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Abstract— In this paper, we first propose a method that can
efficiently compute the maximal robust controlled invariant
set for discrete-time linear systems with pure delay in input.
The key to this method is to construct an auxiliary linear
system (without delay) with the same state-space dimension
of the original system in consideration and to relate the
maximal invariant set of the auxiliary system to that of the
original system. When the system is subject to disturbances,
guaranteeing safety is harder for systems with input delays.
Ability to incorporate any additional information about the
disturbance becomes more critical in these cases. Motivated
by this observation, in the second part of the paper, we
generalize the proposed method to take into account additional
preview information on the disturbances, while maintaining
computational efficiency. Compared with the naive approach
of constructing a higher dimensional system by appending the
state-space with the delayed inputs and previewed disturbances,
the proposed approach is demonstrated to scale much better
with the increasing delay time.

I. INTRODUCTION

As more and more autonomous functionality is introduced
in human-cyber-physical systems, such as passenger vehicles
and aircraft, guaranteeing their safe and correct operation
becomes a major concern. From a control’s perspective,
safety guarantees can be obtained by computing the so
called robust controlled invariant sets (RCIS) [1]–[3], which
characterize the set of states from which one can find safe
control actions such that the system trajectory is guaranteed
to avoid the unsafe states indefinitely. However, the curse of
dimensionality limits our ability to compute RCIS for high-
dimensional systems.

Recently, robust controlled invariant sets are used to design
controllers and supervisors for vehicle safety systems [4],
[5]. While there exist simple linear dynamical models for
vehicle control, when deploying such controllers on actual
vehicles [6], we have realized that there is a non-negligible
time delay on the input signal, caused either by the delays in
vehicle communication buses or by the dynamics of low-level
actuators. Although systems with delays can be equivalently
represented by higher-dimensional systems without delay by
augmenting the system with additional states corresponding
to delayed inputs, computing invariant sets for such high-
dimensional systems is challenging. On the other hand, this
equivalent augmented system is very structured and our goal
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in this work is to exploit this structure to compute invariant
sets for systems with input delays in a scalable manner. A
second concern for systems with input delays is that when
the system is subject to additional disturbances, it becomes
harder to guarantee invariance with a delayed input. On the
other hand, future values of some of the external disturbances
can be previewed by the controller [7]. In the second part
of the paper, we consider the problem of incorporating such
preview information in invariant set computation, without
compromising scalability.

There are several results in the literature related to the
invariance problem for time-delay systems. Lyapunov-based
methods are recently explored by [8], [9]. In particular,
safety barrier functionals are proposed in [8] for general
continuous-time nonlinear autonomous time-delay systems,
and “Artstein model reduction” method [10] is used in [9]
for computing control barrier functions for continuous-time
linear systems with input delay. Even though [9] considers
continuous-time systems only, it is closely related to our
approach as our construction of the auxiliary system also uses
a model reduction technique similar to Artstein’s method but
in a discrete-time setting. For methods based on discrete-time
linear systems, the paper [11] tackles with time-varying input
delay using polytope approximations, and then computes the
maximal output admissible set of the closed-loop system
stabilized by a linear feedback law. The papers [12], [13],
on the other hand, compute invariant sets for discrete-
time autonomous time-delay systems with different levels
of conservativeness. However, the above methods are mainly
designed for systems without disturbance, have no guarantees
on the maximality of the resulting controlled invariant set,
and cannot incorporate preview information, thus are not
applicable to our problem.

The main contributions of this paper are as follows:

• We construct a delay-free auxiliary system by predicting
the future states in τ steps (where τ is the input delay),
and then show that the computation of the maximal
RCIS for the high-dimensional equivalent of the delayed
system can be reduced to the computation of the maxi-
mal RCIS of the low-dimensional auxiliary system and
τ +2 set intersection operations (Section III).

• We extend the proposed method for systems with both
input delay and disturbance preview, where the preview
on disturbance can mitigate the difficulty in controlling
systems with large input delays (Section IV).

• We provide two examples to show the efficiency and
utility of the proposed method (Section V).



