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Abstract— This paper presents a novel data-driven control
algorithm that coordinates a large aggregation of heteroge-
neous thermostatically controlled loads (TCLs) with unknown
temperature dynamics and disturbance distributions to pro-
vide balancing services to the grid. Each TCL is subject to
local constraints on their temperatures due to user comfort
and global constraints on the number of TCLs in a mode,
called mode-counting constraints, for the safe operation of the
distribution network. We first develop a data-driven method
to compute sets of modes at each discretized interval of the
temperature state space in which the probability of moving
outside of the temperature dead-band at the next step is
bounded at a certain confidence level. Subsequently, we design a
model predictive control (MPC) algorithm that instructs every
TCL to switch to the modes within the obtained set while
satisfying the mode-counting constraints. A case study compares
the proposed control algorithm with a benchmark and verifies
its effectiveness in maintaining end-user comfort and the safe
operation of the distribution network.

I. INTRODUCTION

Aggregations of distributed energy resources (DERs) can
provide significant flexibility to the power grid, helping bal-
ance intermittent and uncertain renewable energy generation.
DERs include distributed generation, distributed storage, and
flexible loads. These resources could be coordinated by
an electric utility company, or a third-party (non-utility)
aggregator that participates in electricity markets. In the U.S.,
aggregators have recently been further enabled by FERC
Order 2222 [1]. A challenge with third-party aggregators is
that they do not have detailed knowledge of the distribution
networks within which the DERs they coordinate operate.

Here, we consider a particular type of DER – Thermostat-
ically Controlled Loads (TCLs) such as residential air condi-
tioners, which switch on/off to maintain a temperature within
a dead-band. TCLs have thermal energy storage capacity and
so the timing of their power consumption can be slightly
shifted, making them a great resource for energy-neutral grid
balancing services such as frequency regulation [2]. While
an aggregator is coordinating TCLs, its actions should not
be disruptive to end-users. In particular, end-users choose a
temperature set-point, which defines a temperature dead-band
(a small temperature range around the set-point), and the
aggregator should control each TCL’s on/off mode such that
its temperature stays within its dead-band. Furthermore, TCL
coordination should not cause any issues in the distribution
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network such as voltage violations or current overloading,
which is possible according to [3].

The aggregator’s job is difficult if it does not have full
information about the TCLs and the distribution network.
In general, a utility cannot share full details of the network
with the aggregator for security reasons [4]. FERC has noted
that utility-aggregator coordination is a key challenge to
DER integration [5]. Recent research has proposed a variety
of strategies for this type of coordination [6]–[10], but the
“best” strategy is still up for debate, and likely location- and
context-dependent. In addition to not having full network
information, the aggregator also has only partial information
about the TCLs’ temperature dynamics and disturbance dis-
tributions. It is difficult to obtain an accurate TCL model.
The widely used first-order model fails to accurately repre-
sent both transient and steady-state dynamics [11]. While
the second-order model in [12] is more accurate, some
parameters are unidentifiable from input/output data [13].
Overall, these gaps in knowledge make it difficult for the
aggregator to evaluate how its actions would affect the TCLs’
temperature and the safety of the distribution network.

In this work, we propose a data-driven control algorithm
for an aggregation of heterogeneous TCLs with unknown
temperature dynamics and disturbance distributions. The
approach is non-disruptive to the end-users and ensures the
safe operation of the distribution network. We propose a
data-driven approach to identify modes in which tempera-
tures do not go outside of their dead-bands. Leveraging the
obtained sets, we develop a model predictive control (MPC)
algorithm that selects and limits the TCLs’ aggregate power
within network-safe power bounds obtained from the utility,
thereby guaranteeing both the end-users’ comfort and the
safe operation of the distribution network.

Some prior work has proposed TCL coordination methods
that are non-disruptive to the users [11], [14]–[17], as well
as cycling constraints to prevent damage to TCL compres-
sors [18]–[20]. While these papers only consider local con-
straints on temperatures of individual TCLs, [6] additionally
considered global constraints on the TCLs’ aggregate power
for distribution network safety. Specifically, it proposed a
heuristic TCL coordination algorithm to keep the number of
turned-ON TCLs below a certain bound to promote safety.
In addition, [10] proposed a TCL coordination framework
that satisfies a chance constraint on voltage violations,
ensuring distribution network safety with high probability.
Ref. [20], [21] utilized formal abstractions of subsystems to
design algorithms that ensure deterministic local constraints
and mode-counting constraints for aggregate homogeneous



switched systems. All the works cited above assume precise
knowledge of TCL temperature dynamics, though some of
these works conduct simulation-based testing on aggrega-
tions of “noisy” TCLs, e.g., [6], [14]. Ref. [22] employed
distributionally robust optimization to coordinate an aggrega-
tion of TCLs with unknown temperature dynamics. However,
this paper focuses on homogeneous TCLs (though it does
propose a method for extension to heterogeneous TCLs) and
does not address distribution network safety. To the best of
our knowledge, past work has not developed a network-
safe aggregate TCL control approach that explicitly takes
into account unknown temperature dynamics and disturbance
distributions.

