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Abstract— We propose a data-driven framework to compute
an approximation of a minimal robust control invariant set
(mRCI) for an uncertain dynamical system where the model of
the system is also unknown and should be learned from data.
First, the set of admissible models is characterized via a set of
linear constraints extracted from the experimental data. Each
model in the set of admissible models contains information
about the nominal model, as well as the characterization of
the model uncertainty, including additive and multiplicative
uncertainties. Then an iterative algorithm based on robust
optimization is proposed to simultaneously compute a minimal
robust control invariant set while selecting an optimal model
from the admissible set. The numerical results show that the
proposed method greatly reduces the size of the invariant set
compared to a benchmark method that sequentially selects a
model with least squares and then computes the invariant set.

I. INTRODUCTION

Correct-by-construction control synthesis has attracted in-
creasing interest over the past decade with the promise that
through rigorous reasoning of system behavior, the closed-
loop system can be guaranteed to satisfy the design specifica-
tions. A fundamental concept related to safety specifications
is robust control invariant sets (RCI). If an initial condition
lies in an RCI, then there exist control inputs to guarantee
that the trajectory of the system remains in the set indefinitely
despite all possible uncertainties. In addition to providing a
safety certificate, an RCI can be used in a supervisory control
structure, which guarantees safety with minimal intervention
on top of an existing controller [7], [15].

Existing methods for computing invariant sets include
LMI-based Lyapunov type analysis [5], [9], [14], sum of
squares programming [16], [25], Minkowski type methods
[10], [13], [17], [18], polytopic projection [3], [15] and linear
programming [26]. In this paper, inspired by the one-shot
approach proposed in [26] for low-complexity invariant set
computation for autonomous systems (i.e., systems without a
control input), we propose an iterative algorithm to compute
an RCI with constant representation complexity where one
can leverage the available control authority for enforcing
invariance.

Depending on the control problem in hand, either maximal
or minimal control invariant sets can be relevant. A maximal
control invariant set can describe the region of attraction with
limited control authority. It is formally defined in [1], and
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the definition of the maximum is in the set inclusion sense,
i.e., every control invariant set within a compact subset of
the state space is a subset of the maximal control invariant
set. For linear discrete-time systems, the maximal control
invariant set can be computed via polytopic projection [15],
[19]. On the other hand, a mRCI describes how small a robust
invariant set can be under disturbance and uncertainty. This
is useful when the objective is to limit the deviations from a
desired operating point. However, in general there does not
exist a unique mRCI that is a subset of every RCI.

The computation of invariant sets depends on a model
of the system, which includes both the nominal model and
the uncertainty characterization. In real engineering practice,
the model is often the result of a system identification
step. Even for physics-based models, the uncertainty is
often characterized through experiments. The most classical
system identification method is the least square regression,
including many extensions that incorporate various filter-
ing structures [12]. Set membership methods are another
class of identification methods, which identify the set of
admissible model parameters via set intersections [11]. Since
the 1980s, control relevant identification has been stud-
ied, including H∞ identification [6], generalized predictive
control [21], and stochastic embedding [8]. However, the
H∞ identification and stochastic embedding approaches are
for model identification in the frequency domain, and the
generalized predictive control focuses on optimality rather
than robustness. In terms of the identification of a model
for an uncertain system that suits the need for correct-by-
construction control synthesis, there is a gap to be filled.
Sokolov proposed a framework of system identification with
unknown bound for additive uncertainties [22]–[24]. Another
approach with unknown uncertainty bound can be found in
[20], where an identification method that uses mixed integer
programming to identify a piecewise linear model with a
bound on the disturbance. However, in the above mentioned
papers, the system identification and control synthesis are
done separately and the identified model is not necessarily
“optimal” for the control synthesis task.

The main contribution of this paper is a data-driven
framework for approximating a minimal robust control in-
variant set while simultaneously picking an optimal admis-
sible uncertain model. An admissible model, which may
not be unique, is defined as a model that explains a finite
measurement history. The novelty of the proposed framework
lies in two aspects. First, the proposed mRCI algorithm does
not require an accurate model to begin with, but instead
identifies the set of admissible models from data. Second,
an optimal model is selected concurrently while computing



an mRCI. We demonstrate the proposed method with a lane
keeping problem for road vehicles. The lateral dynamics of
a vehicle is nonlinear, but typically it is approximated by a
linear model, therefore modeling uncertainty is introduced.
Moreover, the nominal model as well as the modeling
uncertainty varies with road conditions, vehicle properties
such as mass and tire properties, which might not be known
exactly a priori. The objective of a lane keeping controller
is to keep the vehicle inside the lane boundary, therefore an
mRCI is useful to bound the lateral deviation.

The remainder of the paper is organized as follows.
We first present the system identification framework that
identifies the set of admissible models for systems with
uncertainty in Section II and III. Then a robust LP algorithm
that computes an approximation of an mRCI by selecting
a model from the set of admissible models is presented in
Section IV. The whole process of approximating a mRCI
from data is demonstrated on a lane keeping problem in
Section V and finally we conclude in Section VI.

