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Abstract— While observers with asymptotic convergence
guarantees can be used to design output feedback controllers
when considering control tasks like stability, if state constraints
relevant to safety exist, it is crucial to bound the estimation
error at all times. In this paper, we propose an optimization-
based design technique for bounded-error state estimators
for affine systems that provide estimation guarantees in the
presence of intermittent measurements. We treat the affine
system as a switched system where the measurement equation
switches between two modes based on whether a measure-
ment exists or is missing, and model potential intermittent
measurement patterns with a finite language that constrains
the feasible mode sequences. By utilizing Q-parametrization,
we show that an optimal estimator can be constructed that
simultaneously provides an estimate of the continuous-state and
implicitly estimates the specific missing data pattern (i.e., mode
sequence), within the given language, according to the prefix
observed so far. We illustrate with numerical examples that
this approach significantly improves the achievable estimation
bounds compared to earlier work.

I. INTRODUCTION

Control and decision-making loops in many applications
may not have access to regularly sampled sensory data.
One typical example of intermittent measurements is in
networked control systems where sensory data is transmitted
over unreliable communication networks, which are subject
to packet drops [14], [12]. Another example is due to
sensor glitches that may cause certain sensory readings to be
unavailable occasionally, and it is desirable to have control
and estimation algorithms that are robust to these tempo-
rary failures. Finally, for many autonomous systems where
perception algorithms are used to provide information about
the positions of external agents to the controlled agent, such
position information might be missing temporarily due to
classification errors in the perception algorithm or occlusion
[6]. Therefore, there is a need for control and estimation
algorithms robust to missing data.

When considering safety-critical applications, in addition
to robustness to missing data, it is necessary to have a bound
on the state estimation error when using an estimator so that
safety of the state can be assessed even during the transient
periods. Set-valued or set-membership estimation techniques
have been proposed to obtain such non-asymptotic guaran-
tees on the estimation error [2], [9], [11]. These techniques
are also related to filters optimizing `∞-induced norm (i.e.,
`1-filters). A related notion is that of equalized performance
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([4], [5]), which, roughly speaking, requires the estimation
error at the next step to be within a given bound if the
previous values of the error satisfy that bound. In our recent
work [10], we proposed a generalization of this property,
namely equalized recovery, that allows for a more relaxed
bound on the estimation error within a time interval as long
as the error gets back to its original bound at the end of the
interval.

In this paper, we propose an optimization-based method
to synthesize estimators that provide equalized recovery
guarantees with intermittent measurements. Different frame-
works exist to model intermittent measurements. Earlier
works, especially those dealing with communication net-
works, consider probabilistic models of intermittent mea-
surements [12], whereas recent works consider automaton-
based [7] or language-based [10] models to represent feasible
missing data patterns. Among these works only [10] deals
with bounded-error estimation. Similar to [10], we also
consider language-constraints to represent the missing data
patterns. On the other hand, as opposed to the worst-case
approach in [10], where robustness against the worst-case
missing data pattern is considered, our proposed estimators
adapt their filter gains based on the prefix of the missing
data pattern observed thus far; hence, significantly improving
achievable recovery levels. The design of these estimators are
enabled by Q-parametrization, which is a technique used
to recast the optimal control design for affine systems as
a convex programming problem [13]. Although, in general,
imposing additional structure on filter/controller gains in Q-
parametrization-based design leads to non-convex problems,
one of our main contributions is to show that the structure
imposed by prefix dependency of the filter gains still leads
to a convex problem. Therefore, the proposed filters not only
provide significantly improved recovery levels, but also can
be synthesized efficiently.

II. NOTATION AND PRELIMINARIES

The sets of real and binary numbers are denoted by R
and B, respectively. We denote by ‖ · ‖ infinity norms of
vectors and matrices. The symbol⊗ represents the Kronecker
product, Ik represents the identity matrix of size k, 0k×m
represents the k×m zero matrix, 1k denotes a k dimensional
vector of ones, and diag(x) represents the n × n diagonal
matrix with the elements of x ∈ Rn on the main diagonal.
The subscripts are dropped when the dimension of the matrix
is clear from the context. For matrices and vectors, the
inequalities ≥ are always taken element-wise. For a (block)
vector v, (v)k and vi:j denote its kth entry, and its sub-vector
consisting of entries from ith to jth, respectively.



