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Abstract— This work introduces a preference learning
method that ensures adherence to traffic rules for autonomous
vehicles. Our approach incorporates priority ordering of signal
temporal logic (STL) formulas, describing traffic rules, into a
learning framework. By leveraging the parametric weighted
signal temporal logic (PWSTL), we formulate the problem
of safety-guaranteed preference learning based on pairwise
comparisons, and propose an approach to solve this learning
problem. Our approach finds a feasible valuation for the
weights of the given PWSTL formula such that, with these
weights, preferred signals have weighted quantitative satisfac-
tion measures greater than their non-preferred counterparts.
The feasible valuation of weights given by our approach leads
to a weighted STL formula which can be used in correct-and-
custom-by-construction controller synthesis. We demonstrate
the performance of our method with human subject studies in
two different simulated driving scenarios involving a stop sign
and a pedestrian crossing. Our approach yields competitive
results compared to existing preference learning methods in
terms of capturing preferences, and notably outperforms them
when safety is considered.

I. INTRODUCTION

Preferences are a fundamental aspect of human behavior
and decision-making, and it is valuable to design autonomous
systems that allow for personalization to better suit the
needs and desires of users. Surveys have demonstrated that
drivers have different comfort and performance preferences
while driving in different scenarios and conditions [2]–[4].
Moreover, drivers tend to prefer different driving styles for
autonomous vehicles than their own styles [5]. Customiz-
ing autonomous vehicles can increase user satisfaction in
these vehicles, and customization according to preferences
over different styles rather than based on driver’s data can
help more. However, autonomous systems often require
satisfaction of a rule set for safe operation. Relying on
human preferences only may result in unsafe behaviors. For
instance, at an intersection with a stop sign, drivers may
sometimes prefer a rolling stop, which is illegal, over a full
stop. However, an autonomous vehicle should always stop
completely at a stop sign to guarantee safety of all agents
in the environment. Preference learning algorithms for safety
critical operations must consider rule satisfaction. The main
motivation of our work is the need for safe, trustworthy and
customizable autonomous vehicle algorithms.

For safety-critical applications like driving, there are three
desirable properties a preference learning method should
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satisfy to allow safe personalization: (i) expressivity: the
model should be expressive enough to capture preferences,
(ii) safety: it ensures safety by preferring a rule-following
behavior against a rule-violating one (even in cases the latter
is scarce in the training data), and (iii) usability in control
design: the learned model should be easy to integrate into
downstream correct-by-construction control synthesis tasks.
In this work, we propose to incorporate personalization and
safety in one framework by using Signal Temporal Logic
(STL) in a way to satisfy all of these properties. STL is a
variant of temporal logic that is tailored for reasoning about
the temporal properties of time series data and commonly
used in describing correct behaviors in autonomous systems.
Its descriptive power on systems opens wide application
areas, from controller synthesis, motion planning, to clas-
sification problems [6]–[11].

To develop a personalization framework with the STL
formalism, we use a parametric extension to Weighted Signal
Temporal Logic (WSTL), which is tailored for the ordering
of preferences and priorities in STL formulas [12]. We
introduce a learning framework that is based on this exten-
sion. The learning framework returns required parameters
for WSTL formula, which can be used to synthesize a
controller that yields preferred system behaviors as in [12],
[13]. Starting with a parametric WSTL formula that specifies
task objectives (traffic rules in autonomous vehicles) and a
set of pairwise comparison preferences among a set of safe
behaviors, the goal is to find suitable formula parameters
such that preferred signals have greater satisfaction measure,
namely WSTL robustness, than their non-preferred counter-
parts. We show how to cast this problem as an optimization
problem. We propose two different approaches to solve the
resulting optimization problem: a random sampling approach
and gradient-based approach with a construction of a com-
putation graph to calculate the WSTL robustness of signals.

To evaluate the performance of our framework, we simu-
late two different driving scenarios one with an autonomous
vehicle navigating an intersection with a stop sign and one
with an autonomous vehicle approaching to a pedestrian
crossing while there is a pedestrian crossing the road. We
generate two sets of trajectories that comply with traffic rules
for these scenarios, and run human subject studies with four
participants for both scenarios. We discuss the performance
of our solution approach and compare them with baseline
preference learning methods. Our results verify the need for
safety-aware preference learning by showing that baseline
methods usually lead to unsafe selections.



II. LITERATURE REVIEW

Preference learning aims to understand and predict indi-
viduals’ preferences based on a set of their choices [14],
[15]. This can be done through independent evaluations,
such as rating, or comparisons with alternatives. While
both evaluations open new research methods, learning from
comparison pairs may help in terms of dividing the problem
into smaller, more manageable batches [14]. While these
methods capture and reason about preferences, for safety-
critical scenarios such as capturing driving preferences and
personalizing driving styles, they cannot ensure necessary
safety guarantees.