Notation: Given two sets S1 and S2 in Rn, the Minkowski
difference between them is denoted by S1	S2 = {x | x+y ∈
S1, ∀y ∈ S2}. The Minkowski sum between them is denoted
by S1⊕S2 = {x+y | x ∈ S1,y ∈ S2}. The Minkowski sum of
a collection of sets {Si}i∈I is denoted by ∑i∈I Si. Note that
we apply the convention that if b < a, the Minkowski sum
∑

b
i=a Si = /0. Moreover, with a slight abuse of notation, we

let x+S1 denote the Minkowski sum of a singleton set {x}
and a set S1. For a collection of sets {Si}n

i=1, the cartesian
product of Si for i from 1 to n is denoted by S1×S2× ...×Sn.
For the case S1 = S2 = ...= Sn = S, S1× ...×Sn is denoted by
Sn for short. For a polytope D in Rn and a linear mapping
L : Rn→ Rm, the linear transformation of D with respect to
L is denoted by LD .

= {Lx | x ∈ D}.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we introduce some basic concepts on con-
trolled invariant sets and then provide the problem statement.

A. Maximal Controlled Invariant Set

Consider a linear system Σ defined by

x(t +1) = f (x(t),u(t),d(t)) .
= Ax(t)+Bu(t)+Fd(t), (1)

where x(t)∈Q⊆Rn is the system state, u(t)∈U ⊆Rm is the
control input and d(t) ∈ D is a non-measurable disturbance
at time t, and A, B, F are constant matrices with appropriate
dimensions. The sets Q,U are the state space and input space,
and D is the disturbance set, respectively. The disturbance
d is called non-measurable if the input u(t) is determined
before the disturbance d(t) is determined at each time step
t ≥ 0.

Assume that the safety constraints on Σ is captured by a
subset X of Q, in the sense that we want the system trajectory
to stay within X indefinitely. We call X the safe set of Σ. A
subset C of X is called controlled invariant within X if for
all x ∈ C, there exists u ∈U such that for all d ∈ D, x+ =
f (x,u,d) ∈ C. Since by definition the union of controlled
invariant sets in X is a controlled invariant set, there exists
a unique maximal controlled invariant set Cmax in X that
contains any controlled invariant set in X .

Our interest is to compute the maximal controlled invariant
set Cmax, because once Cmax (or any controlled invariant set)
is obtained, a static feedback law can be extracted from Cmax
to ensure that the trajectory of the closed-loop system stays
within Cmax ⊆ X indefinitely [1]. Next we describe the fixed
point algorithm for computing Cmax.

Given system Σ as in (1), for a subset V of Q, the
controlled predecessor operator PreΣ(V ) is defined as

PreΣ(V ) = {x | ∃u ∈U,∀d ∈ D, f (x,u,d) ∈V}, (2)

that is the set of states which can reach V in one step robust
to any disturbance d ∈ D. A set C is a controlled invariant
set in X if and only if

C ⊆ PreΣ(C)∩X . (3)

Define V0 = X and recursively define

Vk+1 = PreΣ(Vk)∩X . (4)

According to the definition, Vk is the maximal set of states
that if the system starts from Vk, there exists a feedback
control law that can control the system to stay within
X for at least k steps. Therefore, Vk ⊇ Cmax is an outer
approximation of Cmax. By the monotonicity of Vk, the limit
V∞ = limk→∞ Vk = ∩∞

i=1Vk is well defined. If Vk converges
in finitely many steps, namely that there exists a k such
that Vk = Vk+1, then Cmax = Vk, and Cmax is called finitely
determined [2]. Otherwise, under mild conditions given in
[1], Vk converges to Cmax in the limit, while there also exists
slight modifications of this iteration with finite termination
guarantees that can approximate Cmax to arbitrary precision
[3]. Hence, in the rest of this paper, we assume that Cmax =
V∞ holds though we believe approximation results also carry
through our analysis.

The following proposition reveals a key property of the
maximal controlled invariant set, which is used to prove our
main results.

Proposition 1. Suppose that Cmax = V∞. Then for all x 6∈
Cmax, there exists N < ∞ such that if the system starts at x,
the system state can be forced to reach the unsafe set Q\X
by disturbances in at most N steps.

