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Abstract— In this paper we propose a necessary and sufficient
graphical condition for fault detection in structured affine
systems where only the sparsity structure of system and fault
matrices are known. The fault detection for such systems en-
ables one to distinguish between the outputs of a nominal model
and a faulty model within T time-steps. The resulting graphical
condition involves checking for the existence of certain walks
between pairs of vertices. Subsequently, we provide a simple
algorithm to check for this condition and illustrate it via an
example.

I. INTRODUCTION

Fault detection has been a topic of interest for different
engineering communities for quite some time now, see for
e.g. [1] and the references therein. Several approaches exist
for fault detection in dynamical systems including and not
limited to spectrum analysis [2], pattern recognition [3], and
residual generation [4]. A recent approach for fault detection
proposed in [5], [6] provides a means to analyze if a fault
can be detected in finite time and presents an algorithm to
achieve finite-time detection whenever possible.

In several real-world scenarios the exact values of system
parameters are unknown with the exception of presence or
absence of interactions. Structural control which involves
analysis of system properties based solely on their connectiv-
ity structure rather than actual values of system parameters, is
a powerful tool in these situations. The premise of structural
control is simple: the properties analyzed hold for almost all
choices of system parameters except for possibly a set of
measure zero [7], [8]. This makes structural control analyses
robust to variations in parameters and suitable for large-
scale systems [9], [10]. Furthermore, one typically uses
graph-theory to obtain structural control results which often
provides new insights about system behavior [11]. Several
properties of systems such as controllability, observability,
and left-invertability have been analyzed in the structural
domain [12]–[15]. Motivated by these results, the goal of
the current paper is to develop a structural theory of fault
detectability, analogous to the unstructured results in [5], [6],
for affine systems where only the structure of the system and
the fault are known.

Results along the lines of structural fault detection has ap-
peared in [15], [16]. In [15], the property of left-invertability
of continuous-time structured linear descriptor systems in a
power-network setting was studied which guarantees the non-
existence of undetectable additive (affine) faults. The results
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were exact for the situations where the initial states were
known a priori whereas they were sufficient with unknown
initial states. On the other hand, in [16] the problem of
structural detectability and isolability of faults was addressed
for arbitrary nonlinear systems. The authors used a complete
matching and residual generation technique that involved
a bi-partite graph representation of system variables and
constraints. Such a procedure turns out to be computationally
very intensive where the time-complexity depends on number
of variables (state and output variables) and the number of
constraints (which is more than the number of variables).
In addition, for discrete-time systems the fault detection
procedure requires measurements of all present and future
states, and is not applicable when the number of outputs is
less than the number of states.

Our main contribution in this paper is a necessary and
sufficient condition for (in)distinguishability of structured
nominal and faulty models using system graphs for discrete-
time autonomous affine systems. We assume that the sparsity
structures of system and fault matrices are known a priori.
For instance, this would encompass situations where the
location of fault is known but not its type (e.g., additive,
crosstalk, link addition, etc.) or magnitude. The resulting
graphical condition involves existence of walks in the sys-
tem graph containing edges from the faulty system. This
conforms to the intuition that for a faulty interaction to be
detectable, it must be connected to the output and be excited
by the affine term which is acting as the auxiliary input. Next,
we present an efficient algorithm to check for the presence of
these walks in a graph. We finally illustrate our main result
and the algorithm via the means of a suitable example.

The faulty system model in this paper is quite general in
terms of location of the occurrence of faults. Our framework
allows the faults to affect any interaction; including interac-
tions between states (i.e., the internal dynamics), interactions
from the affine term to the states (i.e., the drivers of the
system), or the ones from states to outputs (i.e., measurement
process). This encompasses the situations where we have
additive or affine faults as in [15], though the nominal system
class in [15] is more general (linear descriptor systems vs.
affine systems). Moreover, it is possible to analyze dis-
tinguishability (detectability) for discrete-time systems only
from the measurements of their outputs within the proposed
framework as opposed to full state measurements.

Notation. The set of real numbers and non-negative in-
tegers are denoted by R and N0, respectively. The identity
matrix of suitable dimensions is denoted by I. Similarly, the
zero matrix of suitable dimensions is denoted simply by 0.
We will use vi to denote the ith entry of a vector v.



II. BACKGROUND

A. System Model

We are concerned with fault detection in affine systems
described by the following:

x(t+ 1) = Ax(t) + K; (1a)
y(t) = Cx(t), (1b)

where A ∈ Rn×n, K ∈ Rn, and C ∈ Rp×n. The vectors
x(t) ∈ Rn and y(t) ∈ Rp denote the state and the measured
output of the system, respectively, at time t ∈ N0.