Another use of preferences is preference-based learning
for reward functions and task learning in robot systems
[16]–[18]. For safety-aware applications, [19] combines
preference-based learning with control barrier functions.

On the other hand, encoding safety rules in temporal
logic is an eminent method for safety-critical applications
[20], [21]. Specifications in temporal logic can be used
for controller synthesis [6], [7], [21], motion planning [8],
[22], [23] and also learning applications [9]–[11], [24]–
[28] in many autonomous systems. In particular, works in
[9], [10], [24], [25], [29] try to infer a temporal logic
formula from the data used for classification. As a subset
of learning applications, in robot learning, Chou et al. [26]
tries to learn task specifications in linear temporal logic from
demonstrations, Puranic et al. [11] scores demonstrations
with the help of ordered specifications in the form of signal
temporal logic, and works in [27], [28] use temporal logic
for reward shaping and reinforcement learning.

Incorporating preferences and priorities with temporal
logic is studied in [1], [12], [30]–[32]. The work in [12]
introduces a weighted variant of the STL, called Weighted
Signal Temporal Logic (WSTL), in which weights reflect
the order of priority of preference. The work in [30] defines
Weighted Truncated Linear Temporal Logic. Both works
assumes that they have the knowledge for the formula and
associated weights. For the end-user, it is hard to interpret
the weights and define their preferences in temporal logic
formalism, so there needs to be an intermediate step to
infer the weights from the user. In [31], [32], a parametric
extension of WSTL, which we call PWSTL, is used in a time
series classification problem, where weights of the formula
are learned using neural networks.

III. PRELIMINARIES

A. Signal Temporal Logic (STL)

STL is a temporal logic formalism used to reason about
signals s : T → S , where T is a time domain and S ⊆ Rn

is a n dimensional real-valued signal domain [33]. We will
consider T to be infinite Z≥0 or finite [0, tfinal] ⊂ Z≥0.
An STL formula ϕ is given by the grammar ϕ ::= ⊤ |
π | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1U[a,b]ϕ2. Boolean true is ⊤, and π
is a predicate of the form π(s(t)) := fπ(s(t)) ≥ 0 where
fπ : S → R and s(t) is the signal value at time instant t. The
logical not is ¬, the conjunction is ∧, and U[a,b] is the “Until”

operator. Additional operators, disjunction ∨, Always □[a,b],
and Eventually ♢[a,b] can be derived from operators in the
grammar1. Subscript [a, b] defines the time interval. When
the time interval is from 0 to ∞, the subscript is omitted.
We will denote the set of all well-formed STL formulas with
F . If a signal s satisfies a formula ϕ at time t, it is shown
as (s, t) |= ϕ. If it violates at t, it is shown as (s, t) ̸|= ϕ.
The qualitative semantics of STL is defined as follows:

(s, t) |= π ⇔ π(s(t)),
(s, t) |= ¬ϕ ⇔ (s, t) ̸|= ϕ,
(s, t) |= ϕ1 ∧ ϕ2 ⇔ ((s, t) |= ϕ1 and (s, t) |= ϕ2),
(s, t) |= ϕ1U[a,b]ϕ2 ⇔ ∃t′ ∈ [t+ a, t+ b]((s, t′) |= ϕ2

and ∀t′′ ∈ [t, t′) (s, t′′) |= ϕ1).

Derived operators have following qualitative semantics:

(s, t) |= ϕ1 ∨ ϕ2 ⇔ ((s, t) |= ϕ1 or (s, t) |= ϕ2),
(s, t) |= □[a,b]ϕ ⇔ ∀t′ ∈ [t+ a, t+ b] (s, t′) |= ϕ,
(s, t) |= ♢[a,b]ϕ ⇔ ∃t′ ∈ [t+ a, t+ b] (s, t′) |= ϕ.

For qualitative semantics at time instant t = 0, we omit
t and write s |= ϕ. STL has quantitative semantics as
well. It measures how well the formula models the signal.
There are different quantitative semantics, also known as
robustness metrics [34], [35]. In this paper we use the
traditional robustness metric, as defined in [34]. Robustness
metric ρ : S × F × T → Re is defined recursively as:

ρ(s,⊤, t) = ∞,
ρ(s, π, t) = fπ(s(t)),

ρ(s,¬ϕ, t) = −ρ(s, ϕ, t),
ρ(s, ϕ1 ∧ ϕ2, t) = min

(
ρ(s, ϕ1, t), ρ(s, ϕ2, t)

)
,

ρ(s, ϕ1U[a,b]ϕ2, t) = max
t′∈[t+a,t+b]

(
min

(
ρ(s, ϕ2, t

′),

min
t′′∈[t,t′]

ρ(s, ϕ1, t
′′)
))
.

