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Abstract—Operational issues could arise on a distribution
network if a third-party aggregator controls a large number
of the network’s loads without visibility of network states
or topology. This paper investigates mechanisms by which an
aggregator could coordinate with a distribution network operator
such that aggregate load actions do not negatively impact the
network. We propose two possible frameworks for coordination
and develop a specific coordination scheme in which the operator
can partially block the aggregator’s control inputs to loads. We
design a control strategy for the aggregator assuming it has
little to no information about how the operator is blocking
its control. The proposed controller estimates the number of
loads that are not receiving the aggregator’s commands and
compensates accordingly. In a simulation study, the proposed
controller consistently outperforms a benchmark controller in
terms of average tracking error.

Index Terms—Estimation, Thermostatically controlled loads,
Aggregator, Distribution network, Frequency regulation

I. INTRODUCTION

Frequency regulation and energy balancing services will be
increasingly important for power system operators as the pen-
etration of intermittent renewable power generation continues
to grow. Aggregators can provide these services by control-
ling thousands of flexible loads such that their total power
consumption tracks a desired signal. However, large-scale
participation of loads in these transmission-level services could
result in local operational issues on distribution networks, such
as violations of power flow and voltage constraints [1], [2].

Transmission operators, aggregators, and distribution oper-
ators will need to coordinate to prevent negative impacts on
distribution networks [2], [3]. How this coordination should
be structured is an open question. The U.S. Federal Energy
Regulatory Commission has recently requested comments on
the following questions: What, if any, real-time information
do distribution operators need about aggregations or individual
resources within an aggregation? Should distribution operators
be able to override real-time dispatch of aggregations to
resolve local reliability issues? [4].

Traditionally, load-control algorithms for frequency regula-
tion services have not taken distribution network constraints
into account. Instead, it has been assumed that the effect on
network operation will be negligible if the percentage of loads

This work was supported by the Rackham Predoctoral Fellowship and U.S.
NSF Grant No. CNS-1837680.

participating in the aggregation is relatively small. To the best
of our knowledge, only a few papers [5], [6] have proposed
real-time algorithms for network-aware load control at the time
scale required by frequency regulation services (i.e., seconds).
However, in both [5] and [6], the distribution operator also acts
as the load aggregator – an additional role that some operators
may not want. Moreover, in some locations, operators may be
required to allow independent aggregators to participate on
their networks.

The purpose of this paper is to achieve network-aware load
control through aggregator-operator coordination. In Section II
we propose two different frameworks for real-time coordina-
tion. In Section III, we propose a specific coordination scheme
in which an operator blocks an aggregator’s commands if they
will cause network issues, and we describe the resulting con-
trol problem for an aggregator of thermostatically controlled
loads (TCLs). In Section IV, we propose a control strategy
for the aggregator. Finally, in Section V, we test the proposed
controller against a benchmark controller in a simulation study.

The contributions of this paper are: 1) development of two
frameworks for real-time coordination between an independent
aggregator and a distribution operator; 2) development of a
controller for an aggregator whose commands can be blocked
by an operator (specifically, design of a Kalman Filter that
estimates the portion of TCLs not receiving commands and
compensates within the controller accordingly); 3) a compre-
hensive simulation study that compares the proposed controller
to a benchmark controller across multiple scenarios.

II. OPERATOR-AGGREGATOR COORDINATION

A. Objectives of Aggregator and Operator

The aggregator’s objective is to non-disruptively control
hundreds to thousands of loads such that their total power
consumption accurately tracks a frequency regulation signal.
Load control is considered non-disruptive if the end-use ser-
vice delivered by loads (e.g., refrigeration) is not disrupted [7].

The distribution operator’s objective is to provide sufficient
quality power to consumers, while also ensuring safe opera-
tion of network components. Voltage magnitudes should be
maintained between 0.95 and 1.05 p.u. and unbalance should
be less than 3% [8]. Network components, such as lines and
transformers, should not be loaded beyond their ratings.
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Fig. 1. Proposed coordination frameworks. The distribution operator provides
constraints on load actions, the aggregator provides its desired control input,
and one entity ((a) aggregator or (b) operator) combines this information into
a modified control input that is sent to the loads.