Nomenclature: The notation in this paper is fairly standard.
R is the set of real number, Rn is the n dimensional
Euclidean space, Rn>0 and Rn≥0 are the open (and closed)
positive orthant of Rn. For two vectors x, y ∈ Rn, the
inequality ≤ is defined element-wise: x ≤ y ⇔ y−x ∈ Rn≥0.
Z and Z≥0 represent the set of integers and nonnegative
integers, respectively. Z1:T denotes the sequence 1, 2, ..., T
of natural numbers. For a matrix A, Ai denotes its i-th row,
Aj denotes its j-th column, and Aij denotes the entry on
the i-th row, j-th column. x(t1 : t2) denotes a sequence of
vectors, indexed by time, starting from t1 ∈ Z and ending
at t2 ∈ Z. For simplicity, we use P(P, q) to denote the
polyhedron {x | Px ≤ q}.

II. LINEAR PARAMETRIZATION WITH
UNCERTAINTY

We consider discrete-time linear models with uncertainty:

x+ = Âx+ B̂u+ Êd+ Ãx+ B̃u+ Ẽd+ e, (1)

where x ∈ Rn is the state of the system, with x+ being
the state at the next sampling time, u ∈ U ⊆ Rm is the
control input and d ∈ D ⊆ Rl is the exogenous mea-
sured disturbance, Â, B̂, Ê are the nominal model matrices,
Ã, B̃, Ẽ are the matrices for the multiplicative uncertainty,
and e ∈ Rn is the additive uncertainty. In fact, this is simply
n uncertain linear parametrizations, one per state dimension,
stacked together. Taking the i-th dimension as an example
and defining zi = x+

i , the linear parametrization appears as:

zi = ϕᵀ
i θ̂i + ϕᵀ

i θ̃i + ei, (2)

where
ϕi = [xᵀ, uᵀ, dᵀ]ᵀ ∈ Rn+m+l,

θ̂i = [Âi, B̂i, Êi]
ᵀ ∈ Rn+m+l,

θ̃i = [Ãi, B̃i, Ẽi]
ᵀ ∈ Rn+m+l.

We assume that the uncertainty is bounded in hyper-boxes:

|θ̃i| ≤ ΩiM , |ei| ≤ ΩiA, (3)

where |·| denote the entry-wise absolute value. However,
unlike most set membership approaches which assume a
fixed bound on the uncertainty, we aim to identify the bounds
ΩiM ∈ Rn+m+l

≥0 and ΩiA ∈ R≥0 as part of the identification
process. It is assumed that u and d are bounded in polytopes
and the bound is known a priori:

d ∈ D .
= P(G, g)

u ∈ U .
= P(R, r).

(4)

This assumption is satisfied by many engineering problems
since the bound for u and d are often determined by system
specifications or physics (cf. the lane keeping example).

An uncertain linear model is determined by the value
of [θ̂,ΩM ,ΩA], which contains the information of both the
nominal model and the uncertainty characterization.

In many cases the model to be identified has additional
structure. For example, due to underlying physics, some of
the model parameters may be known to be zero or some
entries of the system matrices may be linearly dependent. In
order to incorporate such structure, we assume that the model
parameters are affinely parameterized by a hyperparameter
π. That is, we have, θ̂ = Θ̂ (π), ΩM = ΩM (π), and ΩA =
ΩA (π), where we use bold font to denote the known affine
mapping from π to the model parameters, e.g., Â = Â(π).
Since these mappings are affine, the overall parametrization
of the model is also affine in π. Moreover, when no structural
information is available, these mappings can be taken to be
the trivial ones.

III. ADMISSIBLE MODEL FOR MEASUREMENTS

Given a sequence of measurements x(1 : T+1), the output
and regressor for time step t is defined as

zi(t) = xi(t+ 1), ϕi(t) = [x(t)ᵀ, u(t)ᵀ, d(t)ᵀ]ᵀ. (5)

A model [θ̂,ΩM ,ΩA] is called admissible if for t =
1, 2, ..., T ,

∃e(t), θ̃(t), s.t. |e(t)| ≤ ΩA, |θ̃(t)| ≤ ΩM ,

z(t) =
(
θ̂ + θ̃(t)

)ᵀ
ϕ(t) + e(t).

(6)

In fact, for each time step, the measurement induces a linear
constraint on the model parameters:∣∣∣z(t)− ϕ(t)

ᵀ
Θ̂ (π)

∣∣∣ ≤ |ϕ(t)|ᵀΩM (π) + ΩA (π) . (7)

Since the π-parametrization of [θ̂,ΩM ,ΩA] is affine, the
above condition is a linear inequality constraint on π. The set
of admissible models is then parameterized by π constrained
inside a polyhedron, with the following representation:

Σ =

{
π | ∀t ∈ Z1:T , |z(t)− ϕ(t)ᵀΘ̂ (π) |
≤ |ϕ(t)|ᵀΩM (π) + ΩA (π)

}
(8)

Fig. 1 shows the comparison between the proposed uncertain
model structure and linear regression. The dots represent
the measurement data and the center purple line represents
the nominal model. In addition to the nominal model, the
uncertain model on the right introduces the bound on additive



uncertainty, represented as the parallel red dashed lines, and
the bound on multiplicative uncertainty, represented as the
green radiating dashed lines. With additive and multiplicative
uncertainty, the model on the right covers all data points and
therefore is an admissible model.