For a given set Σ, the symbol Σ∗ denotes the set of all
finite-length words and Σ[T ] denotes the set of all words
with length up to T that are formed by elements in Σ. For
a word λ ∈ Σ∗, its length is denoted by |λ|. For i ≤ |λ|,
we use λ[1:i] to denote the length i prefix of λ. For example,
if λ = σ0σ1 . . . σN , then λ[1:i] = σ0σ1 . . . σi−1. Finally, the
set of all non-empty prefixes of λ is denoted by Pref(λ).

A. Properties of Block Triangular Matrices

Several important properties of block lower triangular
matrices will be exploited in this work. To describe them, the
following notion is introduced. Intuitively, it is very similar
to the leading principal minors of a square matrix, but is
applied to non-square block matrices.

Definition 1: The ith leading principal block minor of a
l × p block matrix X ∈ Ral×bp, written as BMi(X), is the
l × p block matrix:

BMi(X) = X([1 : il], [1 : ip])

for all i ∈ [1,min(a, b)].
Using this definition, several properties of the leading

principal block matrix operator BMi(·) can be shown for
lower block triangular matrices, as follows:

Lemma 1: Let W,X ∈ Rap×bq , Y ∈ Rbq×cr and Z ∈
Ras×as. The following properties hold:

1) BMi(W +X) = BMi(W ) + BMi(X);
2) If X and Y are p× q and q× r block lower triangular,

respectively, then BMi(XY ) = BMi(X)BMi(Y );
3) If Z is nonsingular and s × s block lower triangular,

then BMi(Z
−1) = (BMi(Z))−1,

for all i ∈ [1,min(a, b, c)].
Proof: The first property is a trivial consequence of

matrix addition, while the second property follows directly
from multiplication of two block lower triangular matrices.
Finally, the third property can be observed from the identity
for partitioned matrix inversion of block lower triangular
matrices.

Proposition 1: Let C̄(1) and C̄(2) be p × n block lower
triangular matrices that share the same jth leading principal
block minor:

BMj(C̄
(1)) = BMj(C̄

(2)).

Also let F (1), F (2) be n× p block lower triangular matrices
and let S be a n× n block lower triangular matrix, all with
compatible block sizes. Define

Q(i) .= F (i)(I − C̄(i)SF (i))−1 (1)

for all i ∈ {1, 2}. Then,

BMj(F
(1)) = BMj(F

(2)) ∈ Rjn×jp

if and only if

BMj(Q
(1)) = BMj(Q

(2)) ∈ Rjn×jp.

Proof: Given BMj(C̄
(1)) = BMj(C̄

(2)), we prove
both the sufficient and necessary directions:

Sufficiency: Suppose that BMj(F
(1)) = BMj(F

(2)).
Using the fact that C̄(i), S and F (i) are block lower triangular

(and hence, Q(i) is also block lower triangular) for i ∈ {1, 2}
ax well as Lemma 1, we have:
BMj(Q

(1))

= BMj [F
(1)(I − C̄(1)SF (1))−1]

= BMj(F
(1))(BMj(I)− BMj(C̄

(1))BMj(S)BMj(F
(1)))−1

= BMj(F
(2))(BMj(I)− BMj(C̄

(2))BMj(S)BMj(F
(2)))−1

= BMj [F
(2)(I − C̄(2)SF (2))−1]

= BMj(Q
(2)).

Necessity: Suppose that BMj(Q
(1)) = BMj(Q

(2)). First,
we note the (strictly) block lower triangular properties of
C̄(i), S, Q(i) and F (i). It was shown in [13] that we can
solve for F (i), for i ∈ {1, 2} from (1) as:

F (i) = (I +Q(i)C̄(i)S)−1Q(i).

Then, using the fact that C̄(i), S, Q(i) and F (i) are block
lower triangular for i ∈ {1, 2} and Lemma 1, we find that:
BMj(F

(1))

= BMj [(I + Q(1)C̄(1)S)−1Q(1)]

= (BMj(I) + BMj(Q
(1))BMj(C̄

(1))BMj(S))−1BMj(Q
(1))

= (BMj(I) + BMj(Q
(2))BMj(C̄

(2))BMj(S))−1BMj(Q
(2))

= BMj [(I + Q(2)C̄(2)S)−1Q(2)]

= BMj(F
(2)).