B. Coordination Frameworks

We propose two general frameworks for real-time coordina-
tion between the aggregator and operator, as shown in Fig. 1.
In the aggregator-centric framework, the operator sends the
aggregator constraints on load actions (e.g., maximum and
minimum power consumption of groups of loads), and the
aggregator computes a control input that will satisfy these
constraints. In the operator-centric framework, the operator
receives the aggregator’s desired control input (e.g., on/off
commands to each load) and modifies the input if necessary
to satisfy network constraints. The aggregator uses feedback
from the loads to compute its control inputs, and the operator
uses feedback from the network to estimate three-phase power
flows and determine constraints on load actions.

Next we compare the frameworks.
1) Tracking Accuracy: In the aggregator-centric frame-

work, the aggregator knows the constraints on its load actions
and can adjust its control to mitigate the effect on tracking
accuracy. In the operator-centric framework, the aggregator
does not have explicit knowledge of the constraints and will
have a harder time compensating for them.

2) Network reliability: In the operator-centric framework,
the operator has full control over its network and can ensure
its reliability; however, this reliability could come at the
expense of the aggregator’s objective. In the aggregator-centric
framework, the operator may only be able to ensure network
reliability by providing overly conservative constraints on load
actions, which could result in poor tracking accuracy for the
aggregator.

3) Information privacy: In the aggreagtor-centric frame-
work, the aggregator’s information is kept private, but the
aggregator gains information about the operator and may be
able to learn the network’s parameters and configuration. In the
operator-centric framework, the operator’s information is kept
private, but the operator gains information about the aggregator
and may be able to learn the aggregator’s control algorithm.

The proposed frameworks are only two of the many options
for operator-aggregator coordination. Other options include a
blend of these frameworks and a “load-centric” framework in
which loads receive direct commands from both the operator
and aggregator.
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Fig. 2. Specific coordination scheme within the operator-centric framework.
The aggregator calculates its desired control input based on the reference sig-
nal and feedback from loads. The operator estimates the feeders’ states based
on measurements and modifies the control inputs if necessary. Information on
modifications may or may not be shared with the aggregator.

TABLE I
LEVELS OF FEEDBACK FOR AGGREGATOR

Full Moderate Minimal

Aggregation’s total power consumption X X X
Percent of loads blocked X X
Blocked state of each load X
On/Off state of each load X

III. PROBLEM DESCRIPTION

This section describes a specific coordination scheme within
the operator-centric framework and the resulting control prob-
lem for the aggregator.

A. Specific Coordination Scheme

A block diagram of the coordination scheme is shown in
Fig. 2. As indicated by the figure, the aggregator’s loads may
be located on more than one of the operator’s feeders, and each
feeder has a safety controller to ensure the feeder’s constraints
are satisfied. When a safety controller receives the aggregator’s
desired control input, it uses its current estimate of the feeder’s
states to determine if the input needs to be modified to ensure
constraint satisfaction.

Although the modification of the aggregator’s input could
take many forms, in this problem we assume the operator
“blocks” control inputs to certain loads. Unblocked inputs are
sent unmodified to the appropriate loads; blocked inputs are
simply not sent. Note, we refer to a load as “being blocked”
if its control input is blocked. Finally, we define β(k) to be
the percentage of loads that are blocked at time step k.

We consider three levels of feedback for the aggregator:
“full”, “moderate”, and “minimal”. Each level of feedback is
defined in Table I. The key difference between the levels is
the amount of information that the aggregator receives about
the operator’s blocking actions. Note that all three levels of
feedback include a measurement of the total power consumed
by the load aggregation.



B. Aggregator’s Control Problem

The aggregator’s objective is to minimize the error between
the reference power P ∗

total and the load aggregation’s actual
power consumption Ptotal in each time step. In this problem,
the load aggregation consists of TCLs, such as water heaters,
air conditioners, and refrigerators. We use the term “TCL” to
refer to both the conditioning device (e.g., heat pump) and the
system being conditioned (e.g., water tank or house).