In contrast to previous work, the main contributions of
this paper are three-fold. First, we introduce a network-safe
control approach for aggregations of heterogeneous TCLs
with unknown dynamics and disturbance distributions to
provide grid balancing services with probabilistic guarantees
on end-user comfort. Using realistic assumptions about TCL
temperature dynamics, our data-driven method computes a
set of on/off modes at each discretized interval of the tem-
perature space in which the probability of TCLs remaining
within the specified dead-band exceeds a certain threshold
with a certain confidence level. Second, we develop an
MPC algorithm that leverages these sets of modes to ensure
both end-user comfort and distribution network safety. The
proposed MPC algorithm is capable of managing large ag-
gregations of TCLs since it does not scale with the number of
TCLs. Third, our case study demonstrates that the proposed
MPC algorithm effectively maintains temperatures within a
specified range, while satisfying bounds on the aggregate
power, which ensures network safety.

The organization of the paper is as follows. Section II
introduces the problem formulation. Section III proposes
a data-driven approach that constructs a set of admissible
modes for local temperature constraint satisfaction. Sec-
tion IV proposes a novel MPC algorithm, and Section V
demonstrates the proposed controller through a case study.
The appendix includes proofs of two theorems and one
proposition.

Notation: Set N refers to the set of all natural numbers,
N0 refers to {0} ∪ N, and [N ] refers to the set of natural
numbers {1, . . . , N}.

II. PROBLEM FORMULATION

A. Overview

In this work, we address the problem of coordinating a
large aggregation of heterogeneous TCLs to provide grid-
balancing services, such as frequency regulation. We con-
sider a control architecture previously explored in [20], as
shown in Fig. 1. The framework includes three entities:
aggregator, utility, and Independent System Operator (ISO).
The aggregator is responsible for offering balancing capacity
to the ISO, monitoring the states of the TCLs (temperatures
and on/off modes), and controlling the TCLs’ on/off modes.
The aggregator also gathers historical data from each TCL,
specifically temperature and mode trajectories, which are
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Fig. 1. Illustration of the coordination framework and plot of the aggregate
power consumption of the TCLs given a reference signal from the ISO,
scaled to be within the committed power (total procured power capacity of
participating TCLs), and given network-safe power bounds from the utility.
The nominal power is the average aggregate power when TCLs are not
providing balancing services.

leveraged in controller construction. The ISO publishes a
normalized reference signal for the balancing service, and
the aggregator scales it by the committed capacity and shifts
it by the nominal TCL aggregate power consumption. The
aggregator should adjust the TCL aggregate power consump-
tion to track the reference signal as closely as possible.

The utility, which has detailed distribution network infor-
mation (e.g., network topology and parameters), is respon-
sible for maintaining the network’s safe operation. It uses
network state forecasts to compute bounds on TCL aggregate
power consumption that prevent constraint violations within
the distribution network. Some previous studies, such as [23],
have explored methods for calculating these bounds. If
the aggregator’s committed capacity remains within these
bounds, no action is required from the utility.

However, when actual network states significantly devi-
ate from their forecasts, the network-safe power bounds
may shrink causing the aggregator’s committed capacity to
become larger than the bounds. In this case, the utility
sends the aggregate power bounds to the aggregator and the
aggregator should adjust the TCLs’ aggregate power to lie
within these bounds, while still tracking the reference signal
as well as possible. The plot in Fig. 1 illustrates how the
TCLs’ aggregate power consumption should look given the
reference signal from the ISO and the bounds from the utility.

B. Mathematical Formulation

We next provide the details of the problem formulation.
We consider N heterogeneous TCLs, indexed by i ∈ [N ].
Each TCL has a compact state space T i := [T i, T

i
] ⊆ R

with two modes M := {0, 1}, where the state corresponds
to the TCL’s internal temperature, i.e., for an air conditioner,
the indoor air temperature, and modes 0 and 1 indicate OFF



and ON modes, respectively. We denote the state of the ith
TCL by T i(t) and its mode by mi(t). The state of each TCL
evolves according to

T i(t+ 1) = f i
mi(t)

(
T i(t)

)
+W i

mi(t)(t), (1)

where f i
m : T i → T i is the state evolution function of the ith

TCL in mode m, and W i
m(t) ∼ Wi

m is the i.i.d. disturbance
in mode m with probability distribution Wi

m. It should be
noted that the i.i.d. assumption may not fully capture real-
world scenarios as the disturbances could exhibit temporal
correlations as well as dependencies on temperature. Despite
this limitation, this assumption is a practical simplification
for TCL modeling.

While models of TCL dynamics exist, in practice these
models are often inadequate at capturing the dynamical
behavior of real TCLs [11], [12]. Thus, we assume that both
f i
m and Wi

m for all m ∈ M and i ∈ [N ] are unknown to the
aggregator. In this paper, we assume that all TCLs are cooling
TCLs (air conditioners) and the following assumption holds.