Proposition 2: Consider the following pairs of matrices
(C̄(1), C̄(2)) and (Q(1), Q(2)) that share the same jth princi-
pal leading block minor amongst each pair

BMj(C̄
(1)) = BMj(C̄

(2)),

BMj(Q
(1)) = BMj(Q

(2))

and consider two vectors u(1)0 and u
(2)
0 and a block lower

triangular matrix S. Define:

r(i) = (I +Q(i)C̄(i)S)u
(i)
0 (2)

for all i ∈ {1, 2}. Then, the vectors u(1)0 and u(2)0 satisfy:

(u
(1)
0 )k = (u

(2)
0 )k ∀k ∈ [1, jn]

if and only if the first jn entries of the vector r(1) is identical
to that of r(2):

(r(1))k = (r(2))k ∀k ∈ [1, jn].

Proof: The proof is similar to Proposition 1:

r
(1)
1:jn = [(I + Q(1)C̄(1)S)u

(1)
0 ]1:jn

= BMj(I + Q(1)C̄(1)S)[u
(1)
0 ]1:jn

= (BMj(I) + BMj(Q
(1))BMj(C̄

(1))BMj(S))[u
(1)
0 ]1:jn

= (BMj(I) + BMj(Q
(2))BMj(C̄

(2))BMj(S))[u
(2)
0 ]1:jn

= BMj(I + Q(2)C̄(2)S)[u
(2)
0 ]1:jn

= r
(2)
1:jn,

where we again applied the fact that C̄(i), S and Q(i) are
block lower triangular for i ∈ {1, 2} and Lemma 1. Opposite
direction is similar.

III. PROBLEM SETUP

In this paper, we consider estimation problems for affine
systems subject to missing measurements. We use the fol-
lowing two-mode switched system to represent the dynamics



and measurement updates:

x(t+ 1) = Ax(t) +Bu(t) + f + w(t),

y(t) =

{
Cx(t) + v(t), q(t) = 1,

∅, q(t) = 0,

(3)

where A,B,C, f are known system matrices, x(t) ∈ X ⊆
Rn is the continuous state, u(t) ∈ U ⊆ Rm is the input,
w(t) ∈ W ⊆ Rn is the process noise, y(t) ∈ Y ⊆ Rp ∪ {∅}
is the output measurements of the system, q(t) ∈ B is the
discrete state/mode of the hybrid system, with q(t) = 1
denoting that the measurement vector is available and q(t) =
0 corresponding to “missing” data, and v(t) ∈ V ⊆ Rp
is the measurement noise. The noise terms w(t) and v(t)
are unknown but bounded, and their bounds are known (i.e.,
W = {w ∈ Rn | ‖w‖ ≤ ηw} and V = {v ∈ Rp | ‖v‖ ≤
ηv}).

Remark 1: The assumption that the noise terms w and v
in (3) have an identity gain in front of them is just to keep
the notation in the proceeding derivations simpler. If a model
contains non-identity gain terms on the process or measure-
ment noise (i.e., B̄ww(t), C̄vv(t)), it is straightforward to
incorporate this in the proposed methodology.

We further impose a constraint on the allowable missing
data patterns. This constraint is modeled by a fixed-length
language L ⊆ BT that specifies the set of allowable mode
sequences {q(t)}t0+T−1t=t0 .

Our goal is to design an estimator

O : (U × Y)∗ → X (4)

that given the input output data so far, generates an estimate
of the state. In particular, we are interested in bounded
error estimators that satisfy the following equalized recovery
condition proposed in [10].

Definition 2 (Equalized Recovery): An estimator is said
to achieve an equalized recovery level M1 with recovery
time T and intermediate level M2 ≥M1 at time t0 if for any
estimation error ξ(t) .

= x(t)− x̂(t) with ||ξ(t0)|| ≤M1, we
have ‖ξ(t)‖ ≤M2 for all t ∈ [t0, t0 +T ] and ‖ξ(t0 +T )‖ ≤
M1.

If we consider the special case of achieving equalized
recovery level M with recovery horizon one and interme-
diate level M , this is equivalent to equalized performance,
proposed earlier in the literature [5], [8].