The aggregator’s control problem is to track the reference
power by switching TCLs on or off, in a manner that is
non-disruptive to the end-user. Thus, the control method must
respect the TCLs’ user-set temperature constraints:

θiset − δi/2 < θi(k) < θiset + δi/2, (1)

where θ is the TCL’s temperature, θset is the setpoint, and δ is
the width of the allowed range. A TCL’s temperature dynamics
can be described by the following model (developed in [9] and
frequently used in the literature [10], [11]):

θi(k+1) =

{
aiθi(k)+

(
1−ai

)(
θa(k)−ripiθ

)
if mi(k)=1,

aiθi(k)+
(
1−ai

)
θa(k) if mi(k)=0,

where mi = 1 indicates the TCL is on (i.e., actively trans-
ferring thermal energy) and mi = 0 indicates the TCL is
off. Variable θa is the ambient, external temperature, and
ai = exp(−h/(ci ri)), where h is the length of the model’s
discrete time step. All other parameters are defined in Table II.
Ranges of parameter values for residential air conditioning
systems, sourced from [12], [13], are shown in Table II.

We assume that the TCLs’ temperature constraints and
blocking conditions take precedence over the aggregator’s
switching commands. Let bi indicate whether the ith TCL
is blocked (bi = 1) or not blocked (bi = 0). Let si be the
aggregator’s switching command to the ith TCL with si = 1
indicating “switch on”, si = −1 indicating “switch off ”, and
si = 0 otherwise. Thus, when the ith TCL is under aggregator
control, its on/off state is determined by

mi(k + 1) =



1 if θi(k) ≥ θiset + δi/2,

0 if θi(k) ≤ θiset − δi/2,
1 if si(k) = 1, bi(k) = 0, and (1),
0 if si(k) = −1, bi(k) = 0, and (1),
mi(k) otherwise.

(2)
Lastly, if there are N TCLs in the aggregation, their total
power consumption is given by Ptotal(k) =

∑N
i=1m

i(k)pi,
where pi = piθ/ζ

i is the rated electrical power consumption
of the ith TCL and ζi is the coefficient of performance.

IV. CONTROLLER DESIGN

A. Probabilistic Control

We use probabilistic commands to switch TCLs on/off, as
in [12], because of the light communication requirements. If
the operator does not modify the aggregator’s desired control
inputs, then only two numbers need to be broadcast to all
TCLs: uoff the probability with which on TCLs should switch

TABLE II
AIR CONDITIONER PARAMETERS

Parameter Values Unit

Setpoint temperature (θset) 18-27 ◦C
Width of temperature range (δ) 0.25-1 ◦C
Thermal resistance (r) 1.2-2.5 ◦C/kW
Thermal capacitance (c) 1.5-2.5 kWh/◦C
Thermal energy transfer rate (pθ ) 10-18 kW
Coefficient of performance (ζ) 2.5 –

off and uon the probability with which off TCLs should switch
on. Each TCL determines its individual switching command
si by drawing a random number zi(k) from the uniform
distribution between 0 and 1, and

si(k) =


1 if mi(k) = 0 and zi(k) < uon(k),

−1 if mi(k) = 1 and zi(k) < uoff(k),

0 otherwise.

Once si is calculated, a TCL switches according to (2).
Probabilities to switch are calculated based on the predicted

error between P ∗
total(k+1) the desired total power in the next

time step and Ptotal(k + 1|k) the predicted total power in the
next time step. If P ∗

total(k+1) ≥ Ptotal(k+1|k), then uoff(k) = 0
and

uon(k) = K
|P ∗

total(k + 1)− Ptotal(k + 1|k)|
P̂off(k)

. (3)

If P ∗
total(k + 1) < Ptotal(k + 1|k), then uon(k) = 0 and

uoff(k) = K
|P ∗

total(k + 1)− Ptotal(k + 1|k)|
P̂on(k)

. (4)

In (3) and (4), K is a proportional control gain, and P̂on and
P̂off are estimates of the total capacity of all on and unblocked
TCLs and all off and unblocked TCLs, respectively. Lastly, we
constrain switching probabilities to within the range [0, 1].

B. Estimator

To implement the controller in (3)-(4), the aggregator needs
to estimate the total capacities available to switch, P̂on and
P̂off. We assume the aggregator has little to no information
about the operator’s blocking actions. Thus, our approach is
to estimate the number of TCLs that are on and not blocked
Non and the number that are off and not blocked Noff, and
then estimate the capacities as

P̂off(k) = poffN̂off(k) and P̂on(k) = ponN̂on(k).