Proof. Define Wk = Q\Vk for k≥ 0 and W∞ = ∪∞
i=1Wk. Then

W0 =Q\X is the unsafe set, and as the complement of Vk, Wk
is the maximal set of states that if the system starts from Wk,
there exists disturbances that can force the system state to
reach the unsafe set W0 in at most k steps. By De Morgan’s
law, W∞ = X\V∞.

Now pick x 6∈Cmax = V∞. Then x ∈W∞ = ∪∞
i=1Wk, which

implies that there exists a N < ∞ such that x ∈ WN . As
discussed above, if the system starts from state x ∈ WN ,
disturbance can force the system state to reach W0 in at most
N steps.

B. Problem Statement

Consider a linear system with τ-step pure delay in control
input, that is

Σdelay : x(t +1) = Ax(t)+Bu(t− τ)+Fd(t) (5)

with x(t)∈Q, u(t)∈U and non-measurable d(t)∈D, where
the sets Q, U and D are polytopes. System Σdelay can be
written in the form of (1) by appending the past τ-step
inputs to the state space. The resulting (n+mτ)-dimensional
augmented system takes the form:

Σaug :



x(t +1) = Ax(t)+Bu1(t)+Fd(t)
u1(t +1) = u2(t)
u2(t +1) = u3(t)

...
uτ(t +1) = u(t),

(6)

where x(t) ∈ Q, u(t) ∈ U and non-measurable disturbance
d(t) ∈ D for all t ≥ 0. If we want the state trajectories of
the system Σdelay to remain in a polytopic safe set X ⊆ Q,
this is the same as asking the trajectories of the augmented
system Σaug to remain in the safe set S = X×Uτ . Therefore,



one can state the invariance problem for a system with input
delay in terms of the system Σaug as follows.

Problem 1. Find the maximal controlled invariant set of the
system in Σaug within the safe set S.

By the discussion of the preceding section, Problem 1
can, in principle, be solved by the iterative algorithm in
(4). However, it is well-known that this standard iterative
algorithm suffers from the curse of dimensionality. Since the
dimension of the augmented system increases linearly with
the delay steps τ , the computation of V∞ becomes intractable
very soon as τ increases. In what follows, we propose a
method to solve Problem 1 whose complexity is independent
of τ .

III. STATE PREDICTION AND PREDICTION DYNAMICS

Our solution approach relies on the construction of a
reduced-order delay-free auxiliary dynamics with state space
dimension the same as x(t) in (5). We then show that the
maximal controlled invariant set of the system in Σaug can
be reconstructed from the maximal controlled invariant set
of the delay-free dynamics within a modified safe set. Since
the dimension of new dynamics does not explode as the
delay step τ increases, the proposed method is computa-
tionally more efficient than directly computing the maximal
controlled invariant set of (6).

Our method is inspired by the following observation.
Suppose that for the case τ = 0, the maximal controlled
invariant set of Σdelay in safe set X is C. Also, suppose
that there is a sensor that can measure the future τ-step
values of the disturbance d. Then at each time t, the exact
state evolution in τ steps, namely x(t + 1), ..., x(t + τ),
can be calculated based on the measurement of x(t), future
disturbance d(t), ..., d(t + τ − 1) and the extended states
u1(t), ..., uτ(t), which essentially correspond to past inputs.
Then for the dynamics (6), as long as x(t + τ) ∈C, we can
pick u(t) such that x(t + τ + 1) ∈C. It is not hard to show
that

∃u(t) s.t. x(t + τ) ∈ X ,∀t ≥ 0⇐⇒ x(τ) ∈C, (7)

which is very close to our goal except that
x(0),x(1), ...,x(τ−1) can be out of X .

Moreover, by definition, d(t), ...,d(t + τ − 1) are not ac-
cessible at time t. Nevertheless, we can predict the state
evolution by assuming the future disturbances to be zero.
The question is if a result similar to (7) exists. The answer
is yes. We are going to show this result in the rest of this
section.