Now we are ready to state the problem of interest.
Problem 1: [Equalized Recovery Estimator Synthesis] Let

the initial estimate at time t0 be x̂(t0) and the initial
estimation error be ξ(t0) , x(t0)− x̂(t0). Given that

• the dynamics of the system is (3),
• the recovery level is M1 (i.e., with ‖ξ(t0)‖ ≤M1),
• the intermediate level is M2 ≥M1,
• the recovery time is T , and
• the mode signal q(t), t ∈ [t0, t0 + T − 1] satisfies a

missing data model L ⊆ BT ,

find an estimatorO : (U×Y)[T ] → X such that ‖ξ(t)‖ ≤M2

for all t ∈ [t0, t0 + T ] and ‖ξ(t0 + T )‖ ≤M1.
We consider a finite horizon dynamic estimator with the

following update rules:

x̂(t+ 1) = Ax̂(t) +Bu(t)− ue(t) + f, (5)

where ue(t) is an output injection term to be designed. In
our earlier work [10], for a single missing data pattern (i.e.,
|L| = 1), we consider the following causal output injection
term:

ue(t) = u0(t) +

t∑
τ=t0

F(t,τ)yξ(τ), (6)

where yξ(τ) ,

{
y(τ)− Cx̂(τ), q(τ) = 1,

0, q(τ) = 0,
and t0 is the initial time of the finite horizon. A necessary and
sufficient condition for solving Problem 1 with a singleton
language is given for this class of estimators in terms of a
convex feasibility problem in [10]. In case the problem has
a solution, the convex program returns the set of estimator
gains u0(t) and F(t,τ) for t ∈ [t0, t0+T ] and τ ∈ [t0, t]. The
approach is generalized to missing data patterns represented
by L′ with |L′| > 1 by considering a worst-case word λ∗ ∈
BT such that a solution for Problem 1 with L∗ = {λ∗} is
also a solution for the same problem with L′.

We now illustrate the limitations of this approach from
[10] with an example language and propose a more general
output injection term. Let L′ = {λ1, λ2} with λ1 = 1011
and λ2 = 1101. The worst-case word for L′ is λ∗ =
1001. Obviously, if we can find estimator gains that achieve
equalized recovery with levels M1 and M2 when missing
both the second and third measurements (i.e., L∗ = {λ∗}),
this same estimator achieves the same levels both for λ1
and λ2. On the other hand, assume there exists a set of
estimator gains that achieve equalized recovery with levels
M1 and M2 for λ1 and another set of gains that achieves
the same levels for σ2. While this does not imply existence
of an estimator for λ∗ (conservativeness of [10]), it does not
imply the feasibility of Problem 1 either. To see the latter,
observe that at time t0 with q(t0) = 1, we have no way to
know if λ1 or λ2 will be the upcoming pattern. Therefore,
if the gain pairs “u0(t0), F(t0,t0)” corresponding to λ1 and
λ2 are not the same, we have no way to compute ue(t0) in
(6) that will guarantee equalized recovery with the desired
level. In other words, existence of estimator gains for λ1
and λ2 separately does not guarantee that there is a causally
implementable filter.

In order to reduce conservativeness while preserving
causality, in this paper we propose prefix-based estimators
that use the following output injection term at time t:

ue(qt0:t) = u0(t, qt0:t) +

t∑
τ=t0

F(t,τ,qt0:t)yξ(τ), (7)

where yξ(t) is defined as before. Since we know that
qt0:t0+T−1 ∈ L, ue should be defined for all pre-
fixes in

⋃
λ∈L Pref(λ). For our example in the pre-

vious paragraph, we need filter gains for prefixes in
{1, 10, 11, 100, 110, 1011, 1101}. Our main result is to show
that prefix-based estimators, i.e., the filter gains in (7), which



achieve a given equalized recovery specification can be
computed efficiently using convex programming.

We call the estimator (5) with output injection mechanism
(6), a time-based estimator and the new estimator (5) with
(7), a prefix-based estimator. While the time-based estimators
use the available (non-missing) output history for feedback,
prefix-based estimators use both the output history and the
discrete-state history. By its definition, it essentially also
performs estimation at the discrete-level (or online model
detection) to detect which missing data patterns in L may
be active and adapts the filter gains accordingly. Whereas,
the time-based estimator is agnostic to the missing data
pattern and tries to be robust rather than adaptive. The
next proposition formally captures the fact that prefix-based
estimators are more general than time-based estimators.