Assumption 1. The state evolution functions f i
m for all i ∈

[N ] satisfy the following three conditions.
1) Monotonicity: Each function f i

m is monotonically in-
creasing, i.e., f i

m(T1) ≤ f i
m(T2) for all T1 ≤ T2.

2) Lipschitz Continuity: There exists a common constant
Lf
m for any m ∈ M:∣∣f i

m(T1)− f i
m(T2)

∣∣ ≤ Lf
m · |T1 − T2| . (2)

Assumption 1 is justifiable for real TCLs. The mono-
tonicity condition captures the normal behavior of TCLs,
specifically, if the initial temperature is lower than another
temperature, the temperature at the next time step will not be
higher than that associated with the other temperature under
the same mode and disturbance. The Lipschitz continuity
condition reflects the bounded rate of TCL temperature
change. Assumption 1 holds for the standard affine temper-
ature dynamics introduced in [12] with Lipschitz constant
Lf
m = 1, which will be used for the case studies in Section V.
The state space of each TCL is composed of a comfort

set T s,i = [T s,i, T
s,i
] within which the temperature of the

TCL should stay, and a discomfort set T d,i := T i \ T s,i =

[T i, T s,i)∪(T s,i
, T

i
] that every TCL should avoid. We define

the comfort condition, which requires the temperature of a
TCL to remain within T s,i. TCLs must turn OFF to heat up
when the temperature falls below T s,i, and they must turn
ON to cool down when the temperature goes above T

s,i
to

return to T s,i. Therefore, while the TCLs within T s,i can be
either in ON or OFF mode, the TCLs within [T i, T s,i) must
be OFF and those within (T

s,i
, T

i
] must be ON.

We denote the power consumption of each TCL in the
ON mode by pi and the upper and lower network-safe TCL
aggregate power bounds (sent by the utility) by p and p,
respectively:

p ≤
N∑
i=1

pimi(t) ≤ p ∀t ∈ N0. (3)

While the aggregator does not know the power consumption
pi of each TCL, we assume it has an estimate of the average
power consumption pavg of the TCL aggregation obtained
from historical data. To satisfy (3), we impose the following
mode-counting constraints on the number of ON TCLs:

N =

⌈
p

pavg

⌉
≤

N∑
i=1

mi(t) ≤ N =

⌊
p

pavg

⌋
. (4)

Note that, for heterogeneous TCLs, the mode-counting con-
straint serves as only an approximation of the actual con-
straints on the aggregate power (3). Consequently, the satis-
faction of the mode-counting constraint does not necessarily
ensure the satisfaction of (3). However, as the number of
TCLs N increases, the approximation of the TCL aggregate
power pavg

∑N
i=1 m

i(t) becomes more accurate due to the
law of large numbers, leading to smaller violations of (3).

The control performance at each time step is measured
by the difference between the aggregate power consumption
pagg(t) of the TCLs and the scaled/shifted reference signal
r(t), i.e., |pagg(t) − r(t)|. The objective of this work is to
develop the aggregator’s control algorithm to manipulate the
ON/OFF modes of a large number of TCLs each represented
by (1) to maximize control performance while trying to sat-
isfy the comfort condition and satisfying the mode-counting
constraints (4) to ensure network safety.

Remark 1. The approach proposed in this paper, though
specifically considering the coordination of an aggregation
of TCLs, is applicable to a wide range of collections of
switched subsystems that satisfy the monotonicity and Lips-
chitz continuity conditions in Assumption 1. It can even be
extended to collections of multi-dimensional subsystems that
exhibit monotonicity and Lipschitz continuity across every
dimension.

III. DATA-DRIVEN IDENTIFICATION OF ADMISSIBLE
MODES ENSURING THE COMFORT CONDITION

In this section, we develop a data-driven strategy to select
the modes of the TCLs to satisfy the comfort condition.
Specifically, we discretize the state spaces T i and derive
a set of modes for each discretized interval in which the
probability of moving outside of the temperature dead-band
in the next step is bounded at a certain confidence level.

We first uniformly discretize the comfort set T s,i for all
i ∈ [N ] into Ks intervals with length δi = (T

s,i − T s,i)/Ks

and denote the kth interval by T i
k :

T i
k =

{
[T s,i + (k − 1) δi, T s,i + kδi) if k ̸= Ks[
T s,i + (k − 1) δi, T s,i + kδi

]
if k = Ks.

(5)

Furthermore, we discretize T d,i with the same length δi and
index them in order. Then, we denote by K the total number
of intervals in the state space T i. Fig. 2 shows how the
discretization is conducted and the intervals are indexed.

Suppose that the aggregator has a set of historical state
transitions {T i

m,l, T
i+
m,l}

Di
m,N

l=1,i=1 from all TCLs in each mode
m, where l indexes each data point, Di

m is the number of data
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Fig. 2. Illustration of state space discretization. The blue area corresponds
to T s,i and the orange area corresponds to T d,i. Here, K is equal to Ks+5.

points obtained from TCL i in mode m, and T i+
m,l denotes the

state of the ith TCL in mode m after its transition from T i
m,l.