First, we expand Σaug in τ steps to obtain the exact
expression of x(t + τ) as

x(t + τ) =Aτ x(t)+
τ

∑
i=1

Ai−1Buτ−i+1(t)+

τ

∑
i=1

Ai−1Fd(t + τ− i). (8)

Since x(t), u1(t), ..., uτ(t) are known at time t, we define

x̂τ(t) = Aτ x(t)+
τ

∑
i=1

Ai−1Buτ−i+1(t), (9)

as a prediction of x(t + τ) based on the state measurements
of dynamics Σaug at time t. Define the polytope Dτ =

∑
τ
i=1 Ai−1FD, which is the exact bound of the prediction error

(x(t + τ)− x̂τ(t)). Note that Dτ is time invariant and can be
computed offline. Then, for all t ≥ 0, we have the following
inclusion relation:

x(t + τ) ∈ x̂τ(t)+Dτ

.
= {x̂τ(t)+d | d ∈ Dτ}, (10)

which implies the following statement:

x̂τ(t)+Dτ ⊆ X ,∀t ≥ 0⇒ x(t + τ) ∈ X ,∀t ≥ 0. (11)

Therefore, if there exists a controller u(t) such that x̂τ(t)∈
X 	Dτ for all t ≥ 0, such a controller guarantees that x(t +
τ) ∈ X for all t ≥ 0.

According to the analysis above, it is important to under-
stand the relation between x̂τ(t) and x̂τ(t +1). By definition
and after some simple algebra, we have Σaux defined by

x̂τ(t +1) = Aτ x(t +1)+
τ

∑
i=1

Ai−1Buτ−i+1(t +1) (12)

= Ax̂τ(t)+Bu(t)+Aτ Fd(t), (13)

where d(t) ∈ D is a non-measurable disturbance as before.
Thus, the problem becomes: given x̂τ(t) ∈ X 	Dτ , find a

u(t) ∈U so that for all d(t) ∈D, x̂τ(t+1) ∈ X	Dτ . All that
we need is to compute the maximal controlled invariant set
of Σaux within X 	Dτ , denoted as Ĉ. This computation can
be done using the standard iterative algorithm in (4). Since
the dimension of Σaux is equal to the dimension of x in (5),
the complexity is not directly affected by the delay time τ .

Once Ĉ is obtained, to guarantee x(t+τ)∈ X for all t ≥ 0,
we need the initial state x(0), u1(0), ..., uτ(0) of dynamics
Σaug to be in the set

Cτ = {(x(0),u1(0), ...,uτ(0)) | x̂τ(0) ∈ Ĉ}, (14)

where x̂τ(0) is a function of x(0), u1(0), ..., uτ(0) defined in
(9).

Furthermore, we want x(0), x(1), . . . , x(τ−1) to be within
X . Note that x(0), . . . , x(τ−1) are determined by x(0), u1(0),
. . . , uτ−1(0), that is

x(k) = Akx(0)+
k

∑
i=1

Ai−1Buk−i+1(0)+
k

∑
i=1

Ai−1Fd(k− i).

(15)

Therefore, for k = 0,1, ...,τ−1, the condition under which
x(k) is in X for arbitrary d(0), . . . , d(k−1) is

Ck =

{
(x(0),u1(0), . . . ,uτ(0))

∣∣∣∣(Akx(0)+
k

∑
i=1

Ai−1Buk−i+1(0)
)

∈ X	
k

∑
i=1

Ai−1FD
}
. (16)



Now we denote the set of states in S = X×Uτ satisfying
the constraints listed in (14) and (16) by

Cext =

(
τ⋂

i=0

Ci

)
∩S. (17)

Note that each Ck for k = 0,1, . . . ,τ − 1 is just a polytope
with explicit definition. Similarly, the polytope Cτ is also
explicitly defined in (14), once the set Ĉ is computed, a
computation that takes place in the n-dimensional state space
of the system Σaux. Therefore, the only polytopic operation in
(n+mτ)-dimensional space in computing Cext is the polytope
intersection in (17). Now, we state our main result.

Theorem 1. Cext is the maximal controlled invariant set of
dynamics Σaug in the set S.

Proof. Denote the maximal controlled invariant set of Σaug
contained by S as Caug.

First, we want to show Cext ⊆Caug. It is enough to show
that Cext is a controlled invariant set in S.