Robustness for derived operators are

ρ(s, ϕ1 ∨ ϕ2, t) = max
(
ρ(s, ϕ1, t), ρ(s, ϕ2, t)

)
,

ρ(s,♢[a,b]ϕ, t) = max
t′∈[t+a,t+b]

ρ(s, ϕ, t′),

ρ(s,□[a,b]ϕ, t) = min
t′∈[t+a,t+b]

ρ(s, ϕ, t′).

Robustness at t = 0 is shown as ρ(s, ϕ). Note that for finite
signals where tfinal <∞, time interval [t+a, t+b] in tempo-
ral operators may exceed the time length of the signal. In this
case, time interval can be taken as [t+ a,min(t+ b, tfinal)]
assuming that t + a ≤ tfinal. For simplicity, we keep the
semantics for infinite signals but we use STL for finite signals
with necessary corrections [36]. Note that robustness metric
of STL is sound, i.e., ρ(s, ϕ, t) > 0 ⇐⇒ s(t) |= ϕ and
ρ(s, ϕ, t) < 0 ⇐⇒ s(t) ̸|= ϕ.

Example 1: Let s =
[
s1 s2

]T ∈ R2×tfinal be a two-
dimensional signal with length tfinal. Let ϕ = ♢(s1 ≤ 0 ∧
s2 ≥ 0) be an STL formula. Satisfaction of ϕ by the signal s
means that “There is a time t∗ ≤ tfinal such that s1(t∗) ≤ 0
and s2(t∗) ≥ 0”. The robustness of s over ϕ is

ρ(s, ϕ, t) = max
t′∈[t,tfinal]

(min(−s1(t′), s2(t′))).
1Disjunction is ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2), Eventually is ♢[a,b]ϕ =

⊤U[a,b]ϕ, and Always is □[a,b]ϕ = ¬(♢[a,b]¬ϕ).



B. Weighted Signal Temporal Logic (WSTL)

WSTL is tailored to represent priorities and preferences
in STL formulas [12]. Its syntax extends STL syntax as

ϕ := ⊤ | π | ¬ϕ | ϕ1 ∧w ϕ2 | ϕ1Uw
1,w2

[a,b] ϕ2,

where the weights are w ∈ R2
+ and w1, w2 ∈ R

(b−a+1)
+ . All

operators are interpreted as in STL.
In [12], quantitative semantics of WSTL is called WSTL

robustness, denoted as r : S ×F ×T → R. We adopt WSTL
formalism with the following quantitative semantics:

r(s,⊤, t) =∞
r(s, π, t) = ρ(s, π, t)

r(s,¬ϕ, t) =−r(s, ϕ, t),
r(s, ϕ1 ∧w ϕ2, t) =min

(
w1r(s, ϕ1, t), w2r(s, ϕ2, t)

)
,

r(s, ϕ1Uw
1,w2

[a,b] ϕ2, t) = max
t′∈[t+a,t+b]

(
min

(
w1
t′−t−a+1r(s, ϕ2, t

′),

w2
t′−t−a+1 min

t′′∈[t,t′)
r(s, ϕ1, t

′′)
))
.

(1)
Derived operators have weighted robustness definitions as:

r(s, ϕ1 ∨w ϕ2, t) = max
(
w1r(s, ϕ1, t), w2r(s, ϕ2, t)

)
,

r(s,□w[a,b]ϕ, t) = min
t′∈[t+a,t+b]

(wt′−t−a+1r(s, ϕ, t
′)),

r(s,♢w[a,b]ϕ, t) = max
t′∈[t+a,t+b]

(wt′−t−a+1r(s, ϕ, t
′)).

Note that when deriving Eventually from Until, we have
⊤ in the second part of the robustness formula of U . Since
the weighted robustness of ⊤ is ∞, we can drop the set of
weights w2 when defining Eventually because it does not
affect the result of min operation inside the computation of
robustness of Until. That is the reason why Eventually (and
hence Always) have fewer weights than Until. Moreover,
Boolean truth, predicate and negation do not have associated
weights, i.e., these operators have weights equal to 1.

Example 2: Let s and ϕ be the signal and WSTL formula
constructed from STL formula in Example 1 with weights
{w♢

i }
tfinal−t+1
i=1 and {w∧

i }2i=1. The WSTL robustness of s is

r(s, ϕ, t) = max
t′∈[t,tfinal]

(w♢
t′−t+1 min(−w∧

1 s1(t
′), w∧

2 s2(t
′))).

As in STL robustness, r(s, ϕ) is WSTL robustness at t = 0.
The quantitative semantics is said to be sign-consistent if
ρ(s, ϕ, t)r(s, ϕ, t) > 0, where ρ(s, ϕ, t) ̸= 0, for all operators
in the syntax.