It is assumed that all the above matrices are structured;
i.e., the exact parameter values are not known. However, the
sparsity structure of the matrices (i.e., the location of zero
and non-zero entries) is known. The non-zero entries are de-
noted by a ∗. A particular instance of a structured matrix M
preserves the location of all the zero entries while the ∗ are
all replaced by free independent parameters. Consequently,
a real matrix M̃ is said to be structurally equivalent to a
structured matrix M if the location of zero and non-zero
entries in both the matrices correspond to one another. A
property (e.g., controllability, detectability) for a structured
system is said to hold for a generic set of parameters if the
set of independent values for which the property fails is a
set of Lebesgue measure zero (more specifically a solution
set of a nontrivial system of polynomials). We say that a
structured variable m (resp. a structured matrix M) is not
constrained to be zero; i.e., m 6≡ 0 (resp. M 6≡ 0) if m
is a free parameter (resp. at least one entry of M is a free
parameter). Similarly, M ≡ 0 if all the entries of M are
constrained to be zero.

B. Fault Detectability

Our main goal in this paper is to formulate a set of
graphical conditions such that the nominal system model S
described by (1) can be distinguished from the faulty system
model Sf described below:

xf (t+ 1) = (A + FA)xf (t) + (K + FK); (2a)

yf (t) = (C + FC)xf (t). (2b)

where FA, FK , and FC are structured matrices of appropri-
ate dimensions. The matrices FA, FK and FC capture the
faults occurring within the system. For example, the (j, i)th
entry of FA is a free parameter if and only if a fault occurs
between the interaction channel of state xj to xi. One key
feature of (2) is the fact that since the matrices FA, FK

and FC are structured, they can capture a wide variety of
faults; for e.g., changes in parameter values and appearance
of non-existing interaction between system parameters. We
will define the faulty system matrices Af , Kf , and Cf as
Af = A + FA, Kf = K + Fk, and Cf = C + FC ,
respectively. We define the distinction between nominal and
faulty models in terms of a distinguishability condition as
follows:

Definition 1: A fault model Sf described by (2) and
matrices (Af ,Kf ,Cf ) is said to be distinguishable from a
system model S described by (1) and the triplet (A,K,C)

if there exists a T ∈ N0 such that for all initial states
x0,xf ∈ Rn we have y(t) 6= yf (t) for some t ∈ [0, T ].

In other words, we say that Sf is distinguishable from S
if their outputs can be distinguished within T time-steps for
all initial states. Throughout the paper, we will use the word
“distinguishable” to refer to system models and the word
“detectable” while referring to faults ( [17]). The quantity
T is defined as the horizon for distinguishability, and if the
systems are distinguishable for some T ; they are distinguish-
able for any T̄ ≥ T . It can be shown (from the results
in [6]) that definition 1 for distinguishability is equivalent
to the following for affine systems without noise: for all
initial states x0,xf there exists a T̃ (x0,xf ) ∈ N0 such that
y(T̃ (x0,xf )) 6= yf (T̃ (x0,xf )). Note that the time horizon
T in definition 1 can be taken to be maxx0,xf

T̃ (x0,xf ),
where the maximum exists if and only if a finite T exists
[6]. For simplicity of notation, in what follows, we write T̃
by dropping the dependence on the initial states whenever it
is clear from the context. Proceeding along similar lines, we
have the following definition for detectability of a structural
fault.

Definition 2: A structured faulty system (2) is (struc-
turally) distinguishable from a structured nominal system (1)
if for almost every choice of system parameters (i.e., almost
every instantiation of (A,K,C) and (FA,FK ,FC)), there
exists a T such that for all initial states x0,xf ∈ Rn we
have y(t) 6= yf (t) for some t ∈ [0, T ]; or equivalently, for
every initial states x0,xf ∈ Rn there exists a T̃ ∈ N0 such
that y(T̃ ) 6= yf (T̃ ).

On the other hand, systems described by structured triplets
(A,K,C) and (Af ,Kf ,Cf ) are said to be structurally
indistinguishable, if for almost every choice of parameters,
there exist initial states x0,xf ∈ Rn such that for every finite
T ∈ N0, we have y(T ) = yf (T ); i.e., there exists a pair of
initial conditions such that the outputs of the two systems
will never be distinguishable. The negation of structured
indistinguishability yields (just) a non-zero measure set in the
parameter space such that every pair of system instantiations
in this set is distinguishable. While this condition does
not directly yield the structured distinguishability condition
which involves distinguishability for almost every choice of
parameters, we will show that this is indeed the case.

Lemma 1: The structured triplets (A,K,C) and
(Af ,Kf ,Cf ) are structurally distinguishable; i.e., they are
distinguishable for almost every choice of system parameters
if and only if, there exists a non-zero measure set of system
parameters such that every system pair instantiation in this
set is distinguishable.

Proof: See Appendix.

The following result from [6] gives a complete charac-
terization of a fault being undetectable for a system in the
unstructured setting.