Proposition 3: For any time-based estimator for the dy-
namical system in (3) with missing data pattern given by
a fixed-length language L, identical performance can be
obtained using a prefix-based estimator.

Proof: Let the output injection term for the time-based
estimator be

ue(t) = ū0(t) +

t∑
τ=t0

F̄(t,τ)yξ(τ). (8)

Define the filter gains of the prefix based estimator’s output
injection term in (7) as u0(t, λ)

.
= ū0(t), F(t,τ,λ)

.
= F̄(t,τ) for

all t ∈ [t0, t0+T ], τ ∈ [t0, t] and for all λ̄ ∈
⋃
λ∈L Pref(λ).

Then the two estimators are equivalent.

IV. SYNTHESIS OF PREFIX-BASED ESTIMATORS

In this section, we discuss how to synthesize a prefix-
based estimator using robust linear programming and present
a necessary and sufficient condition for the existence of an
estimator that uses prefix-based feedback of the form in (7)
and solves Problem 1.

Theorem 1: Given a prefix-based estimator with the out-
put injection term (7), we associate with it block matrices
{(F (i), u

(i)
0 )}|L|i=1 formed from the filter gains, where for all

λi ∈ L, the (j, k) block entry (F (i))jk of F (i) is defined as

(F (i))jk
.
= F

(t0+j−1,t0+j−k−1,λ[1:j]
i )

(9)

∀k ∈ [1, j] ,∀j ∈ [1, T ], and (F (i))jk = 0 otherwise; and the
jth block entry of the feedforward term u

(i)
0 is defined as

(u
(i)
0 )j

.
= u0(t0 + j − 1, λ

[1:j]
i )

∀j ∈ [1, T ]. Let

C̄(i) .=
[
diag(λi)⊗ C 0|λi|T×n

]
,

S
.
=



0 0 0 · · · 0
In 0 0 · · · 0
A In 0 · · · 0

A2 A In
. . .

...
...

...
. . . 0

AT−1 AT−2 AT−3 · · · In


.

(10)

Then, equations (1) and (2) define a bijection such that

any estimator {(F (i), u
(i)
0 )}|L|i=1 is paired with one and only

one element in the polyhedral set:

Q(L)
.
=


{(Q(i),

r(i))}|L|i=1

∣∣∣∣∣∣∣∣∣∣
Q(i) is block lower diagonal ∀i
(p ∈ Pref(λi) ∧ p ∈ Pref(λj)) =⇒(

BM|p|(Q(i)) = BM|p|(Q(j))
)
∧(

(r(i))1:|p|m = (r(j))1:|p|m
)

∀λi, λj ∈ L

 .

(11)

Proof: This follows directly from Propositions 1 and 2
as well as the invertibility of the mappings (1) and (2).

Theorem 2: There exists a prefix-based estimator (i.e.,
{(F (i), u

(i)
0 )}|L|i=1) that satisfies equalized recovery with pa-

rameters (M1,M2,L) if and only if the following robust
linear programming problem is feasible:
Find

{
(Q(i), r(i))

}|L|
i=1
∈ Q(L) (12a)

subject to
∀(‖w‖ ≤ ηw, ‖v‖ ≤ ηv , ‖ξ(t0)‖ ≤M1) :

‖ξ(i)‖ ≤M2 and ‖
[
0n×nT In

]
ξ(i)‖ ≤M1,

∀i ∈ [1, |L|],

(12b)

where
ξ(i) =(S + SQ(i)C̄(i)S)w + SQ(i)N (i)v

+(I + SQ(i)C̄(i))Jξ(i)(t0) + Sr(i),
(13)

C̄(i) and S are defined in (10), N (i) .= diag(λi)⊗ I, (14)

J
.
=


In
A
...