We denote by wi
m,l the disturbance under which the transition

from T i
m,l to T i+

m,l happens: wi
m,l := T i+

m,l − f i
m(T i

m,l).
Based on the data, we identify modes for each discretized

interval T i
k where the probability of comfort condition’s

satisfaction at the next time step is assured. In particular,
in Lemma 1, for each mode and each disturbance wi

m,l, we
derive lower and upper bounds on the possible temperatures
at the next time step given the starting temperature is within
T i
k . Subsequently, Theorem 1 demonstrates that if, for a

given mode, these bounds lie within the comfort set T s,i

for all l ∈ [Di
m], the probability of satisfaction of the

comfort condition when starting from T i
k with that mode

is guaranteed with a certain confidence level.

Lemma 1. Define T i+
m,k,l and T

i+

m,k,l as

T i+
m,k,l := T i+

m,l − (Lf
m(T i

m,l − T i
k))

+

T
i+

m,k,l := T i+
m,l + (Lf

m(T
i

k − T i
m,l))

+
.

(6)

Then, for any starting temperature T ∈ T i
k , the temperature

of TCL i at the next time step under disturbance wi
m,l is

within [T i+
m,k,l, T

i+

m,k,l].

Proof. Suppose that T̃ i+
l := f i

m(T )+wi
m,l is the state at the

next time step given starting temperature T , mode m, and
disturbance sample wi

m,l. Then, we find

T̃ i+
l =

(
f i
m

(
T i
m,l

)
+ wi

m,l

)
+ f i

m(T )− f i
m

(
T i
m,l

)
= T i+

m,l + f i
m (T )− f i

m

(
T i
m,l

)
.

(7)

In addition, we obtain the following inequality from the
monotonicity and Lipschitz continuity conditions in Assump-
tion 1:

f i
m(T )− f i

m

(
T i
m,l

)
≥

{
−Lf

m

(
T i
m,l − T

)
if T ≤ T i

m,l

0 otherwise.

Thus, we obtain the following for any T ∈ T i
k :

f i
m(T )− f i

m(T i
m,l) ≥ −

(
Lf
m

(
T i
m,l − T

))+
≥ −

(
Lf
m

(
T i
m,l − T i

k

))+
.

(8)

Similarly, we obtain(
Lf
m

(
T

i

k − T i
m,l

))+

≥ f i
m(T )− f i

m

(
T i
m,l

)
. (9)

Finally, from (7)-(9), we obtain

T̃ i+
l ≥ T i+

m,l − (Lf
m(T i

m,l − T i
k))

+ (10)

T̃ i+
l ≤ T i+

m,l + (Lf
m(T

i

k − T i
m,l))

+
. (11)
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Fig. 3. The purple region represents the range of the temperatures at
the next time step from T i

6 in mode 1 under disturbance wi
m,l. The

green regions represent the union of all purple regions generated for all
l ∈ [Di

m]. Given that the green region is within T s,i (blue region), any
state from T i

6 cannot move to T d,i in mode 1 under any disturbance among
wi

m,1, . . . , w
i
m,Di

m
.

Thus, the lemma is proven.

Now, we provide a guarantee on the probability of the
satisfaction of the comfort condition if a TCL chooses a
mode m in which the range [T i+

m,k,l, T
i+

m,k,l] is within the
comfort set T s,i for all data points l ∈ [Di

m]. Let P d,i
m (T ) be

the probability of the ith TCL moving to T d,i from a starting
temperature T in mode m, that is:

P d,i
m (T ) := Pr

(
f i
m(T ) +W i

m ∈ T d,i) .
Then, we can obtain the following theorem.

Theorem 1. Assume that the following inequalities hold:

T s,i ≤ min
l∈[Di

m]
T i+

m,k,l (12)

T
s,i ≥ max

l∈[Di
m]

T
i+

m,k,l, (13)

where T i+
m,k,l and T

i+

m,k,l are defined in (6). Then, for any
ϵ ∈ [0, 1] and T ∈ T i

k , the probability P d,i
m (T ) that TCL

i moves to the discomfort set T d,i at the next time step is
lower than ϵ with a confidence level over 1− 2(1− ϵ/2)D

i
m .