Let (x(t),u1(t),u2(t), ...,uτ(t)) ∈ Cext . We want to
find a u(t) ∈ U such that for all d(t) ∈ D, (x(t +
1),u2(t), ...,uτ(t),u(t)) ∈Cext .

Since (x(t),u1(t),u2(t), ...,uτ(t))∈Cτ ∩S, we have x̂τ(t)∈
Ĉ. Hence, there exists u(t) ∈U such that for all d(t) ∈ D,
x̂τ(t +1) ∈ Ĉ. That is,

(x(t +1),u2(t), ...,uτ(t),u(t)) ∈Cτ . (18)

Also, since (x(t),u1(t),u2(t), ...,uτ(t)) ∈
⋂

τ−1
i=0 Ci, {x(t +

1), ...,x(t + τ−1)} is contained by X . Because x(t +1) ∈ X
and u(t) ∈U ,

(x(t +1),u2(t), ...,uτ(t),u(t)) ∈ S. (19)

Since (x(t),u1(t), ...,uτ(t)) ∈ Cτ , we have x̂τ(t) ∈
Ĉ and thus x(t + τ) ∈ X . Hence, for state (x(t +
1),u2(t), ...,uτ(t),u(t)), for arbitrary d(t+1), ...,d(t+τ−1),
it is verified that {x(t + 1), ...,x(t + τ)} is contained by X .
Hence,

(x(t +1),u2(t), ...,uτ(t),u(t)) ∈
τ−1⋂
i=0

Ci. (20)

By (18), (19) and (20), there exists u(t) such that for
arbitrary d(t),

(x(t +1),u2(t), ...,uτ(t),u(t)) ∈

(
τ⋂

i=0

Ci

)
∩S =Cext .

Therefore, Cext is a controlled invariant set of dynamics Σaug
in S. Since Caug is the maximal controlled invariant set in S,
Cext ⊆Caug.

Next, we want to show Cext = Caug. Suppose that there
exists

(x(0),u1(0), ...,uτ(0)) ∈Caug\Cext ,

as demonstrated in Figure 1. It is easy to show that Caug ⊆
Ck ∩S for k from 0 to τ−1. Since Cext =

(⋂
τ−1
i=0 (Ci∩S)

)
∩

Cτ ⊆ Caug, we have (x(0),u1(0), ...,uτ(0)) 6∈ Cτ and thus
x̂τ(0) 6∈ Ĉ. Since Ĉ is the maximal controlled invariant set

x

(u1,u2, ...,uτ)

Caug

Cext

(x(0),u1(0), ...,uτ(0))

Fig. 1: Pick a point from Caug\Cext .

of Σaux in X 	Dτ , by Proposition 1, there exists N ≥ 0
such that ∀u(0) ∈ U , ∃d(0) ∈ D, ∀u(1) ∈ U , ∃d(1) ∈ D,
..., ∀u(N−1) ∈U , ∃d(N−1) ∈ D, x̂τ(N) is not in X 	Dτ .
Denote (x(N),u1(N), ...,uτ(N)) as the state of Σaug corre-
sponding to x̂τ(N) at time N. Followed by x̂τ(N) 6∈ X 	Dτ ,
for any possible state (x(N),u1(N), ...,uτ(N)) of Σaug at time
N, there exists d(N),d(N + 1), ...,d(N + τ − 1) ∈ D such
that x(N + τ) 6∈ X , which holds for arbitrary control inputs
u(0), ...,u(N + τ − 1). Contradiction to the assumption that
Caug is a controlled invariant set of dynamics Σaug. Therefore,
Cext =Caug.

The following corollary directly follows from the first part
of the proof of Theorem 1.

Corollary 1. If Ĉ is a controlled invariant set of Σaux in
X	Dτ (but not necessarily the maximal one), then Cext is a
controlled invariant set of Σaug in S.

The above corollary shows that our method can be applied
even if Ĉ is not the maximal controlled set of Σaux, which is
very useful because typically it is easier to find a controlled
invariant set than the maximal controlled invariant set.

IV. EXTENSION TO SYSTEMS WITH PREVIEW

In the previous section, the disturbance is assumed to
be completely non-measurable, but in real-world systems,
many external signals can be previewed in ahead of time
by sensors (see, for instance, the lane keeping example
in Section V-B where the disturbance term is the lane
curvature). In this section, we study the maximal controlled
invariant set for time-delayed systems whose disturbance
inputs can be separated into a non-measurable disturbance
and a disturbance with preview.