AT−1

AT

 . (15)

Proof: For a given prefix-based feedback
law {(F (i), u

(i)
0 )}|L|i=1, the trajectory ξ(i) =

[ξ(i)(t0)ᵀ, . . . , ξ(i)(t0 + T )ᵀ]ᵀ of the estimation error
under the ith missing data pattern can be written as a
nonlinear function of {(F (i), u

(i)
0 )}|L|i=1 just by plugging

in the output injection term (7) in (5) and computing the
error. After applying a change of variables via the mapping
in Theorem 1, we can express ξ(i) as a linear function of
{(Q(i), r(i))}|L|i=1 ∈ Q(L) as in (13). Since the equalized
recovery condition can also be written as linear constraints
in ξ(i) that should hold for all initial estimation errors
satisfying M1 bound and for all possible noise values,
problem (12) is a robust linear program, whose feasibility is
equivalent to the existence of the desired estimator. Finally,
the gains of the prefix-based feedback law are obtained by
applying the inverse of the mapping in Theoreom 1.

Remark 2: Per a similar argument to Theorem 2’s proof,
finding an estimator that minimizes the intermediate level M2

subject to a given equalized recovery level M1 and given
missing data language L can be posed as a robust linear
program over the decision variables

{
(Q(i), r(i))

}|L|
i=1

and
M2.

Since the feasibility problem in (12) contains semi-infinite
constraints due to the “for all” quantifier on the uncertain
terms, the problem is not readily solvable. However, as in
[10], techniques from robust optimization and duality [1], [3]
can be applied to obtain a linear programming (LP) problem
with only finitely many linear constraints. In particular, we
have the following theorem:



Theorem 3: There exists a prefix-based finite horizon
affine estimator of the form (7) that satisfies equalized
recovery with parameters (M1,M2,L) if and only if the
following linear program is feasible:
Find

{
(Q(i), r(i))

}|L|
i=1
∈ Q(L),

{
(Π

(i)
1 ,Π

(i)
2 )
}|L|
i=1

subject to ∀i ∈ [1, |L|],
Π

(i)
1 ≥ 0,Π

(i)
2 ≥ 0,

Π
(i)
1

ηw1ηv1
M11

 ≤M21−
[
I
−I

]
Sr(i),

Π
(i)
2

ηw1ηv1
M11

 ≤M11−
[
I
−I

]
RTSr

(i),

Π
(i)
1 Ω =

[
I
−I

]
G(i), Π

(i)
2 Ω =

[
I
−I

]
RTG

(i),

(16)

where C̄(i), N (i), J , and S are as defined in (14) and (15),
and

G(i) =
[
(I + SQ(i)C̄(i))S SQ(i)N (i) (I + SQ(i)C̄(i))J

]
,

Ω
.
=


I 0 0
−I 0 0
0 I 0
0 −I 0
0 0 I
0 0 −I

 .

V. DISCUSSION AND EXTENSIONS

Assuming that the optimization problem above is feasi-
ble, there are multiple scenarios in which this prefix-based
estimator can be applied. First, if the estimation problem
under consideration is one that is for a finite horizon, the
estimators apply directly. Second, if the missing data pattern
repeats itself with a period of T time-steps, then, the same
estimator can similarly be used with period T since the
estimator guarantees that the estimation error bound always
recovers at the end of the period to the equalized recovery
level M1.

Moreover, as in [10], the prefix-based estimators can be
used in conjunction with a filter that guarantees equalized
performance. In particular, if we consider languages L with
words that start with a q(t) = 0, then we can switch from
the equalized performance estimator to equalized recovery
estimator whenever a missing measurement occurs and re-
vert back to the equalized performance estimator after the
recovery time T .

It is easy to extend the algorithm to any finite-length
language L (as opposed to fixed-length). This just requires
defining ξ(i) in the optimization problem (12) to be of length
|λi| and M1 bound is enforced at time |λi| instead of at
time T . Furthermore, for a given language L, we can find
the minimum time T , which can be longer than the longest
word in L assuming no missing measurements will occur in
the extension, that is required for equalized recovery when
using the proposed prefix-based optimization formulation.
This analysis is helpful for understanding how much time
is required for recovery with different types of missing data
patterns, which in turn is useful for designing controllers in
a compositional manner.