Proof. By Lemma 1, if (12) and (13) hold, the range of
possible temperatures at the next time step from T i

k under any
disturbance among wi

m,1, . . . , w
i
m,Di

m
is within the comfort

set T s,i; this range is illustrated as the green region in
Fig. 3. Hence, the minimum/maximum disturbance among
wi

m,1, . . . , w
i
m,Di

m
is above/below the disturbance required

for any temperature T ∈ T i
k to reach the lower/upper bound

T s,i/T
s,i

of the dead-band at the next time step in mode m,
that is:

min
l∈[Di

m]
wi

m,l ≥ T s,i − f i
m (T ) (14)

max
l∈[Di

m]
wi

m,l ≤ T
s,i − f i

m (T ) . (15)

From (14) and (15), we can derive an expression for the
probability of moving to the discomfort set

P d,i
m (T ) = Pr

(
f i
m(T ) +W i

m ∈ T d,i)
= Pr

(
W i

m ≤ T s,i − f i
m(T )

∨
W i

m ≥ T
s,i − f i

m (T )
)

≤ Pr
(
W i

m ≤ min
l∈[Di

m]
wi

m,l

∨
W i

m ≥ max
l∈[Di

m]
wi

m,l

)
≤ Pr

(
W i

m ≤ min
l∈[Di

m]
wi

m,l

)
+ Pr

(
W i

m ≥ max
l∈[Di

m]
wi

m,l

)



= F i
m

(
min

i∈[Di
m]

wi
m,l

)
+

(
1− F i

(
max

l∈[Di
m]

wi
m,l

))
, (16)

where F i
m is the cdf of W i

m.
Suppose that W i

m,1, . . . ,W
i
m,Di

m
are Di

m i.i.d. samples of

W i
m and W i

m and W
i

m are defined as the minimum and
maximum of these samples

W i
m := min

l∈[Di
m]

W i
m,l, W

i

m := max
l∈[Di

m]
W i

m,l. (17)

Then, for any ϵ1 ∈ [0, 1], the probability that the cdf
evaluated at the minimum of the samples F i

m(W i
m) is upper

bounded by ϵ1 is given by

Pr
(
F i
m(W i

m) ≤ ϵ1

)
=1− Pr

(
min

l∈[Di
m]

W i
m,l ≥

(
F i
m

)−1
(ϵ1)

)
=1−Π

Di
m

l=1Pr
(
W i

m,l ≥
(
F i
m

)−1
(ϵ1)

)
=1− (1− ϵ1)

Di
m .

(18)

Similarly, for any ϵ2 ∈ [0, 1], the probability that the cdf
evaluated at the maximum of the samples F i

m(W
i

m) is lower
bounded by 1− ϵ2 is given by

Pr
(
F i
m(W

i

m) ≥ 1− ϵ2

)
=1− Pr

(
max

l∈[Di
m]

W i
m,l ≤

(
F i
m

)−1
(1− ϵ2)

)
=1−Π

Di
m

l=1Pr
(
W i

m,l ≤
(
F i
m

)−1
(1− ϵ2)

)
=1− (1− ϵ2)

Di
m .

(19)

Finally, replacing ϵ1 and ϵ2 in (18) and (19) withϵ/2, the
probability that F i

m(W i
m)+1−F i

m(W
i

m) is upper bounded
by an arbitrary ϵ ∈ [0, 1] is

Pr
(
F i
m(W i

m) + 1− F i
m

(
W

i

m

)
≤ ϵ

)
≥ Pr

(
F i
m

(
W i

m

)
≤ ϵ

2

)
+ Pr

(
1− F i

m

(
W

i

m

)
≤ ϵ

2

)
≥ 1− 2

(
1− ϵ

2

)Di
m

.

(20)

Note that minl∈[Di
m] w

i
m,l and maxl∈[Di

m] w
i
m,l are realiza-

tions of W i
m and W

i

m, respectively. Hence, from (16) and
(20), P d,i

m (T ) ≤ ϵ for any T ∈ T i
k with a confidence level

over 1− 2 (1− ϵ/2)
Di

m , which proves the Theorem.

Theorem 1 uses the fact that the comfort condition is
ensured in mode m under a set of Di

m i.i.d. disturbance
samples to derive a guarantee on the probability of moving
to the discomfort set T d,i. Note that the confidence level in
Theorem 1 exponentially converges to 1 as the number of
data points Di

m grows so we can achieve a high confidence
level even with a small number of data points; for ϵ = 0.01,
the confidence level is 0.987 with only Di

m = 1000 data
points.

Now, we define sets of admissible modes Ms
k for each

index k ∈ [Ks] as

Ms
k = {m | m satisfies (12) and (13) for all i ∈ [N ]} ,

and sets of blocked modes Md
k := M\Ms

k. By Theorem 1, a
TCL’s probability of moving to the discomfort set is bounded
by ϵ with confidence level specified in Theorem 1 if it (or the
aggregator) selects its mode mi(t) from Ms

k. Therefore, we
can ensure the probability of satisfying the comfort condition
at a high confidence level by blocking modes in Md

k. This
strategy is adopted in the MPC algorithm we propose in the
next section.

IV. MODE-BLOCKING MPC

We next develop an MPC algorithm, referred to as Mode-
Blocking MPC, that is designed to ensure the satisfaction
of both the comfort condition and the mode-counting con-
straints (4). We use a model of the temperature dynamics of
a TCL aggregation, which has been developed/used in many
prior works, e.g., [14], [20]. Subsequently, we propose an
MPC algorithm that incorporates the sets of blocked modes
Md

k to ensure the comfort condition at a certain probability
with a certain confidence level while also satisfying the
mode-counting constraint (4).