Lemma 1: (Theorem 2 in [12]) If a quantitative semantics
is sign-consistent, robustness definition of WSTL is sound.

Theorem 1: Quantitative semantics in (1) is sound.
Proof: According to Lemma 1, it is sufficient to prove

that quantitative semantics in (1) is sign-consistent. Since all
weights are defined positive, multiplying a robustness value
with a weight does not change its sign. Therefore, for each
recursive operation in WSTL robustness calculation, the sign
of the robustness value associated with this recursion step is
preserved. Then, it is true that ρ(s, ϕ, t)r(s, ϕ, t) > 0 holds
for every (s, ϕ, t) ∈ S × F × T and all weights w.

In WSTL definition of [12], weights are pre-determined
positive real values. In this work, we use an extension to

WSTL that we call Parametric Weighted Signal Temporal
Logic (PWSTL) in which weights are unknown parameters
(cf., [31]). We denote the set of unknown parameters as W
and denote PWSTL formulas as ϕW . A PWSTL formula
results in a WSTL formula ϕW=w with the valuation w
of parameters. Note that in PWSTL, some weights may be
known and W should be defined along with the formula.

IV. PROBLEM STATEMENT AND SOLUTION METHOD

As we focus on driving scenarios, inputs to our problem
are signals. Preferences are given in pairs and preference data
for signals is defined as follows.

Definition 1 (Preference Data): Preference data P :=
{(s+i , s

−
i )}Pi=1 is a set of P pairwise comparisons. In each

pair (s+i , s
−
i ), s

+
i represents the preferred signal and s−i

represents non-preferred one.
The goal of this work is to select a weight valuation

w̃, for the parameter set W of the PWSTL formula ϕW .
Formula ϕW is determined according to system rules, so
that it captures the preferences. Formally, this paper aims to
solve the following problem:

Problem 1: Given a PWSTL formula ϕ with a weight
parameter set W , and a preference data P , find a valuation
w of W such that

r(s+i , ϕW=w) > r(s−i , ϕW=w) ∀(s+i , s
−
i ) ∈ P. (2)

Problem 1 is a feasibility problem. We provide an analysis
of the set of feasible weights using the syntax tree of
formulas. STL formulas have an associated syntax tree,
in which nodes represent Boolean and temporal operators,
leaf nodes represent predicates, and edges represent the
connection between operators and operands [37]. Let the root
weights of a WSTL formula be the weights associated with
the weighted operator closest to the root of its syntax tree.
For instance, for φ = φ1Uw

1,w2

[a,b] φ2, the root of the syntax

tree of φ has the operator Uw
1,w2

[a,b] and the root weights
are [w1;w2]; but for φ′ = ¬(φ1 ∧w φ2), the root of the
syntax tree of φ′ has the operator ¬, which is not a weighted
operator, so we look at its children until we find a weighted
operator, which in this case turns about to be ∧w. Hence,
root weights of φ′ are w.

Next, we show that the feasible weight valuations of Prob-
lem 1 is unbounded, when non-empty, due to homogeneity
with respect to the root weights of the formula.

Lemma 2: Let ϕ be an PWSTL formula with weight set
W that contains only the weight parameters for the root
weights of ϕ. If valuation w of W solves Problem 1, then
w̃ = αw also solves the problem for any α > 0.

Proof: If the WSTL formula with valuation w is a
feasible solution for Problem 1, we know that for all pairs
in P , r(s+i , ϕW=w) > r(s−i , ϕW=w) holds. We also have

r(s, ϕW=w̃) = αr(s, ϕW=w).

This together with α > 0 implies for all (s+i , s
−
i ) ∈ P ,

r(s+i , ϕW=w̃) > r(s−i , ϕW=w̃). Hence, the WSTL formula
with valuation w̃ is a feasible solution for Problem 1.



Given the above property, namely root-layer homogeneity,
we will show that it is possible to restrict the weight
valuations to a bounded set D that is guaranteed to include
at least one solution whenever a solution exists.

Theorem 2: Let D = B∞(0) ∩ R+, i.e., the intersection
of the n-dimensional closed unit ball in infinity-norm and
the positive quadrant. If Problem 1 is feasible with weight
valuation w, then there exists at least one weight valuation
w′ in the domain D such that ϕW=w′ solves the problem.

Proof: Let Problem 1 be feasible for the valuation w.
If w ∈ D, the proof is trivial. So, let us assume w /∈ D.