Hereˆ indicates an estimate, and poff and pon are the average
power ratings of an off TCL and an on TCL, respectively. For
simplicity, we model poff and pon as constant parameters; in
practice, they are time-varying for a heterogeneous aggrega-
tion.

We formulate a linear time varying model that represents
aggregate TCL dynamics and for which a Kalman Filter can
be designed. The aggregate model is

x(k + 1) = A(k)x(k) +w(k)

y(k) = Cx(k) + v(k),
(5)



where w and v are process noise and measurement noise,
respectively. The state x is defined as

x(k) =
[
Non(k) Noff(k) N[on](k) N[off](k)

]T
,

where N[on] the number on and blocked, and N[off] the number
off and blocked.

We model the state dynamics as a Markov chain, in a similar
manner to [12]. However, in this formulation the Markov
chain is time-varying because we include the time-varying
commands uon and uoff within the transition probabilities, as
in [14]. The Markov chain can be represented by the transition
matrix

A(k) =


1− f − uoff(k) g + uon(k) 0 0
f + uoff(k) 1− g − uon(k) 0 0

0 0 1− f g
0 0 f 1− g

 .
The upper block in A consists of the transition probabilities
for TCLs that are not blocked; the lower block consists of
transition probabilities for TCLs that are blocked. The model
does not include transition probabilities between blocked and
unblocked states because the operator determines these tran-
sitions with its blocking actions; thus, from the perspective of
the aggregator, these transitions are an unknown disturbance
to the state. Scalars f and g represent the probability of
transitions caused by TCLs’ internal thermostat control, i.e.,
from “internally switching”. Scalar f is the probability that
an on TCL is switched off internally, and scalar g is the
probability that an off TCL is switched on internally. In the
upper block, the probability of transitioning to a new state is
equal to the sum of the probabilities of switching internally
and switching externally.

The output y and corresponding C matrix are defined as

y(k) =

[
Ptotal,meas(k)

N

]
C =

[
pon 0 pon 0
1 1 1 1

]
.

Here the first output equation relates the number of TCLs that
are on to the measured power consumption of the aggregation.
The second output equation is an equality constraint on the
states: the sum of the states must be equal to the number of
TCLs in the aggregation. To incorporate this constraint into
the Kalman Filter, we assume the second output is a perfect
measurement with zero measurement noise [15].

The system (5) is observable in the time interval
τ = [k, (k + 3)] if the observability matrix O(τ) =[
C;CA(k);CA(k+1)A(k);CA(k+2)A(k+1)A(k)

]
has

rank 4 [16]. We find sufficient conditions for observability by
finding conditions under which the matrix has four linearly
independent rows. Let the matrix Osub be made up of rows
{1, 2, 3, 5} of O. Then O has four linearly independent rows
if Osub’s determinant is non-zero. The determinant is given by

detOsub(τ) = p3on

(
uon(k)

(
uoff(k)(1− f)− fuon(k + 1)

)
+ uoff(k)

(
guoff(k + 1) + uon(k + 1)(g − 1)

))
.

Recall that in each time step either uoff = 0 or uon = 0. Thus,
conditions for a non-zero determinant are as follows:

1) uoff(k+1)6=0 & uon(k)6=0, if uon(k+1)=0 & uoff(k)=0;
2) uon(k+1)6=0 & uoff(k)6=0, if uoff(k+1)=0 & uon(k)=0;
3) uoff(k+1)6=0 & uoff(k) 6=0, if uon(k+1)=0 & uon(k)=0;
4) uon(k+1) 6=0 & uon(k)6=0, if uoff(k+1)=0 & uoff(k)=0.

In summary, a sufficient condition for system observability is
for either uon or uoff to be non-zero in each time step. Note,
the internal switching probabilities f and g cannot cause the
determinant to be zero because we assume TCLs are cycling
through their temperature range, which implies f and g are
not equal to 0 or 1 by definition.

We use a time-varying Kalman Filter [17] to estimate the
states of the stochastic model described by (5). Process noise
w and measurement noise v represent plant-model mismatch
and unknown disturbances. We assume that w and v are zero-
mean, Gaussian, white noise processes with covariance Q and
R, respectively.