To create the model, suppose that the aggregator has a set
of historical state trajectories {T i

m(t)}TD,N
t=0,i=1 from all TCLs

in each mode, where TD is the length of the state trajectory
horizon. Note that the same historical data could be used
for these state trajectories and the historical state transitions
used in Section III. The empirical transition probability from
T i
j to T i

k is P̂m
kj := Dm

kj/D
m
j , where Dm

j is the number of
data points such that T i

m(t) ∈ T i
j and Dm

kj is the number of
the data points such that T i

m(t+ 1) ∈ T i
k .

We leverage an approximation of the evolution of the
TCLs’ state distributions over the discretized intervals using
P̂m
kj . Define state xm,k(t) as the number of TCLs at T i

k

in mode m, and input um,m′,k(t) as the number of TCLs
at T i

k switching mode from m to m′ at time step t. We
denote by x(t) and u(t) the vectors composed of xm,k(t)
and um,m′,k(t), respectively.

Subsequently, we construct the aggregate model from the
empirical transition probabilities to approximate the evolu-
tion of the TCLs’ distribution among the discretized intervals

x(t+ 1) = Ax(t) +Bu(t), (21)

where A and B are matrices composed of the estimated
transition probabilities P̂m

kj . Note that (21) does not precisely
represent the actual state distribution of the TCLs.

Subsequently, the optimization problem solved in each
iteration of Mode-Blocking MPC is as follows:

min
xh,uh

t+H−1∑
h=t

ch
(
xh,uh

)
+ cf

t+H

(
xt+H

)
(22a)

s.t. ∀h ∈ {t, . . . , t+H − 1}
xh+1 = Axh +Buh (22b)
xt = x(t) (22c)



0 ≤ uh
m,m′,k ≤ xh

m,k ∀m ∈ M,m′ ̸= m
(22d)

uh
m′,m,k = 0 ∀m ∈ Md

k,m
′ ̸= m (22e)

xh
m,k =

∑
m′∈Ms

k

uh
m,m′,k ∀m ∈ Md

k (22f)

N ≤
K∑

k=1

xt+H
1,k ≤ N (22g)

where xh and uh are the state and input at time step h,
respectively, ch is the cost function at time step h, H is the
length of the prediction horizon, cf

t+H is the cost function
for the last step of the horizon, (22d) ensures the number of
mode-switching TCLs do not exceed the number of total
TCLs in each interval; (22e) prevents TCLs at T i

k from
switching to any mode within Md

k; (22f) ensures that all
TCLs in any mode within Md

k switch to a mode within
Ms

k; and (22g) forces the number of turned-ON TCLs to
be within the bounds N and N , aligning with (4).

After solving (22) at time step t, we determine the input
u(t) as the optimal value of ut. Note that the input u(t) just
specifies how many TCLs in each interval should switch to
each mode without specifying which TCLs to switch. Thus,
after u(t) is determined, it must be realized by arbitrarily
selecting um,m′,k(t) TCLs at T i

k to switch from m to m′.
The advantage of using aggregate dynamics over determining
individual modes of all TCLs is that the number of decision
variables is independent of the number of TCLs. It is only
dependent on the number of the discretized intervals K, and
hence the approach is scalable for a large aggregation of
TCLs.

The next result follows directly from Theorem 1.

Proposition 1. Suppose that (22) is feasible for all time
steps t and the modes of the TCLs are switched according to
the optimal input ut from (22). Then, for any ϵ > 0 and i ∈
[N ], the probability P d,i

m (T i(t)) of ith TCL moving outside
of the comfort set T s,i is less than ϵ with a confidence level
over 1−2(1−ϵ/2)D

i
m for all t ∈ N0. In addition, the mode-

counting constraint (4) holds for all t ∈ N0.

There are already MPC algorithms that leverage similar
models of aggregate TCL dynamics, e.g., [14], [20]. How-
ever, the novelty of the proposed MPC algorithm is that it
blocks modes in Md

k for all k to satisfy comfort conditions
while also ensuring network safety. The MPC algorithm
developed in [20] utilizes a similar mode-blocking strategy
but is only applicable to mildly heterogeneous TCLs with
known and deterministic temperature dynamics.

V. CASE STUDY

In this section, we present a case study in which we
control N = 1, 000 heterogeneous cooling TCLs providing
grid balancing services while keeping their aggregate power
consumption lower than a prescribed bound to maintain
distribution network safety. In particular, we consider a
scenario in which the real-time network conditions differ
significantly from the forecasted network conditions; the

same scenario was considered in [10], though the approach
in that paper did not provide any guarantee on the comfort
condition.