We will prove the theorem by induction on the depth d of
the syntax tree of ϕW=w. For each subformula ϕs at level
k (k < d) of the syntax tree of ϕW=w, assume that the root
weights of ϕs are ws and all the remaining weights of ϕs are
already less than or equal to 1 (note that this trivially holds in
the base case when k = d where we pick w(d) = w). Then,
we will show that we can define a new set of weights w(k)

for ϕW such that r(s, ϕW=w(k) , t) = r(s, ϕW=w(k+1) , t) such
that the weights of each subformula at level k−1 except for
their root weights are less than or equal to 1.

Consider an arbitrary subformula ϕs at level k with
weights ws satisfying the induction hypothesis. We use
ϕs,ws as a shorthand for such a pair to differentiate
it from the same formula with updated weights, ϕs,w′

s
.

Define w′
s = ws/max (ws). Clearly, r(s, ϕs,ws

, t) =
max (ws)r(s, ϕs,w′

s
, t) and all weights of ϕs,w′

s
are less than

or equal to 1. However, we can scale the weights wu that
multiply r(s, ϕs,ws

, t) at level k − 1 with max (ws) so that
with valuation w(k), where the weights max (ws)wu and w′

s

are replaced by wu and ws, we achieve the same weighted
robustness value, establishing the induction hypothesis.

Finally, we can decrement k until we reach the root
weights of ϕW=w and invoke Lemma 2 to scale the root
weights to be less than or equal to 1 while preserving
feasibility. Therefore, the scaled valuation is in D.
Having a bounded feasible domain will be useful in our
computational approach.

A. An Optimization Reformulation

Problem 1 can be formulated as an optimization problem.
Problem 2: Given preference data P , PWSTL formula

ϕW and domain D described in Theorem 2, solve

w∗ ∈ arg min
w∈D

∑
(s+i ,s

−
i )∈P

−1(w)(r(s+i ,ϕW=w)−r(s−i ,ϕW=w)>0), (3)

where 1(w) is the indicator function which takes 1(w) = 1
when the subscripted condition is satisfied and takes 1(w) =
0 otherwise.2

Next, we show that the solution of this optimization
problem is a best possible solution in a specific sense.

Theorem 3: If Problem 1 is feasible, then a minimizer
w∗ of Problem 2 is a solution to Problem 1. Moreover, if

2Note that D is an open set, but the objective function takes only finitely
many values, hence it always has a minimum. Therefore, searching for
argmin is valid.

Problem 1 is infeasible, Problem 2 finds a valuation for ϕW
that maximizes the number of pairs that satisfy Inequality (2).

Proof: For a preference pair (s+i , s
−
i ), we have

1(w)(r(s+i ,ϕW=w)−r(s−i ,ϕW=w)>0) ∈ {0, 1}. Therefore, the
objective takes values between −|P| and 0. By Theorem 2,
the feasibility of Problem 1 implies the existence of a weight
w∗ ∈ D such that the objective is −|P|. Since this is the
minimum achievable value of the objective, w∗ is a solution
of the optimization Problem 2. Similarly, by definition of
the indicator function, the objective −|P| implies that, for
all preferences, Inequality (2) is satisfied.

Assume for any weight w at most k < |P| preference pairs
satisfy the Inequality (2). This is the case when Problem 1
is infeasible. In this case, Problem 2 finds a valuation such
that k pairs satisfy Inequality (2). The cost function is of the
staircase form and obtaining −k as a cost function value is
only possible when k pairs satisfy the Inequality (2). Thus,
the minimum cost value will always be obtained from the
maximum amount of pairs that satisfy Inequality (2).
Problem 2 not only transforms the feasibility Problem 1
into an optimization problem, but also returns a valuation
that makes maximum number of pairs correctly ordered
according to Inequality (2) when Problem 1 is infeasible.

It is important to note that with Problem 2 and weights
being positive, it is impossible to find weight valuations
that result in a greater robustness value of a rule-violating
behavior than the robustness value of a rule-satisfying one.
Violating signals will always have negative robustness val-
ues. If there exists a pair in the preference dataset such that
the person prefer a rule-violating behavior over a satisfying
behavior, we cannot satisfy Inequality (2) for this pair,
Problem 1 becomes infeasible and we will find a valuation
that satisfies Inequality (2) for maximum number of pairs.

Remark 1: We note that equality predicates and Boolean
signals may require special treatment. This is because equal-
ity predicates, i.e., π(s(t)) = fπ(s(t)) ≥ 0∧−fπ(s(t)) ≥ 0,
cannot hold strictly positive robustness values. When inserted
into a conjunction, ϕ = ϕ1∧π, equality predicate dominates
the robustness of ϕ and restricts it to non-positive values. As
a result, we cannot observe the effect of ϕ1 on robustness
values, and weights in front of and under ϕ1 does not appear
in WSTL robustness of ϕ. In other words, ϕ1 is shadowed. As
observed earlier [35], shadowing is not ideal when we want
to learn the importance order of different time instances and
subformulas. A possible remedy to this issue, which is used
in our experiments, is to introduce Boolean signal b as a
substitute to equality predicates. That is, if fπ(s(t)) = 0,
b = ⊤, otherwise b = ⊥. When b is false, robustness
of ϕ goes to −∞, and when b is true, robustness of ϕ is
determined by ϕ1. Please note that this remedy only works
over conjunction and Always operators.