C. Implementation

In the case of full feedback, the proposed controller does
not use all of the information available to it in every time
step. Instead, the Kalman Filter is used to estimate the
state, except for time steps in which the percentage blocked
changes, i.e., β(k) 6= β(k − 1). At these time steps, the
Kalman Filter is bypassed and the state estimate is updated
according to x̂(k) =

[∑
mi(k)

(
1−bi(k)

)
,
∑

(1−mi(k))
(
1−

bi(k)
)
,
∑
mi(k)bi(k),

∑
(1−mi(k))bi(k)

]
, where all summa-

tions are from i = 1 to N .
In the case of moderate feedback, the proposed controller

uses information on the percentage blocked to improve its
state estimate. At time steps when β(k) 6= β(k − 1), the
Kalman filter produces the state estimate x̂(k) as usual, and
then we update the estimate such that the percentage of TCLs
estimated to be blocked equals β(k). The update is given by
x̂(k) =

[(
1 − β(k)

)(
x̂1(k) + x̂3(k)

)
,
(
1 − β(k)

)(
x̂2(k) +

x̂4(k)
)
, β(k)

(
x̂1(k) + x̂3(k)

)
, β(k)

(
x̂2(k) + x̂4(k)

)]
.

D. Benchmark Controller

The benchmark controller computes switching probabilities
with (3)-(4) but does not use a Kalman Filter to estimate P̂on
and P̂off. Instead, with full feedback, the benchmark controller
estimates are given by P̂on(k) =

∑N
i=1 p

imi(k)
(
1 − bi(k)

)
and P̂off(k) =

∑N
i=1 p

i
(
1 − mi(k)

)(
1 − bi(k)

)
. With mod-

erate feedback, the benchmark controller estimates are given
by P̂on(k) =

(
1 − β(k)

)
Ptotal(k) and P̂off(k) =

(
1 −

β(k)
)(∑N

i=1 p
i − Ptotal(k)

)
. Finally, with minimal feedback,

the controller uses the same equations as with moderate
feedback, but β(k) is set to 0 because the aggregator does
not have any information about blocking.

V. SIMULATION STUDY

A. Setup

We test controller performance using 1-hour simulations
of 1000 TCLs controlled to tracking a frequency regulation
signal. A constant set of TCLs is blocked between minutes
20 and 40. We test each controller in 12 different scenarios,
where a scenario is defined by a combination of blocking level



TABLE III
TUNING PARAMETERS

Controller Feedback K Q R

Benchmark Full, Moderate 0.96 – –
Benchmark Minimal 1.03 – –
Proposed Full, Moderate 0.96 2.5diag(3, 3, 1, 1) diag(1, 0)
Proposed Minimal 1 9.3diag(1, 7, 1, 7) diag(1, 0)

diag(·) maps an n-tuple to the corresponding nxn diagonal matrix.

(0%, 20%, 40%, or 60% of the population) and feedback level
(see Table I).

We run 24 randomized trials for each scenario. Each trial
has: a different random instance of TCL parameters, different
random numbers generated during probabilistic dispatch, and
a different frequency regulation signal. TCL parameters are
drawn from the uniform distributions described in Table II. For
the frequency regulation signal, Trial 1 uses the first 1-hour
segment of PJM’s RegD signal [18] from June 3, 2018, Trial 2
uses the second segment, and so on. In all trials, the ambient
temperature is 32◦C, and the TCL aggregation’s regulation
capacity is set to +/-20% of baseline power consumption.

For these simulations, we use a persistence model to predict
the total power of the aggregation in the next time step
(i.e., Ptotal(k + 1|k) = Ptotal,meas(k) in (3)-(4)) because using
the aggregate model (5) for prediction would result in poor
accuracy. In addition, we do not add noise to the measurement
of Ptotal, i.e., Ptotal,meas(k) = Ptotal(k).

Values for tuning parameters are listed in Table III. The
parameters for each combination of controller and feedback
level are tuned separately, although sometimes are equal. For
the proposed controller, we iteratively tune Q and R with
K = 1. Then, with Q and R fixed for the proposed controller,
we sweep through values for K from 0.95 to 1.05 for both
controllers. We select the parameter values that yield the
lowest sum of root-mean-square errors (RMSE) in tracking,
across Trials 1-4 and all blocking levels.