We model each TCL using the affine temperature dynam-
ics model described in [12]:

f i
m(T ) = aithT +

(
1− aith

) (
θia + bithm

)
, (23)

where θia is the ambient temperature and

aith = exp

(
− ∆t

rithc
i
th

)
, bith = rithp

i
tr,

where rith is the thermal resistance and cith is the thermal
capacitance of the ith TCL. Also, pitr is the energy transfer
rate of the ith TCL, which is negative for a cooling TCL. The
power consumption of each TCL in the ON mode is equal to
pi := pitr/ζ

i, where ζi is the coefficient of performance. The
temperature set-point T i

set := (T s,i+T
s,i
)/2 is at the center of

the temperature dead-band, which has width di := T
s,i−T s,i.

As mentioned in Section II-B, Assumption 1 holds with the
Lipschitz constant Lf

m = 1.
The TCL parameters are determined by sampling from

uniform distributions over specified ranges whose widths
∆• are set proportional to a parameter ∆ that serves as a
scaling factor for adjusting the widths1. To evaluate perfor-
mance under various degrees of heterogeneity, we test the
control algorithm for multiple values of ∆. The disturbance
probability distributions Wi

m for each mode and TCL are
modeled as normal distributions with mean 0 and standard
deviations sampled from the range [0.005−∆w, 0.005+∆w].
The dead bands T s,i are discretized into Ks = 50 intervals.
In addition, we assume the utility provides an upper bound
on the aggregate power consumption of TCLs of 2, 240 kW
to prevent under-voltages. We ran offline simulations of the
TCLs to obtain state trajectory data to compute the set of
admissible modes Ms

k, blocked modes Md
k, and empirical

transition probabilities P̂m
kj . The number of data points Di

m

was larger than 100 for all i ∈ [N ] and m ∈ {0, 1}, and
so we obtain P d,i

m (T i(t)) ≤ 0.001 with confidence level of
almost 1.

We compare Mode-Blocking MPC with a Benchmark
MPC, which permits switching to all modes across each
discretized interval T i

k within the comfort set T s,i; this
control algorithm has served as a benchmark in [20] as
well. Through this comparison, we aim to observe the impact
of mode-blocking on the comfort condition, network safety,
and tracking performance. The cost functions for both of
the MPC algorithms are designed to maximize tracking
performance while penalizing the total number of mode
switches to reduce the damage to the TCLs’ compressors:

ct (x(t),u(t)) =

∣∣∣∣∣r̃(t)− pavg

K∑
k=1

x1,k(t)

∣∣∣∣∣︸ ︷︷ ︸
cf
t(x(t))

+α ∥u(t)∥1

1rith ∈ [1.8−∆r, 1.8+∆r] °C/kW, cith ∈ [1.5−∆c, 1.5+∆c] kWh/°C,
θia ∈ [32 − ∆a, 32 + ∆a] °C, pitr ∈ [−16 − ∆p,−16 + ∆p] kW, ζi ∈
[2.5 − ∆ζ , 2.5 + ∆ζ ], T i

set ∈ [23 − ∆T , 23 + ∆T ] °C, di = 1.0 °C,
∆t = 20 s.
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Fig. 4. Aggregate power consumption of the TCLs under the Benchmark
MPC (left) and Mode-Blocking MPC (right) when ∆ = 0.2. The aggregate
powers under both algorithms do not violate their bounds significantly.
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Fig. 5. Trajectories of TCL normalized temperatures under the Benchmark
MPC (left) and Mode-Blocking MPC (right) when ∆ = 0.2. A significant
number of TCLs move outside of the dead-band under the Benchmark MPC.
No dead-band violations occurred under Mode-Blocking MPC.

where α = 0.01 is penalty on the number of mode switches.
We generate the reference signal r(t) by shifting and scaling
a 2-hour segment of the PJM RegD signal [24]. This signal
is originally at a 2-second intervals, but to align with the
sampling time ∆t = 20 s, we employ down-sampling,
resulting in a modified signal r̃(t).

The length of the prediction horizon for MPC was set to
H = 5. For each case, we analyze the tracking performance
by calculating the average difference between the TCL aggre-
gate power consumption pagg(t) :=

∑K
k=1 p

imi(t) and r̃(t),
i.e., 1

Th

∑Th

t=1 |r̃(t)− pagg(t)| where Th is the total number
of time steps in the experiment. We also empirically evaluate
the comfort condition by computing the fraction of TCLs that
move to the discomfort set T d,i, and assess network safety by
calculating the fraction of time steps with aggregate power
bound violations and the maximum deviation from the upper
bound p, as a percentage of p. We perform five experiments
for each of eight ∆ values (0, 0.05, 0.1, 0.15, 0.2, 0.25,
0.3, 0.35), keeping the TCL parameters constant for a given
∆ while changing the disturbance samples across the five
experiments.