More specifically, a disturbance is called with k-step
preview if d(t), d(t + 1), ..., d(t + k− 1) can be measured
by the controller at time t. Hence, the control input u(t)
can be picked depending on d(t),d(t + 1), ...,d(t + k− 1).
By definition, a non-measurable disturbance is with 0-step
preview.

Consider the following linear system

Σ
prev
delay : x(t +1) = Ax(t)+Bu(t− τ)+F0d0(t)+Fpdp(t),

(21)



where x(t)∈Q⊆Rn, u(t)∈U ⊆Rm, d0 is a non-measurable
disturbance in D0 and dp is a disturbance with p-step preview
in Dp ⊆ Rl (1 ≤ p ≤ τ)1. The state space Q, input space
U , disturbance bounds D0 and Dp are polytopes. In the
analysis that follows, we assume p ≤ τ and show that in
this case one can still compute the invariant set by applying
the invariance iterations in n-dimensional space. While the
case when p> τ can be handled with some added complexity
within the current framework, whether this case can also be
reduced to iterations in an n-dimensional space is left for
future research.

Similar to the delay, a system with preview can also be
converted to a standard linear system by appending the state
space with addition states corresponding to the preview of the
disturbance. In particular, we have the following augmented
system equivalent to Σ

prev
delay:

Σ
prev
aug :



x(t +1) = Ax(t)+Bu1(t)+F0d0(t)+Fpdp,1(t)
u1(t +1) = u2(t)

...
uτ(t +1) = u(t)

dp,1(t +1) = dp,2(t)
dp,2(t +1) = dp,3(t)

...
dp,p(t +1) = dp, f (t),

(22)

where x(t) ∈ Q, u(t) ∈ U , d0(t) and dp, f (t) are non-
measurable disturbances bounded by D0 and Dp. Note that
dp, f (t) is just an alias of dp(t + p). The safe set of system
Σ

prev
aug is Sp = X×Uτ ×Dp

p.

Problem 2. Find the maximal controlled invariant set of
system Σ

prev
aug within the safe set Sp.

Proceeding as in the previous section, we can write the
τ-step expansion of x(t + τ) as

x(t + τ) =Aτ x(t)+
τ

∑
i=1

Ai−1Buτ−i+1(t)+

τ

∑
j=τ−p+1

A j−1Fpdp,τ− j+1(t)+

τ

∑
j=1

A j−1F0d0(t + τ− j− i)+

τ−p

∑
j=1

A j−1Fpdp, f (t + τ− j− i). (23)

Based on what can be measured at time t, we define the
prediction variable

x̂τ(t) =Aτ x(t)+
τ

∑
i=1

Ai−1Buτ−i+1(t)+
τ

∑
j=τ−p+1

A j−1Fpdp,τ− j+1(t)

(24)

1Note that the results in this section can be generalized for systems that
have disturbances with different preview lengths (less than or equal to τ).
For the sake of simplicity, we restrict the discussion to the case where the
system has disturbance only with a fixed preview length.

assuming the non-measurable disturbance is zero. The dy-
namics of x̂τ takes the form

Σ
prev
aux : x̂τ(t +1) =Ax̂τ(t)+Bu(t)+Aτ F0d0(t)+

Aτ−pFpdp, f (t), (25)

where u(t)∈U , d0 ∈D0 and dp, f (t)∈Dp are non-measurable
disturbances, which is again an n-dimensional system. From
Eq. (24), it follows that to ensure x(t + τ) ∈ X , we need

x̂τ(t) ∈ X̂ := X	 ∑
i∈{0,p}

τ−i

∑
j=1

A j−1FiDi. (26)