TABLE I
CONSTANTS USED IN THE AUTOMATIC CRUISE CONTROL

(ACC) EXAMPLE.

m 1370 kg Ts 0.5 s
k̄0 7.58 N ηw 0.1
k̄1 9.9407 Ns/m ηv 0.05

VI. EXAMPLE: ADAPTIVE CRUISE CONTROL

In this section, we demonstrate the superiority of the
proposed prefix-based estimator on an automotive problem
that was considered in previous works. This motivating
example shows that the smallest level of estimation error that
we can guarantee using these methods is drastically improved
for a realistic scenario when using the prefix-based estimator
instead of a time-based one.

An adaptive cruise controller (ACC) is a driver assistance
system that aims to maintain a safe headway (the distance
between an ego vehicle and the lead vehicle) in the presence
of a lead vehicle and, if possible, drive at a set speed during
operation. Let the acceleration of the lead car in the ACC
system be an uncontrolled disturbance and let the inputs that
the controller manipulates be force inputs to the ego vehicle.
This can be written in the affine, discrete-time form:

x(t+ 1) = Ax(t) +Bu(t) + f + Ew(t),
y(t) = Cx(t) + v(t),

where the state x(t) = [ve(t), h(t), vL(t)]T consists of the
speed ve of the ego vehicle, headway h, and speed vL of the
lead vehicle. The system matrices (A,B,C,E, f ) are:

A =

 e−κTs 0 0
e−κTs−1

κ
1 Ts

0 0 1

, B = 1
k̄21

 (1−e−κTs)k̄1

m(1−e−κTs)−k̄1Ts
0

,
C =

[
1 0 0
0 1 0

]
, E=

 0
T2
s
2
Ts

, f =

 − k̄0
k̄1

(1− e−κT )

− k̄0
k̄21

(
m(1−e−κT )−k̄1T

)
0

,
where the constant m is the mass of the vehicle, the constants
k̄0 and k̄1 are coefficients related to friction and drag (with
κ , k̄1/m), and Ts is the sampling time. The values of these
parameters are given in Table I.

For this problem, a reasonable assumption on the lead
car (or another driver on the road) is that they limit their
acceleration to a certain range for their own comfort or
safety among other things. Another reasonable assumption
is that our sensors have documented or known quantities
such as sensitivity and discretization error (typically detailed
in a component’s data sheet). Assume that the maximum
magnitude of acceleration that the lead car uses is 0.1 m/s2

(ηw = 0.1) and that the maximum sensor error (consider a
speedometer rated to have an upper bound of 0.01 m/s of
error during operation and a radar rated with 50 cm of error)
is 0.05 (ηv = 0.05).

The set of feasible missing data patterns
that we consider for this problem is L1 =
{101111, 110111, 111011, 111101}. This may be written in
plain english as an ‘only 1 piece of data can be missing in
a given time window’ constraint and would be translated,
according to the worst case language approach, to a
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Fig. 1. Estimation error trajectories for the adaptive cruise control
system with prefix-based (left) and time-based (right) estimators
for 100 different initial conditions and with measurements that
experience missing data events according to L = L1. For both
cases, an estimator that minimizes the intermediate level M2 is
synthesized given the partial equalized recovery specification with
M1 = 1 and L = L1. The guaranteed estimation errors for each
estimator are shown with the clear bars in each plot. Observe that
the prefix-based estimator’s intermediate level M2 is much lower
than that of the time-based estimator’s.

constraint L∗1 = {100001}. For a given set of parameters,
or guarantees that the system would like to satisfy, it is
obviously harder to guarantee them for L∗1 than any word
in L1 and we would like for the optimal M2 value that we
find to reflect that.

The two approaches presented can be used to find the
optimal guarantee for M2 through a straight forward convex
optimization problem and an optimal M1 through line search.
One natural question about the two methods that we can
ask is which provides “better,” in this case meaning smaller,
bounds on the estimation error. The intuitive answer is that
it is the estimator with the prefix-based feedback law and
we illustrate this with Figure 1. The optimal M2 that can
be guaranteed for the language L1 is M∗2 = 1.1490 when
using a prefix-based observer, nearly a third of what can be
done with the time-based observer (recall that that number
was M∗2 = 2.9864 in [10]), which can only consider the
worst-case language L∗1. The two synthesis problems were
completed using YALMIP with the Gurobi solver on an
iMac with 3.4 GHz Intel Core i5 processor. The prefix-
based problem was solved in 0.11s (773 iterations) while
the time-based problem was solved in 0.05s (122 iterations).
The designs that each optimization created were then applied
to 100 sets of random disturbance trajectories and initial
conditions (w, v, ξ(0)) that satisfied the assumptions of the
problem and the resulting estimation error trajectories are
shown to lie within the domain of the bars (guarantees) in
Figure 1.