Fig. 4 illustrates the TCL aggregate power consumption
and reference signal r(t) under each algorithm from one
experiment for ∆ = 0.2. Fig. 5 shows the trajectories
of the normalized temperatures (i.e., the TCL dead-bands
are projected to [0, 1]) of 100 of the TCLs under each
algorithm for ∆ = 0.2. As shown, the TCL aggregate
power consumption does not accurately track the reference
signal even when it is lower than p as the TCL population
increasingly clusters towards the upper limit of the dead-
band, which restricts TCLs from turning ON. The mode-

TABLE I
FRACTION OF TIME STEPS WITH VIOLATIONS AND MAX DEVIATION (%)

∆ 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Fraction 0 0.015 0.038 0.015 0.050 0.122 0.213
Max Dev 0 .082 .328 .283 .544 .968 1.66
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Fig. 6. Averages and ranges of reference tracking error (left) and fraction
of TCLs within T d,i (right) versus heterogeneity level ∆ across the five
experiments. The difference in tracking error between the two controllers
does not change significantly with the heterogeneity level. The fraction of
TCLs outside of the dead-band increases with heterogeneity level under
Benchmark MPC but stays constant at zero under Mode-Blocking MPC.

counting constraints are always satisfied for both algorithms,
though the actual aggregate power consumption of the TCLs
occasionally exceeds the upper limit p, as shown in Table I,
since the mode-counting constraints are approximate. The
maximum observed deviation from p is less than 2% of p,
which should have only a small effect on network voltages.

Fig. 6 shows the averages and ranges of tracking error
and the fraction of TCLs in T d,i across the five experiments
for different levels of heterogeneity ∆, while Table II shows
the number of intervals T i

k within the dead-band in which
each mode is blocked. As illustrated in Fig. 6, the tracking
performance of Benchmark MPC always surpasses that of
Mode-Blocking MPC because it has greater flexibility from
a larger number of admissible modes within the intervals in
T s,i. However, the average fraction of TCLs within T d,i is
high (exceeding 10%) and increases with TCL heterogeneity.
In contrast, Mode-Blocking MPC prevented any TCL from
moving to T d,i. This shows the impact of implementing
mode-blocking for intervals within T s,i, particularly when
we wish to prioritize the comfort condition under significant
TCL heterogeneity. Note that, while differences in tracking
performance between the two approaches are almost constant
with respect to ∆, the fraction of TCLs within the discomfort
set and the difference in comfort condition outcomes between
the two approaches increases with ∆ in Benchmark MPC.
This demonstrates that Mode-Blocking MPC successfully en-
sures the comfort condition without sacrificing much tracking
performance. Moreover, the tracking performances of both
Benchmark MPC and Mode-Blocking MPC were not neces-
sarily proportional to the level of heterogeneity. However,
beyond ∆ = 0.2, the tracking performance degrades as
the heterogeneity increases. This can be explained by the
growing fraction of TCLs with faster temperature dynamics,
resulting in diminishing flexibility. Additionally, the average
time to solve the Benchmark MPC is 1.28 s, and for the
Mode-Blocking MPC, it is 1.15 s, both of which are shorter



TABLE II
NUMBER OF INTERVALS T i

k IN WHICH EACH MODE IS BLOCKED

∆ 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

OFF Mode 3 2 3 3 2 3 3 3
ON Mode 4 4 4 4 4 4 4 4

than ∆t = 20 s. Hence, both approaches can be utilized in
real-time applications.

The conservatism of Mode-Blocking MPC is influenced
by the number of bins that are blocked for each mode.
We observed that an increase in heterogeneity level ∆ does
not consistently lead to a rise in the number of blocked
intervals, as shown in Table II. The tracking performance
improved when the number of blocked bins was reduced
(e.g., for ∆ = 0 to 0.05) while it significantly degraded
when the number of blocked bins was increased (e.g., for
∆ = 0.2 to 0.25). In cases in which the number of blocked
bins remained the same despite an increase in ∆, tracking
performance was sometimes improved, although the general
trend was a reduction in tracking performance with increased
TCL heterogeneity.

VI. CONCLUSION

This paper proposed an MPC algorithm for a large aggre-
gation of heterogeneous TCLs with unknown temperature
dynamics to provide balancing services. Leveraging a data-
driven method, we constructed a set of admissible modes
for each discretized interval that ensures the satisfaction of
the comfort condition when TCLs choose modes from these
sets. We then developed a Mode-Blocking MPC that lever-
ages these sets to concurrently satisfy a comfort condition
and mode-counting constraints, which approximates network
safety. A key feature of Mode-Blocking MPC is it guarantees
the probability of satisfaction of the comfort condition while
coordinating heterogeneous TCLs with unknown temperature
dynamics. A case study demonstrated that Mode-Blocking
MPC satisfies the comfort condition for a large range of TCL
heterogeneity levels, while not sacrificing much in terms
of tracking performance. This demonstrated the benefits of
Mode-Blocking MPC versus a Benchmark MPC approach
that does not use mode-blocking.

In the future, we aim to enhance Mode-Blocking MPC,
e.g., by developing approaches to ensure recursive feasibility
and increase robustness against error from the approximated
TCL dynamics.
Acknowledgment: The authors would like to thank Haechan
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