model checking,” Logical Methods in
Computer Science, vol. 2, pp. 1–64, 2006.

[9] C. Baier and J. Katoen, Principles of Model Checking. MIT Press,
1999.

[10] C. Belta, B. Yordanov, and E. A. Gol, Formal Methods for Discrete-
Time Dynamical Systems. Springer, 2017.