Let Ĉp as the maximal controlled invariant set of Σ
prev
aux

within X̂ . We next show how to construct an invariant set
for the (n+mτ + pl)-dimensional augmented system Σ

prev
aug

using the set Ĉp ⊆Rn. The constraints on the initial states of
the system Σ

prev
aug , ensuring the existence of a controller such

that x(t + τ) ∈ X for all t ≥ 0, can be written as

Cp,τ = {(x(0),u1(0), ...,dτ,τ(t)) | x̂τ(0) ∈ Ĉp}, (27)

where x̂τ(0) is defined by (24). To ensure x(k) ∈ X for
the time period k = 0, . . . ,τ − 1, we need the following
constraints on initial states:

Cp,k =

{
(x(0),u1(0), . . . ,dτ,τ (t)) | Akx(0)+

k

∑
i=1

Ai−1Buk−i+1(0)+

k

∑
j=max{1,k−i+1}

A j−1Fidi,k− j+1(0)

∈ X	 ∑
i∈{0,p}

k−i

∑
j=1

A j−1FiDi

}
(28)

Finally, define the intersection of these constraint sets:

Cp,ext = (
τ⋂

i=0

Cp,k)∩Sp. (29)

Theorem 2. Cp,ext is the maximal controlled invariant set of
system Σ

prev
aug in set Sp.

Proof. The proof for Theorem 2 can be easily extended from
the proof of Theorem 1, omitted for brevity.

Similar to the preceding section, we have the following
corollary.

Corollary 2. If Ĉp is a controlled invariant set of Σ
prev
aux in

X 	∑i={1,p}∑
τ−i
j=1 A j−1FiDi, Cp,ext is a controlled invariant

set of Σ
prev
aug in Sp.

V. EXAMPLES

The algorithms are implemented in MATLAB 2018b on
a computer equipped with Intel i7-8650U CPU and 16 GB
memory. We use implementations from MPT3 toolbox [14]
for the polytope operations in the algorithms.



TABLE I: Time required to compute an invariant set with
the proposed method and the direct method.

τ p proposed method (s) direct method (s)
1 0 0.7705 0.5960
5 1 0.8779 7.7573

10 6 1.1548 98.3379
15 11 1.6999 525.7656
20 16 3.0460 1.6217×103

A. Numerical Example

In this section, we use a toy example to show how
much performance improvement is achieved by applying the
proposed method.

Consider the following 1-dimensional system:

x(t +1) = 1.5x(t)+u(t− τ)+d(t) (30)

where x(t) ∈ R, u(t) ∈ [−20,20] and d(t) ∈ [−2,2] with p-
step preview. The safe set for x is taken to be [−32,32].

In Table I, we compare the computation time of the
maximal invariant sets using the proposed method with
that of the fixed-point algorithm directly operating on the
augmented system for different τ and p. We call the later
the direct method for short. We note that the iterations (4)
terminates in finite number of steps in all of the examples
in the table. There are two important observations.

First, for each τ in Table I, p is selected as the small-
est preview length that makes the maximal invariant set
nonempty. The increasing trend on p in Table I implies that
if we do not have any preview on disturbance, the controlled
invariant set becomes empty very soon as τ increases. That
reveals how preview on disturbance reduces conservativeness
for input-delay systems, which is why we take preview into
consideration in Section IV.

Second, according to the last two columns of Table I, the
computation time with the direct method increases drastically
as τ increases, while the computation time for the proposed
method just increases slightly. This is because the dimension
of the reduced-order system does not change as τ and p
increase. Our method is apparently more efficient than the
direct method in this example.

B. Vehicle Lane Keeping Control

In this example, the proposed method is applied to synthe-
size a controller that guarantees the safety of a vehicle in a
lane-keeping scenario. The goal of lane keeping is to control
the vehicle to follow the center line of the road. The safety
requirement is to make sure the lateral displacement, the
lateral velocity, yaw angle and yaw rate of the vehicle with
respect to the road center are within given bounds so that
the vehicle does not leave the target road, spin, or rollover.