Lemma 2: A faulty model Sf of the form (2) is indistin-
guishable from a nominal system S of the form (1) in T -time
steps for any finite T if and only if, there exist x0,xf ∈ Rn



such that the following are satisfied:[
C −Cf

] [x0

xf

]
= 0,

(3a)[
OG(2n) −OGf

(2n)
]([ (A− I)x0

(Af − I)xf

]
+

[
K
Kf

])
= 0

(3b)

where OG(2n) and OGf
(2n) are the extended observability

matrices of the nominal and the faulty system of order 2n,

respectively; i.e., OG(2n) =

 C
...

CA2n−1

 and OGf
(2n) =

 Cf

...
CfA

2n−1
f

.

In essence, Lemma 2 states the fact that the faulty system
model is indistinguishable from the nominal system model if
and only if there exists a pair of initial conditions such that
the outputs of the two systems for first 2n + 1 time-steps
are equal where n denotes the number of states. Thus, for
structured matrices we have the following result.

Corollary 1: The structured faulty system model (2) is
indistinguishable from the structured nominal system model
(1) in T -time steps for any finite T if and only if, for almost
every choice of parameters, there exist x0,xf ∈ Rn such
that (3) is satisfied.

Note that the initial states x0 and xf leading to indistin-
guishability depend on the choice of parameters describing
the nominal (1) and faulty (2) system pair. Thus, even for two
indistinguishable system pairs of same structure but different
parameter choices, one would typically end up with different
values of initial states x0 and xf resulting in equal outputs.
Furthermore, it can be seen that Lemma 1 implies that two
structured systems are distinguishable if and only if there
exist no initial states such that (3) is satisfied.

C. Graphical Model

One of the main advantages of using structured systems
for analysis in control theory is the fact that we are able
to leverage tools and results in graph theory to describe
system properties. The structured system models (1) and (2)
can be represented alternatively using directed graphs. Let
us first consider the nominal system model (1) described
by a structured triplet (A,K,C). Such a system can be
described by a directed graph G = (V,E), where V denotes
the vertex set and E denotes the edge set. The set V
comprises of three types of nodes: n state nodes represented
by X = {x1, . . . , xn}, one auxiliary input node K = {k},
and p output nodes Y = {y1, . . . , yp}, so that we have
V = X ∪ K ∪ Y . Correspondingly, the edge set E also
comprises of three sets of edges; i.e., E = EX ∪ EK ∪ EY .
We say that (xi, xj) ∈ EX if and only if the (j, i)th entry of
A (denoted by Aji) is a free nonzero parameter. Similarly,
(k, xi) ∈ EK and (xj , yl) ∈ EY if and only if Ki and
Clj are not constrained to be zero, respectively. Here, Ki

and Clj denote the ith and (l, j)th parameter of K and C,
respectively.

The faulty system model (2) is described by a multi-graph
Gf = (V,E ∪ Ef ) such that the set Ef consists of faulty
edges not present in the nominal system graph G; i.e., E ∩
Ef = ∅. The set Ef consists of three types of faulty edges
corresponding to the location of faults; i.e., location of free
nonzero parameters in FA, FK , or FC . As one can observe,
it is possible to have both a nominal system edge and a faulty
edge between a pair of vertices, corresponding to a fault
modifying an existing interaction, thus leading to a multi-
graph Gf .

Standard definitions of walks, paths, and cycles are used
throughout the paper [18]. A walk W in G is a sequence
of edges such that the start vertex of the next edge is the
end vertex of the preceding one. The number of edges in a
walk is also known as the length of the walk. A walk where
none of the edges and vertices are repeated is known as a
path (or in some references, as a simple path). A path whose
begin and end vertices are the same is known as a cycle. One
important feature of G as well as Gf is that there is no direct
edge from K to any of the nodes in Y; i.e., every path from
{k} to any of yi ∈ Y must go through one of the nodes
in X . Furthermore, we say that a faulty walk exists from k
(or equivalently, from K) to Y , if and only if, there exists a
walk from k to at least one of the vertices y1, . . . , yp ∈ Y
containing at least one edge from Ef .

III. MAIN RESULT

In the following section, we will present an equivalent
graphical characterization of Lemma 2 for structured affine
systems.

Theorem 1: The structured faulty model Sf described by
(2) and the structured triplet (Af ,Kf ,Cf ) is indistinguish-
able from the nominal system model S described by (1) and
the structured triplet (A,K,C) for any finite T ∈ N0 if and
only if there exists no faulty walk from K to Y in Gf (i.e.,
all the walks from k to Y are free of faulty edges).

Theorem 1 and Lemma 1 state that as long as there is
at least one faulty walk from K to Y , the two systems
must be distinguishable for some finite T . This fits with
the intuition that for a fault to be detectable, it must have
two properties: it should be excitable from the affine term
(serving as the auxiliary input) K and it should be detectable
using a measured output in Y . Furthermore, one should note
that at least one of the affine terms K or Kf must be non-
zero. Otherwise, a trivial choice of initial states with x0 =
xf = 0 would make the faulty system indistinguishable for
any choice of parameters.