B. Computational Approach

We note that Problem 2 is highly non-convex and non-
differentiable. Even if we create a differentiable surrogate
function and render the robustness definition differentiable
with known methods [38], the loss function retains a highly



(a) Stop Sign Scenario: Vehicle approaching to an intersection with
a stop sign. The traffic rule says that vehicles should stop before
the stop sign.

(b) Pedestrian Scenario: Vehicle approaching to a pedestrian cross-
walk, while a pedestrian is crossing. Vehicle can come to a complete
stop or slow down sufficiently to allow the pedestrian.

Fig. 1: Two scenarios that is used for experiments

non-convex nature. As a result, it is hard to solve this prob-
lem to a global minimum. In the following, we propose two
approaches, one gradient-based, the other sampling based
that aim to find an approximate solution.

a) Gradient-based optimization: Thanks to the preva-
lence and success of gradient-based methods and back-
propagation in machine learning, many temporal logic learn-
ing algorithms using gradients have been proposed [38]. To
be able to compute the gradient, we need a differentiable
loss function. In the weighted robustness definition, we
replace max and min functions with their soft differentiable
versions softmin/softmax as in [38]. We also replace
the indicator function with the logistic function with a shift.
The shift helps for avoiding equality of robustness values in
preference pairs. Overall, we propose the following surrogate
loss

L =
∑

(s+i ,s
−
i )∈P
(1 + exp(M [r(s+i , ϕW=w)−r(s−i , ϕW=w)−ϵ]))−1

+ log(1 + θ exp(∥Wϕ∥22−∥W init
ϕ ∥22)),

where M is a large number, ϵ is a small shift, and θ is an
optimization weight for the second term. Here, the first term
is an approximation of the cost function in Equation (3) and
the second term promotes the norm of the weights not to
change too much compared to its initial value W init

ϕ , where
W init
ϕ ∈ D. This second term is essentially a surrogate for

the constraints in Equation (3); and due to Theorem 2 and
the equivalence of the infinity norm and 2-norm in finite
dimensions, does not change the validity of the solutions.
Implementation details: We can use readily available
software tools like PyTorch which benefits from back-
propagation for gradient computation, which requires graph-
like structure for loss functions. Inspired from [38], we
construct a computation graph for robustness of WSTL
formulas from syntax trees. For each operator in the quan-
titative semantics, we construct a computation block. Since
weighted robustness is computed recursively, we can connect
computation blocks for each operator using the syntax tree of
the formula and form the computation graph. Computation
graph takes a signal as input and returns the weighted
robustness value of that signal at time t as output. We
use Adam [39] as the optimization method. Unfortunately,
depending on the loss surface, gradient-based methods can
become stuck in local minimum. The loss surface can have
steep changes and flat surfaces depending on the formula and
preference set, potentially leading to failure of gradient-based
methods. One potential remedy might involve decreasing
the softness coefficient β of softmin/max, but it would
compromise the soundness guarantee. Another strategy could

be decreasing the steepness of the logistic function, i.e.,
decrease M , but this will make the surrogate L less similar
to the objective in Problem 2. Another strategy could be
initializing the iteration from multiple random points to
overcome bad local minima.

b) Random Sampling: Randomized methods have
shown some success in temporal logic planning problems
[40], especially when there is a multitude of feasible so-
lutions. Similarly in [41], it is shown that simple random
search can give not only competitive but also faster results
compared to gradient methods. This inspires our attempt to
solve Problem 2 through random sampling in the region
D = B(0)∞∩R+. We uniformly sample weight valuations in
D. Implementation details: We want the weight valuations
to meet the following criterion: the absolute difference in
robustness between signals within a pair should exceed 5%
of the range between the maximum and minimum robustness
values among all signals. While this condition is not required
for the random sampling approach alone, it can be useful for
two downstream tasks: (i) when using the best performing of
these weights as initialization of gradient-based approaches3,
this separation helps start the iterations at a part of the weight
space where logistic function well-approximates the indicator
function; (ii) when using the learned formula in controller
synthesis, weights that well-separates the preferences lead to
controllers that more robustly reflect the preferences.

V. EXPERIMENTS

In this section, we provide a comparison of solution ap-
proaches with baseline methods along with demonstrating the
need for a safety-guaranteed preference learning framework.
We also showcase framework’s performance on capturing
personal preferences of different participants of a human
subject study. For these purposes, we use two different
driving scenarios.