Prior to the test hour, we run the simulation for an hour to
ensure steady-state conditions at the start of the test. We also
use this pre-test hour to calculate the aggregation’s baseline
power consumption, the A matrix’s transition probabilities,
and the parameter pon. For simplicity, we set poff = pon.

B. Results

1) Estimation Performance: The proposed controller’s
Kalman Filter is able to estimate the number of TCLs that
are blocked, even when no explicit blocking information is
available. Performance of the Kalman Filter during Trial 4
is shown in Fig. 3. State estimates are more accurate when
feedback on percent blocked is available (left column) than
when no feedback on blocking is available (right column), as
would be expected. Step changes in the percentage blocked
occur at minutes 20 and 40; in the case of minimal feedback,
these step changes cause a lag in the state estimates.

2) Tracking Performance: Figure 4 shows the proposed
and benchmark controllers tracking the frequency regulation
signal while 60% of TCLs are blocked in Trial 2. We evaluate
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Fig. 4. Benchmark and proposed controllers tracking the frequency regulation
signal during the blocking period of Trial 2 with 60% blocked. The proposed
controller improves upon the benchmark controller at all levels of feedback.

performance in terms of percent RMSE, which is the error in
total power consumption as a percentage of the aggregation’s
average baseline power consumption. In this trial, the proposed
controller improves upon the benchmark controller at every
level of feedback. The decrease in RMSE is largest in the
case of minimal feedback.

Table IV reports the average RMSE in tracking for each
scenario, with the average taken across the 24 trials. In every
scenario, the proposed controller’s average RMSE is less than
or equal to that of the benchmark controller. On average, error
increases as the percentage blocked increases and as the level
of feedback decreases. The proposed controller’s improvement
over the benchmark is not very large in most scenarios, with
a decrease in average percent RMSE of ≤ 0.03% in 10 of 12
scenarios. The largest improvements occur in the remaining



TABLE IV
CONTROLLER PERFORMANCE: AVERAGE % RMSE IN TRACKING

Percent
Blocked

Full Feedback Moderate Feedback Minimal Feedback

BM PP BM PP BM PP

0% 0.76 0.75 0.76 0.75 0.77 0.75
20% 0.77 0.75 0.77 0.76 0.78 0.75
40% 0.78 0.76 0.79 0.77 0.86 0.77
60% 0.86 0.86 0.89 0.86 1.22 0.93

BM = Benchmark controller and PP = Proposed controller
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(Note: outliers are not plotted, and not all y-axis scales are equal.)

two scenarios when there is minimal feedback and blocking
is at 40% and 60%. In these scenarios, average percent RMSE
decreases by 0.09% and 0.29%, respectively.

Box plots of the 24 trials across all scenarios are shown in
Fig. 5. The proposed controller generally reduces the maxi-
mum and median RMSE across the 24 trials. In all scenarios,
the maximum error decreases with the proposed controller; in
all but two scenarios, the median error also decreases. As with
the mean error results, the box plots show that the proposed
controller yields the biggest improvements when 40% or 60%
of TCLs are blocked and minimal feedback is available.

It is somewhat surprising that the proposed controller
outperforms the benchmark controller when full feedback is
available. This result may be because the benchmark controller
lacks information on how many TCLs are outside of their set
temperature range and thus unavailable to switch. In contrast,
the proposed controller has some information of this nature
because its Kalman Filter estimates how many TCLs are
generally unavailable, whether it is due to blocking or out-
of-range temperature.

VI. CONCLUSION

We have proposed two coordination frameworks – “opera-
tor centric” and “aggregator centric” – that enable network-
aware load control while maintaining the independence of the
aggregator and the distribution operator. Working within the
operator-centric framework, we proposed a specific scheme in
which the operator has the authority to block aggregator com-
mands in order to protect network reliability. We then designed
a controller for the aggregator that successfully estimates and
compensates for the number of loads that are blocked. In future
work, we plan to develop a strategy for the operator that it is
maximally permissive of the aggregator’s control and includes
a real-time assessment of network reliability.
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