The faulty walks under consideration in Theorem 1 can
be of any length. However, as we will show in Lemma 5
later, a walk from k to Y of length 2n+ 2 or greater exists
only if there is a corresponding walk of length less than or
equal to 2n+1. Thus, while checking for indistinguishability
certificates, one needs to focus on walks from k to Y of
lengths up to 2n+ 1.



Remark 1: One can construct a network where the short-
est faulty walk from K to Y is of length 2n + 1. Consider
a chain network with a single output such that only the
following edges are present: (k, x1), (xs, xs+1) with s =
1, . . . , n − 1 and (xn, y). Assume that only a single faulty
edge is present which starts at xn and ends at x1. Then the
shortest faulty walk from k to y involves going through the
edges (k, x1) and (xs, xs+1) for s = 1, . . . , n − 1 followed
by the faulty edge (xn, x1), and then again following the
chain from x1 all the way up to y. Thus, the overall length
of the shortest faulty walk is 2n+ 1.

Remark 2: We will call a single fault (i.e., a faulty edge
in Ef ) detectable if there exists a walk from k to one of
the nodes in Y containing the fault such that all the other
edges in the walk are nominal system edges (i.e., edges in
E). While the existence of a detectable fault is sufficient for
the distinguishability of the two systems, it is not a necessity.
In other words, the faulty walk required in Theorem 1 can
comprise of two or more faults i.e., two or more edges
from Ef . Thus, one may have a situation such that none
of the individual faults are detectable in isolation but the
faulty system as a whole is distinguishable from the nominal
system.

Remark 3: We finally conclude this section with a com-
ment on the time horizon T required for the distinguishability
of faulty and nominal systems. The length ` of the shortest
faulty walk from k to Y serves as the infimum for all
time horizons T required for distinguishability as defined
in definition 1. Intuitively, one can see that this is due to the
fact that the difference in effect of the affine term (which is
acting as the auxiliary input here) will not show up at the
output in less than `+1 time steps in the faulty graph. Thus,
if one sets the initial states equal to zero, the outputs of both
the systems will be the same for t = 0, . . . , `.

A. Special Cases

In this section, we list a few of the special cases of graphs
G and Gf where the application of Theorem 1 becomes
easier. Our first situation involves G where every state node
xi ∈ X lies on at least one of the paths from k to Y . In such
a case, it turns out, every fault in the system is detectable.

Proposition 1: Suppose G is such that every node xi ∈ X
lies on some path from k to one of nodes in Y . Then,
the faulty system (2) is structurally distinguishable from
the nominal system (1) whenever Ef 6= ∅; i.e., every fault
occurring in such a system is detectable.

Proof: We will present a sketch of the proof here. First,
consider a fault in Fk of the form (k, xi). Since there exists
a path from xi to one of the nodes in Y , one can construct
a walk beginning with the faulty edge (k, xi) and appending
it to the path from xi to Y which clearly shows that fault is
detectable. Now consider, fault in FA of the form (xi, xj).
Since both xi and xj lie on at least one of the paths from
k to Y (say Pi and Pj , respectively), one can construct a
walk as follows: begin from k to xi using the edges in Pi,
follow it up with the faulty edge (xi, xj), and finally take
the path from xj to Y from Pj . Thus, this walk makes the

faulty edge (xi, xj) detectable. Finally, a similar proof can
be constructed for a fault occurring in FC .

One of the immediate applications of Proposition 1 is in
the case of strongly connected directed graphs.

Corollary 2: Suppose G̃ = (X , EX ) is strongly con-
nected; i.e., the state vertices form a strongly connected net-
work among themselves. Such a network is distinguishable
whenever Ef 6= ∅.

We conclude this section with a discussion on acyclic
graphs.

Proposition 2: If Gf is acylic with the longest path length
between any two vertices in X equal to `1 and there exists a
faulty path from k to Y of length `2 + 2, then the following
hold true:
(a) The length `2 ≤ `1, and
(b) The nominal and faulty systems are structurally distin-

guishable with T = `1 + 1.
Proof: Part (a) is clear from the fact that Gf is acyclic

and `1 is the longest path between any two vertices in X .
Furthermore, since the edge E is a subset of edges in Gf ,
one can observe that A`1+1 = A`1+1

f = 0. Thus,

y(`1 + 1)− yf (`+ 1) = CA`1+1x(0)−CfA
`1+1
f xf (0)

+

`1∑
t=0

(
CAtK−CfA

t
fKf

)
is not equal to 0 for almost all choices of parameters since
CA`2K−CfA

`2
f Kf 6≡ 0 (see Lemma 4 for details). Thus,

the systems are distinguishable for T = `1.