VII. CONCLUSIONS

In this work, we presented a method for synthesizing
bounded-error estimators for affine systems that provide
equalized recovery guarantees even in the presence of miss-
ing data, where the missing data patterns are constrained by a
finite-length language. Our proposed optimal estimator lever-

aged Q-parametrization as well as some additional structure
in our problem to provide an estimate of the continuous-
state while implicitly estimating the specific missing data
pattern (i.e., mode sequence), within the given language,
based on the observed history of the missing data pat-
tern. Using numerical examples, we demonstrated that this
approach significantly improves the achievable estimation
bounds compared to our earlier work that did not implicitly
estimate the mode sequence.

Our future work includes correct-by-construction control
synthesis with output feedback for safety applications, where
state estimators satisfying equalized recovery are imple-
mented to convert the control synthesis problem into one
with state feedback subject to additional bounded distur-
bance/noise due to the estimation errors. We are also in-
terested in extending the framework to detect and handle
outliers and/or corrupted measurements.
Acklowledgments: This work is partially supported by the NSF
Graduate Research Fellowship Grant Number DGE 1256260, an
Early Career Faculty grant from NASA’s Space Technology Re-
search Grants Program, and by Toyota Research Institute (“TRI”).
TRI provided funds to assist the authors with their research but this
article solely reflects the opinions and conclusions of its authors and
not TRI or any other Toyota entity.

REFERENCES

[1] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization.
Princeton University Press, 2009.

[2] D. Bertsekas and I. Rhodes. Recursive state estimation for a set-
membership description of uncertainty. IEEE Transactions on Auto-
matic Control, 16(2):117–128, 1971.

[3] D. Bertsimas, D. Brown, and C. Caramanis. Theory and applications
of robust optimization. SIAM review, 53(3):464–501, 2011.

[4] F. Blanchini and M. Sznaier. A convex optimization approach to fixed-
order controller design for disturbance rejection in siso systems. IEEE
Transactions on Automatic Control, 45(4):784–789, April 2000.

[5] F. Blanchini and M. Sznaier. A convex optimization approach
to synthesizing bounded complexity `∞ filters. IEEE Trans. on
Automatic Control, 57(1):216–221, 2012.

[6] K. Habib. ODI Resume Report on Investigation PE 16-007 concerning
Tesla automatic vehicle control systems. Technical report, NHTSA
Office of Defects Investigation, 2016.

[7] R. M. Jungers, A. Kundu, and W. P. M. H. Heemels. Observability
and controllability analysis of linear systems subject to data losses.
IEEE Transactions on Automatic Control, 2018.

[8] O. Mickelin, N. Ozay, and R. M. Murray. Synthesis of correct-by-
construction control protocols for hybrid systems using partial state
information. In IEEE American Control Conference, pages 2305–
2311, June 2014.

[9] M. Milanese and A. Vicino. Optimal estimation theory for dynamic
systems with set membership uncertainty: an overview. Automatica,
27(6):997–1009, 1991.

[10] K. J. Rutledge, S. Z. Yong, and N. Ozay. Optimization-based design of
bounded-error estimators robust to missing data. IFAC-PapersOnLine,
51(16):157 – 162, 2018. 6th IFAC Conference on Analysis and Design
of Hybrid Systems ADHS 2018.

[11] J. Shamma and K.-Y. Tu. Set-valued observers and optimal disturbance
rejection. IEEE Trans. on Automatic Control, 44(2):253–264, 1999.

[12] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan,
and S. S. Sastry. Kalman filtering with intermittent observations. IEEE
Trans. on Automatic Control, 49(9):1453–1464, 2004.

[13] J. Skaf and S. P. Boyd. Design of affine controllers via convex
optimization. IEEE Trans. on Automatic Control, 55(11):2476–2487,
Nov 2010.

[14] W. Zhang, M. S. Branicky, and S. M. Phillips. Stability of networked
control systems. IEEE Control Systems, 21(1):84–99, 2001.