Driving Scenarios: We can use temporal logics to specify
traffic rules in driving scenarios. The first scenario is a
simple intersection with a stop sign, a screenshot is shown
in Figure 1a. The vehicle must stop before the stop sign, but
there is some flexibility in the approach and final position.
The traffic rule can be expressed in STL as follows: ϕstop =
♢□(x− xstop ≥ 0 ∧ v = 0) ∧□(v ≥ 0) where x and v are
the position and speed signals of a vehicle, respectively, and
xstop is the stop sign position. Note that ρ(s, ϕstop) ≤ 0 for
any signal due to equality predicate. We substitute v = 0 with
its Boolean form as discussed in Remark 1. We construct

3We tried this combination in our experiments, however, the performance
improvement was not significant. Therefore, due to space constraints, we
do not report these results further.



(a) Intersection with a stop sign scenario

(b) Approaching to a pedestrian scenario
Fig. 2: Human subject study results for the two scenarios for all four users. “STL” denotes the traditional (unweighted)
robustness when it is used directly,“RS” denotes our method with random sampling, “GB” denotes our method with gradient-
based optimization, “BT” denotes SGD with Bradley-Terry model, and “SVM” represents SVM classification.

PWSTL formula ϕstopW with a weight parameter set W that
contains all weights in the formula. In the second scenario,
we observe an ego vehicle approaching to a pedestrian while
she is crossing the road, as illustrated in Figure 1b. The
traffic regulation in this case is expressed in STL form as
ϕpedes = □[

(
p ∧ ¬(x − xcross ≤ 0)

)
=⇒

(
x − xcross ≤

0 U ¬p
)
∧ (v ≤ vlim)] where x, v represent position and

velocity signals, respectively. Signal p is a Boolean signal
that indicates the presence of a pedestrian.

Human Subject Studies: Studies are completed under IRB
study no HUM00221976. For each scenario, we collaborated
with four participants. We simulate hundred trajectories that
satisfy their temporal logic formula. We compose fifty pairs
such that the Euclidean distance between each pair is greater
than a threshold. This threshold value is determined manually
as the point at which the difference between signals becomes
difficult to discern. These pairs are shown to participants who
then choose their preferred behavior. As human decisions can
vary in consistency, for the first scenario, we repeat the same
question set twice to have a measure of participant’s deci-
siveness. The consistency of the answers of each participant
is reported in Figure 2a.

A. Baseline Methods

One well-known approach to pairwise preference learning
problem is to recast it as a supervised learning problem [42].
Let ψ(s) be the feature vector of item s. We use Fourier
transform of the signal s for ψ(·). To set up the supervised
learning problem, for a given preference pair (s+i , s

−
i ), we

construct a new feature vector as the difference of feature
vectors as ψ(s+i ) − ψ(s−i ). All signals pairs in P belongs
to Class 0. We generate the data for Class 1 by reversing
the signal order and defining the feature vector ψ(s−i ) −
ψ(s+i ). This process gives us binary labels for all comparison

pairs and their reverse orders. Then, we use Support Vector
Machines (SVM) to learn a binary classifier. In the SVM, we
use radial basis functions as kernels. For a test pair (s1, s2), if
ψ(s1)−ψ(s2) is classified in Class 0, we say s1 is preferred
over s2; and we say s2 is preferred over s1 otherwise.

The second baseline method is based on a representation
of pairwise user preferences with the likelihood of selecting
one item over another. In particular, Bradley-Terry model is a
common example of such likelihood function model used in
preference learning applications [43]. Bradley-Terry model
[43] uses the following likelihood function:

Pv(s
+
i , s

−
i ) =

e<v,ψ(s
+
i )>

e<v,ψ(s
−
i )> + e<v,ψ(s

−
i )>

,

where ψ(·) again represents the feature vector (Fourier
transform in our case). Then, we solve for the weights v
to maximize the log-likelihood as follows:

v∗ = argmin−
P∑
i=1

log(Pv(s
+
i , s

−
i )). (4)

In particular, we use stochastic gradient decent (SGD) for
solving this problem. Finally, for a test pair (s1, s2), if
e<v

∗,ψ(s1)> > e<v
∗,ψ(s2)>, we say s1 is preferred over s2;

and we say s2 is preferred over s1 otherwise.

B. Comparison of Solution Approaches

In this section, we compare the performance of the pro-
posed solution approaches with baseline preference learning
methods listed in Section V-A. We use the percentage of
trains (test) pairs a model accurately predicts as the metric
for comparison.