IV. PROOF OF MAIN RESULT

In this section, we present a detailed proof of Theorem
1. We proceed by first stating the Lemmas required to
simplify the main proof. We will use the following notation
throughout the section: we will denote Mji to be the (j, i)th
entry of M. Furthermore, Mji 6≡ 0⇔ −Mji 6≡ 0.

A. Lemmas

We first recall the Cayley-Hamilton Theorem (CHT) for
matrices and state it here for the sake of completeness.

Lemma 3 (CHT): Let M be a square matrix with entries
Mij and let pM(β) = det(βI−M) denote its characteristic
polynomial. Then, p(M) = 0.

Note that when M is a structured matrix; i.e., Mij are
indeterminate quantities or 0, the coefficients of pM(β) =
det(βI−M) are simply either 0 or polynomials without con-
stant terms in entries Mij (except for the leading coefficient
which is 1).

For the rest of the section, we will define augmented ma-

trices Ā ,

[
A

Af

]
, C̄ ,

[
C −Cf

]
, and K̄ =

[
K
Kf

]
.

Our final two lemmas in this section relate the existence of
faulty walks from k to in Y to the sparsity of matrix products.

Lemma 4: A faulty walk of length `+2 (for ` ∈ N0) from
k to one of the vertices y1, . . . , yp ∈ Y exists if and only if
C̄Ā`K̄ = −CfA

`
fKf +CA`K 6≡ 0; i.e., not all the entries

in CfA
`
fKf −CA`K are identically zero.



Proof: Recall that Gf is a supergraph of G since the
edge set of G is a subset of the edge set of Gf . The jth
entry of the matrix product CfA

`
fKf (resp. CA`K) not

being identically zero is equivalent to saying that there exists
a walk of length `+2 from k to yj ∈ Y in the graph Gf (resp.
G) through ` vertices in X . Let W1 (resp. W2) denote the
collection of all walks from k to the vertices in Y in the graph
Gf (resp. G) via exactly ` state nodes in X . Note that some
of the state nodes may be repeated. Since the edge set of G
is a subset of the edge of Gf , we have W2 ⊂ W1. It can be
seen that the nonzero entries of the matrix product CfA

`
fKf

(resp. CA`K) correspond to the walks in W1 (resp. W2).
By subtracting the quantity CA`K from CfA

`
fKf , we are

only considering the walks in W1 \W2; i.e., the walks from
k to Y that are present in Gf but not present in G. Thus, if
entry j of C̄Ā`K̄ = −CfA

`
fKf +CA`K is not identically

zero, there exists a walk W ∈ W1 \ W2; i.e., this walk W
must contain at least one edge from Ef ; or a faulty edge.

Conversely, suppose there exists a walk W through the
nodes k → a0 → · · · a` → yj in Gf from k to yj ∈ Y
containing at least one faulty edge from Ef . Then the
jth entry of CfA

`
fKf is not identically zero, and hence

(C̄Ā`K̄)j = (−CfA
`
fKf + CA`K)j 6≡ 0 since W would

not be present in G because E ∩ Ef = ∅. Here vj denotes
the jth entry of the vector v.

Lemma 5: A walk of length greater than or equal to 2n+2
from k to Y exists in Gf only if there exists a walk from k
to Y of length less than or equal to 2n+ 1.

Proof: This lemma is a consequence of Lemmas 4 and
3. We have C̄ĀlK̄ =

∑2n−1
s=0 αsC̄ĀsK̄ for any l ≥ 2n

where αs are either 0 or polynomials without constant terms
in the entries of structured matrix Ā. It is clear that C̄ĀlK̄ 6≡
0 for l ≥ 2n only if C̄ĀsK̄ 6≡ 0 for some s = 0, . . . , 2n−1.

B. Proof of Theorem 1
1) Structural Indistinguishability: ⇒No faulty walk from

k to Y
By contradiction, assume that there exists a faulty walk of

length `+2 from k to Y but the faulty system is structurally
indistinguishable from the nominal system. Without loss of
generality assume that the quantity ` is the smallest one;
i.e., ` + 2 is the length of the shortest walk from k to one
of the vertices in Y containing a faulty edge from Ef . Let
N denote the total number of non-zero free parameters in
(A,K,C) and (FA,FK ,FC). Then, every λ ∈ RN admits
a realization of the nominal and faulty systems defined in (1)
and (2), respectively. Since the faulty system is structurally
indistinguishable from the nominal system, this implies that
for almost every choice of λ ∈ RN , there exist x0,xf ∈ Rn
such that (3) is satisfied (corollary 1). Let us define by x̄,

the augmented vector x̄ =

[
x0

xf

]
.

Structural indistinguishability using (3) implies that Cx0−
Cfxf ≡ 0⇒ C̄Ix̄ = 0. Similarly, expanding the first block
row of the second equation in (3) gives us

C[(A− I)x0 + K]−Cf [(Af − I)xf + Kf ] = 0

which implies C̄Āx̄ = −C̄K̄. Moving on, expanding the
second block row yields

C̄Ā2x̄ = −C̄K̄− C̄ĀK̄

Expanding each block row iteratively, we obtain C̄Ārx̄ =
−
∑r−1
j=0 C̄ĀjK̄ for r = 1, . . . , 2n.