The vehicle dynamics considered is linearized from a
bicycle model [5] and discretized by forward Euler method
with time step h = 0.1s. The longitudinal velocity vd is fixed
and equal to 30m/s. The state of the system consists of the
lateral displacement y between the vehicle center and the
road center, the lateral velocity v, the yaw angle ∆Ψ and the

yaw rate r of the vehicle, denoted by x = [y,v,∆Ψ,r]. The
dynamics Σcar of x is

x(t +1) = (I +A ·h)x(t)+Bhδ f (t− τ)+Fhrd(t) (31)

with I equal to the identity matrix and

A =


0 1 u 0
0 −Cα f +Cαr

mu 0
bCαr−aCα f

mu −u
0 0 0 1

0
bCαr−aCα f

Izu 0 − a2Cα f +b2Cαr
Izu

 ,B =

 0
Cα f

m
0

a
Cα f

Iz

 ,F =

 0
0
−1
0

 ,
where the steering angle δ f ∈ [−π/2,π/2] is the control
input with τ-step delay and the desired yaw rate rd is a
disturbance with p-step preview (p≤ τ). The parameters in
A, B matrices are taken from [5]. According to [15], the
maximal range of rd with respect to vd = 30m/s in Michigan
is D = [−0.05,0.05]. Desired yaw rate rd is a function of
the road curvature, which can be measured with a forward
looking camera or acquired from a map ahead of time.
Therefore it is reasonable to assume that rd is a disturbance
with preview.

The safe region X of dynamics (31) is given by bounds
|y| ≤ 0.9, |v| ≤ 1.2, |∆Ψ| ≤ 0.05 and |r| ≤ 0.3. For τ = 10, p=
8, our method takes 249s to compute the maximal controlled
invariant set of the 22-dimensional augmented system within
the safe set X ×U10×D8. By fixing r, u1, . . ., u10, d1, . . .,
d8 to be zero, we make a 3-dimensional slice of the 22-
dimensional polytope, shown in Figure 2. The red region
in Figure 2 contains all the feasible initial values of the
first three coordinates (y,v,∆Ψ) from which it is possible
to guarantee safety, when the other coordinates have initial
value equal to 0.

Fig. 2: A slice of the maximal controlled invariant set.

Once the maximal controlled invariant set C is obtained,
the admissible input set with respect to a state in C is the
set of inputs that make the next state within C robust to any
disturbances in D. A safety supervisor for a legacy vehicle
controller or human-driver can be implemented by checking



Fig. 3: Trajectories of the supervisory control simulation. The
safety bound on each coordinates are indicated by the dash
lines. The red and blue trajectories correspond to supervisors
designed with different knowledge on the delay time.

if the controller’s output is within the admissible input set at
each time and making appropriate adjustment [4].

We run a simulation under the supervisory control frame-
work using the maximal controlled invariant set of Σcar.
In the simulation, rd is given by a sine function over
time. A legacy controller un of the vehicle is obtained
by solving a Linear Quadratic Regulator problem for the
augmented system of Σcar. The supervisor is implemented
by projecting the output of un to the admissible input set
given by the maximal RCIS of Σcar at each time step. As
a baseline, we first assume that the invariant set designer is
either unaware of the existence of the delay and preview or
simply ignores them and implements the supervisor using
the maximal controlled invariant of Σcar with zero delay
and no preview. Then, another supervisor is implemented
based on the maximal controlled invariant set of Σcar with
the actual delay steps and preview steps. A sample trajectory
of the closed-loop systems equipped with the first and second
supervisors are compared in Figure 3, indicated by red and
blue curves. The red trajectory terminates at 4.9s because
at that time the system equipped with the first supervisor
reaches the unsafe region. In contrast, the system equipped
with the second supervisor stays within the safety bounds
all the time. Comparing the two different simulation results,
it can be seen that simply ignoring the delay can lead to
unsafe situations. It is also worth noting that the invariant
set becomes empty in this example when taking the preview
time p to be zero while keeping the delay time as is. In

fact, for any value of p < 8, the invariant set is empty. This
indicates the value of preview in coping with uncertainty for
systems with input delays.

VI. CONCLUSIONS

In this paper we propose a scalable method for computing
controlled invariant sets for linear systems subject to input
delays. This method is extended to incorporate preview
information while preserving the scalability properties. Both
of the problems studied are motivated by safety control
problems in automotive domain, yet we believe the proposed
methods are broadly applicable. Our current work focuses on
understanding the robustness of the approach to uncertainties
in the delay time. We are also interested in time-varying
delays where the correctness and maximality guarantees will
depend on the protocol that resolves missing or clashing
input packets.
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