For each participant, we randomly split the preference set
by 70% − 30% as train-test data ten times, i.e., 35 pairs
for training set and 15 for test set. For each train-test split,



we compute accuracy of train-test datasets with respect to
traditional STL, and compare two proposed computational
approaches with two baseline methods. The first method
solves Problem 2 using ϕstop an ϕpedes for respective
scenarios, via random sampling with a threshold condition,
where we sample 1000 weight valuations per split. For stop
sign scenario, the second method solves Problem 2 with
gradient-based optimization over loss function L initialized
from ten random weight valuations and from the traditional
STL valuation. We report the best training/test accuracy pair
among these 11 as the result. Learning rate is 10−5, ϵ = 0.01,
and θ = 0.01. Softness coefficient for softmax/min is
β = 1010. We terminate the optimization when the cost
value difference drops below 10−6. We divide the training
set into batches of five pairs. Batch selection is random at
each iteration. We skip the gradient-based method for the
pedestrian scenario since it was too slow to converge with
each iteration taking a long time due to formula complexity.
The third method is SVM classification baseline. For the last
method, we solve Equation (4) via SGD with learning rate
0.1. Results for both scenarios are summarized in Figures 2a
and 2b.

The results indicate that simple random sampling effec-
tively identifies promising weight valuations that improve
the traditional STL accuracy, and gives comparable results
to gradient-based optimization for the intersection with stop
sign scenario. We see that for almost all scenarios, proposed
solutions give competitive results to baseline solutions to the
least. The average performance of methods for all users and
all splits are shown in Table I. While Bradley-Terry performs
better in average training accuracy, it generalizes significantly
worse than others. Random sampling gives results close to
Bradley-Terry on average training set accuracy and general-
izes better than all other methods in both scenarios.

TABLE I: Average accuracy results for different methods on
human subject studies. Values represent the average accuracy
over all splits and all users for each method.

Method RS (ours) GB (ours) BT SVM
Accuracy Train Test Train Test Train Test Train Test

Stop sign 79% 71% 77% 67% 82% 58% 71% 66%
Pedestrian 83% 81% N/A N/A 86% 78% 79% 80%

Finally, when we look at Figure 2a, we see that with
decreasing consistency, generalizability of all methods de-
creases, i.e., they perform poorly on test data.

Now we turn our attention to safety of different ap-
proaches. Ideally, when presented with a pair of signals
where one is violating the traffic rules and the other one
satisfying, an approach should give preference to the sat-
isfying one. Our method satisfies this nice property by
construction. To test how the baselines do in this case, we
simulate hundred violating pairs for the intersection with
stop sign scenario, and pair them with satisfying signals.
Now, we have fifty satisfying-satisfying signal pairs that
we use in human subject studies and hundred satisfying-
violating signal pairs. We create two different training sets:

(i) one with all satisfying-satisfying pairs only, and (ii) one
with all satisfying pairs and fifty satisfying-violating pairs.
Test sets are hundred satisfying-violating pairs, and fifty
satisfying-violating pairs, respectively. Table II shows the
safety performance of two baseline methods, and Random
Sampling. As we can see, baseline methods trained with
satisfying signals only performs poorly when encountered
with violating signals. However, it is not always feasible
to generate violating real-life behaviors for safety-critical
scenarios. When training baseline methods, we rely on
simulators to generate violating signals, which may lack
of reality. When we look at results with training set (ii),
test performance of both baseline methods increases but can
never reach (let alone ensure) 100%. This shows that there is
at least one pair that the method chooses the violating signal
over satisfying one.

TABLE II: Safety-critical selection comparison with baseline
methods. The test values indicate the percentage of test cases
for which the learned model prefers a rule-following (safe)
behavior to a rule-violating (unsafe) one.

Method RS (ours) BT SVM
Trained with (i) (ii) (i) (ii) (i) (ii)

Training Accuracy 92% 96% 84% 83% 76% 83%
Test Accuracy 100% 100% 17% 94% 15% 98%

VI. CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this work, we introduce a safe preference learning
approach and evaluate its performance in two different
driving scenarios. Considering three desirable properties of
preference learning for safe personalization mentioned in the
Introduction, our results show that our method gives compet-
itive results with the baselines in terms of expressivity but
significantly outperforms them in terms of safety. Moreover,
it is not clear how models learned by generic preference
learning methods can be used in control design, whereas
our STL-based method can be readily integrated into control
synthesis.

We note that neither random-sampling nor gradient-based
method guarantee finding an optimal value. We also observe
the gradient-based method to have difficulties in convergence
for certain formulas. It would be interesting to study different
smooth robustness metrics to see if they can mitigate this
issue. While preference data in our experiments appears to
be on a smaller scale, expecting humans to select preferences
for hundreds of signal pairs all at once is impractical. Our
experience shows that even dealing with fifty pairs could
be overwhelming. To this end, our upcoming focus is on
an active learning scheme that maximizes inference using
minimum amount of question pairs.
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