Let us denote the characteristic polynomial of Ā by
pĀ(β) , det(βI − Ā). It can be seen that pĀ(β) has the
following expanded form:

pĀ(β) = det(βI−Ā) = β2n−γ2n−1β
2n−1−· · ·−γ0. (4)

where γ0, . . . , γ2n−1 are either 0 or polynomials without
constant terms in the entries of Ā (equivalently, in the
entries of A and FA). Lemma 3 (Cayley-Hamilton Theorem)
implies that Ā satisfies its own characteristic polynomial;
i.e., pĀ(Ā) = 0 and thus, Ā2n =

∑2n−1
j=0 γjĀ

j .Thus, we
have using (4)

C̄Ā2nx̄ = γ0C̄Ix̄ + γ1C̄Āx̄ + · · ·+ γ2n−1C̄Ā2n−1x̄

= γ1C̄Āx̄ + · · ·+ γ2n−1C̄Ā2n−1x̄

= γ1(−C̄K̄) + · · ·+ γ2n−1

(
−

2n−2∑
j=0

C̄ĀjK̄

)

= −
2n−2∑
j=0

( 2n−1∑
r=j+1

γr

)
C̄ĀjK̄

Now, last block row of (3) implies C̄Ā2nx̄ = −C̄K̄−· · ·−
C̄A2n−1K̄. Therefore, the last line of the above equation
can be re-written as

2n−1∑
j=0

( 2n∑
r=j+1

γr − 1

)
C̄ĀjK̄ = 0 (5)

where γ2n is introduced for notational convenience and it is
equal to 0.

Since `+ 2 is the length of the shortest faulty walk from
k to Y , Lemma 4 implies that C̄Ā`K̄ 6≡ 0, but C̄ĀsK̄ ≡ 0
for all s = 0, . . . , `− 1. Now equation (5) can be re-written
as

ψ(λ) ,
2n−1∑
j=`

( 2n∑
s=j+1

γs − 1

)
C̄ĀjK̄ = 0 (6)

for almost every λ ∈ RN with γ2n = 0. Since, a polynomial
can be either identically zero or non-zero almost everywhere
in RN [19], this implies that ψi(λ) ≡ 0 for every λ ∈ RN
and for every i ∈ 1, . . . , n where ψi(λ) denotes the ith row
of ψ(λ); i.e., ψi is the zero polynomial.

Note that since C̄Ā`K̄ 6≡ 0 there exists an index l ∈
{1, . . . , p} (where p denotes the number of outputs) such
that (C̄Ā`K̄)l 6≡ 0 for almost every choice of λ ∈ RN . Let
φl(λ) denote the lth row of −C̄Ā`K̄. In other words, we
have φl(λ) 6= 0 for almost every λ ∈ RN ; i.e., φl(·) is not
the zero polynomial.

Now one can observe that every monomial term in any
entry of C̄ĀjK̄ contains one entry from either C or FC , j
entries of A and/or FA, and one entry of K or FK ; i.e., has



a total degree of j + 2. That is, every monomial in φl(λ)
has a degree of `+ 2.

Let ηl(·) be defined as ηl(λ) = ψl(λ) − φl(λ). We can
see that

ηl(λ) =

2n∑
r=`+1

γr(C̄Ā`K̄)l+

2n−1∑
j=`+1

( 2n∑
s=j+1

γs−1

)
(C̄ĀjK̄)l

To achieve ψl(·) ≡ 0, we must have ηl(·) = −φl(·). Since γi
for i = 1, . . . , 2n is either 0 or a polynomial without constant
terms in the entries of A and/or FA, we have that either
γi = 0 or degree(γi) ≥ 1. Thus, the polynomial ηl(λ) is
either zero or has a degree greater than `+2. Since φl(λ) has
a degree of `+ 2, we cannot have ψl(·) = ηl(·) +φl(·) = 0.
Therefore, (6) cannot be satisfied (or ψ(·) 6≡ 0) since ψl(·) 6≡
0. Hence, we arrive at a contradiction which concludes the
proof for this direction.

2) Structural Indistinguishability: ⇐No faulty walk from
k to Y

Since there is no faulty walk from k to any of the output
vertices y1, . . . , yp ∈ Y , one can deduce from Lemmas 4
and 5 that C̄ĀlK̄ ≡ 0 for all l ∈ {0, . . . , 2n− 1}. One can
then satisfy the relations in (3) by choosing x0 = xf = 0.
Therefore, if the initial states are chosen to be zero, the faulty
system model is always indistinguishable from the nominal
system model. �

Remark 4: It is worth noting that while for the purpose
of simplification of the proof, we considered the initial state
x0 = xf = 0 in the above paragraph, several non-zero initial
states also produce indistinguishable outputs whenever there
exists no faulty walk from k to Y in Gf . To see this, first
note that whenever this condition is satisfied; there always
exists an xi ∈ X such that there is no walk starting from xi
to Y containing a faulty edge. In other words, the [CAl]i =
[CfA

l
f ]i for any l ∈ N0 where Mi denotes the ith column

of matrix M. Denoting by xi and xfi the ith component of
the vectors x0 and xf , respectively, we have

[CAl]ixi − [CfA
l
f ]ixfi = 0, ∀xi = xfi ∈ R (7)

In other words, if we consider any initial state which has the
following properties:

1) xi = xfi ∈ R, whenever xi does not have a faulty walk
to Y;

2) xi = xfi = 0, otherwise;
equation (3) is still satisfied and the systems are indistin-
guishable.

V. ALGORITHM FOR CHECKING FAULTY WALKS

In this section, we describe an algorithm for determining
whether or not there exists a faulty walk of a certain length
from k to Y in Gf . The input to the algorithm are the edge
sets E and Ef . The main steps of the algorithm are described
briefly here:
(a) First step is to find all the nodes in X that are not lying

on any walk connecting k to Y , and remove them along
with their associated edges from the graph. This can

Algorithm 1 ({0, 1}) = exist walk(G,Gf )

1: breadth-first search to obtain state node set: Xα =
{xi1 , . . . , xil} such that xir is not connected from k and
to any node in Y for r = 1, . . . , l.

2: G̃f = (V \ Xα, (E ∪ Ef ) \ Eα) where Eα is the set of
edges associated with Xα.

3: Define Ṽ , V \Xα, X̃ , X\Xα, and Ẽ , (E∪Ef )\Eα.
4: Ē = Ẽ ∩ Ef .
5: if |Ē| ≥ 1 then
6: return True
7: else
8: return False

be done using a breadth-first search. Let G̃ = (Ṽ , Ẽ)
denote the remaining graph.

(b) All the remaining edges; i.e., edges in Ẽ make up all the
walks that connect k to Y . If any of these edges is faulty,
then we have a faulty walk from k to Y , and thus, the
systems are distinguishable. This can be accomplished
by checking Ẽ ∩ Ef .

By virtue of Lemma 5, it is evident that if there exists
a faulty walk from k to Y then there must at least one
such walk of length ≤ 2n + 1. Thus, just checking for
the existence of a single faulty edge in Ẽ or equivalently,
checking for the emptiness of Ẽ ∩ Ef suffices to guarantee
the distinguishability of the associated systems. In case, the
set Ef is not available at the outset, but only E and E ∪Ef
are available, then one needs to perform a set difference
operation as the first step to calculate Ef . These steps are
captured as a formal algorithm in Algorithm 1.

VI. ILLUSTRATIVE EXAMPLE

In this section, we illustrate the salient features of Theorem
1 using a 12-state example as shown in Fig. 1. The vertex
set V consists of a node k, 12 state nodes denoted by
x1, . . . , x12 and 2 output nodes, namely y1 and y2. The
nominal system edge set E consists of all the edges shown
in solid lines whereas the faulty edge set Ef consists of the
edges represented by dashed lines. As one can see, the graph
Gf represented in Fig 1 is a multi-graph with two edges from
the node x4 to x8. Out of these two edges, one belongs to
E and the other one belongs to Ef . This shows that the
interconnection present from x4 to x8 is vulnerable and “its
strength” can change due to a fault, captured as an edge in
the faulty model.

We consider several variations of Gf to discuss how the
systems become distinguishable. For instance, consider the
scenario where Ef = (k, x7), i.e., only the faulty edge from
k to x7 is present and there is no fault between the state
nodes. Using a breadth-first search, one can observe that
nodes x4, x7, x8, x10, x11 and x12 are not on any walk from
k to y1 or y2 in Gf . Thus, they can be “removed” from the
graph for the purpose of fault detection. In other words, the
fault (k, x7) is not detectable on its own. Since, there is no
fault between the nodes in X or in the edges from X to Y ,
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Fig. 1. A 12 node example used for illustrating the salient features of
Theorem 1

the entity CAl−CfA
l
f ≡ 0 for every l ∈ N0. Thus, for any

initial state x0, xf ∈ R12, the systems are indistinguishable.
We also face an indistinguishable situation in the scenario

where Ef just consists of (x4, x8) and/or (x8, x9) but the
faulty edge (k, x7) is absent. Since, there would be no walks
from k leading to y1 or y2 containing the faults (x4, x8)
and/or (x8, x9) in the absence of (k, x7), these faults will
not be detectable for certain initial states. Moreover, one can
see that there is no walk leading to Y starting from the nodes
in set N = {x1, x2, x3, x5, x6, x9} that has a faulty edge.
Therefore, as explained in Remark 4, any pair of initial states
x0,xf satisfying xi = xfi ∈ R for i ∈ N and xi = xfi = 0
for i ∈ V \ N would be indistinguishable.

The situation changes, however, when both (k, x7) and
(x8, x9) are present in Ef . One can construct a walk, namely,
k → x7 → x11 → x8 → x9 → y2 which satisfies the
condition of Theorem 1; i.e., it goes from k to Y and contains
faulty edges (both (k, x7) and (x8, x9)). Thus, in such a
situation, the faulty system described by Gf is distinguish-
able from G. In summary, while none of these faults are
detectable in isolation, they are detectable in combination.
Also, using the fact the length of the shortest walk from k
to Y is containing a faulty edge is 5, we have T ≥ 5 where T
denotes the time horizon for distinguishability as discussed
in definition 1.

VII. CONCLUSIONS

In this work we presented a framework for representing
systems subject to faults using ideas from structural control.
Moreover, we developed a necessary and sufficient graph-
theoretic condition for checking a fault is structurally de-
tectable for a given affine system. The resulting condition
turns out be a check for existence of walks containing faulty
edges between the affine term (auxiliary input) and the output
vertices. We then proposed an algorithm to check for the
existence of such walks and illustrated it via an example.

The future extensions of this work are twofold. Our imme-
diate goal is address a sensor placement problem which in-
volves placing the minimum number of sensors to guarantee

that the potential faults can be detected. This is particularly
useful for guiding system design. Another direction of our
research is to extend these results to switched affine systems,
allowing time-varying connectivities. We also intend to apply
these techniques for fault detection in large-scale complex
networks arising in various fields such as power systems,
transportation systems, and aerospace.
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APPENDIX

A. Proof of Lemma 1

Proof: Let N denote the total number of free pa-
rameters; i.e., the number of entries not constrained to be
zero in (A,K,C) and (Af ,Kf ,Cf ). Then any λ ∈ RN
corresponds to a parameter instantiation (or choice) for the
systems (1) and (2).



Suppose the system (2) is structurally distinguishable from
(1); i.e., they are distinguishable for almost any choice of
parameters λ ∈ RN . Then the set of parameter choices for
which the distinguishability condition fails forms a measure
zero set in the parameter space RN . Thus, for any non-
zero measure set B ⊂ RN of system parameters, the
distinguishability condition fails for a zero measure subset
B̃ ⊂ B. Therefore, every λ in the non-zero measure set B\B̃
yields a distinguishable system pair.

Conversely, suppose there exists a non-zero measure set
B ⊂ RN such that every λ ∈ B yields a distinguishable
system pair instantiation. However, by contradiction assume
that the faulty system is not structurally distinguishable from
the nominal one. Thus, there exists a non-zero measure
set S ⊂ RN such that for every λ ∈ S the systems are
indistinguishable. In other words for every λ ∈ S , there
exists a pair of initial conditions x0,xf ∈ Rn such that the
following is satisfied ( [6]):

[
OG(2n+1) −OGf

(2n+1)
]︸ ︷︷ ︸

Õ

[ x0
xf

]
=

 0
−C̄K̄

...
−

∑2n−1
s=0 C̄ĀsK̄


︸ ︷︷ ︸

K̃

(8)

where C̄, Ā, and K̄ are the augmented matrices as defined in
Section IV. This is equivalent to saying that K̃ ∈ R(Õ) for
every λ ∈ S where R(·) denotes the range space of a matrix.
This is possible if and only if (ÕÕ† − I)K̃ = 0 where Õ†

denotes the pseudo-inverse1 of Õ satisfying ÕÕ†Õ = Õ
[20]. Since the entries of Õ are polynomials in the entries
of λ, the entries of Õ† and correspondingly (ÕÕ† − I)K̃
are rational functions of entries of λ. That is they are of the
form pi(λ)/qi(λ) where pi(·) and qi(·) are polynomials in
entries of λ. Now, (ÕÕ†−I)K̃ = 0 for every λ ∈ S implies
that pi(λ) = 0 and qi(λ) 6= 0 for every i.

A polynomial has the property that it is either identically
zero or non-zero almost everywhere in RN [19]. Since S ⊂
RN is a non-zero measure subset, we have that pi(λ) = 0 for
every λ ∈ RN and qi(λ) 6= 0 for almost every λ ∈ RN (the
zero set of qi(λ) is a measure-zero set). Using the fact that
B ⊂ RN is also a non-zero measure set, this immediately
implies that pi(λ) = 0 for every λ ∈ B and there exists a
non-zero measure subset of B̄ ⊂ B such that qi(λ) 6= 0 for
every λ ∈ B̄. Therefore, (8) is satisfied for every λ ∈ B̄
and every system pair instantiation in B̄ is indistinguishable.
This contradicts with the choice of B which concludes the
proof.

1Actually this result holds true for any generalized {1}-inverse of Õ