Fig. 1: Comparison of regression and uncertainty models

If Σ is nonempty, then all models in Σ explain the
measurement data. In fact, under mild assumptions, Σ is
guaranteed to be nonempty. In addition, there is a trade-
off between different types of uncertainty, as shown in Fig.
2. When the additive uncertainty bound is large, the bound
on multiplicative uncertainty can be smaller, and vice versa.
This is the direct result of (7).

Fig. 2: Tradeoff between uncertainty bounds

The set of admissible models Σ gives the domain from
which the model should be selected. Among the admissible
models, which one is “the best” depends on how this model is
to be used. If the goal is to find a model with the least squared
error, then the least squares regression gives the best model,
with corresponding uncertainty characterization. But since
our goal is to compute an mRCI, the incorporation of model
selection process into the mRCI computation, as shown in
the next section, may result in more desirable invariant set.

IV. ROBUST LP FOR MRCI

A. One-step propagation

In this section, a robust LP algorithm that simultaneously
picks an optimal model and approximates an mRCI is
proposed. We first present the definition of an RCI.

Definition 1. A set S ⊆ Rn is called robust control invariant
for the system described by Eqs. (1), (3), (4) if there exists
a control strategy µ : Rn ×D → U such that for all d ∈ D
and for all x ∈ S, we have x+ ∈ S with u = µ(x, d) under
all possible uncertainty given by (3).

As mentioned in Section I, the uniqueness of a minimal
control invariant set in the set inclusion sense is not guar-
anteed. Though one can define an mRCI with respect to the
set inclusion partial order as follows:

Definition 2. A robust control invariant set S is a minimal
robust control invariant set (mRCI) if there does not exist an
S ′ ( S, s.t. S ′ is a robust control invariant set.

However, even with this definition, finding an mRCI is
non-trivial. Typically, one tries to find an (approximate)
mRCI by minimizing a certain measure of size, such as
volume [4], [17]. We propose a method that computes a
polytopic RCI that minimizes a linear objective function.

We draw inspiration from [26], where the author proposed
a one-step LP approach to compute a robust invariant set for
an autonomous system with only additive uncertainty. The
key idea is to fix the orientation of the separating hyperplanes
defining a polytopic invariant set. We borrow the idea of
fixing the hyperplane orientation, and propose an iterative
approach that can deal with systems with control inputs,
while allowing additive and multiplicative uncertainties.

The method starts by choosing a set of L hyperplanes with
fixed orientation Pi and varying offset qi, i = 1, ..., L. Let
P = [P ᵀ

1 , P
ᵀ
2 , ..., P

ᵀ
L ]ᵀ, q = [q1, ..., qL]ᵀ. Without loss of

generality, assume ‖Pi‖ = 1. If S = P(P, q) has nonempty
interior, then Pi is the normalized normal vector pointing
outwards the corresponding separating hyperplane.

Assumption 1. The hyperplanes are chosen such that
{x | Px ≤ 1L} is a compact set, where 1L ∈ RL denotes
the column vector consisting of all ones.

Given a polytope S = P(P, q), we consider the following
one-step propagation which searches for S+ = P(P, q+)
that contains all possible x+:

min
q+

cᵀq+ s.t. ∀x ∈ P(P, q),∀d ∈ D,

∃u ∈ U , s.t.∀ |e| ≤ ΩA,∀|θ̃| ≤ ΩM ,

x+ ∈ P(P, q+).

(9)

The set S+ = P(P, q+) satisfies the following condition: for
any x ∈ S , d ∈ D, there exists u ∈ U such that all possible
x+ under u is contained in S+. It is clear that if S+ ⊆ S ,
S is control invariant. By minimizing cᵀq+, we seek an S+

that is as small as possible.
Next we discuss a few simplifications so that the one-

step propagation is solvable by convex optimization. First,
as mentioned at the beginning of this section, there is no
minimum RCI that is a subset of every RCI. Therefore, the
RCI obtained depends on a specific control strategy. For
the linear discrete-time system discussed in this paper, we
impose the following control structure:

u = Kᵀ
ffd+Kᵀ

fbx, (10)

where Kff and Kfb are constant matrices, representing the
feedforward and feedback gain respectively.

Second, we restrict B̃ = 0, and fix B̂ to get rid of the cross
terms between Kff , Kfb and B̃, B̂. Such simplification is



possible when there is no actuation uncertainty or when the
actuation uncertainty is lumped into other uncertainty terms.

Third, the one-step propagation should be robust against
the model uncertainty, i.e., S+ should contain all possible
x+ under the uncertain model. This is enforced by consid-
ering the worst case uncertainty, captured by the “for all”
quantifiers for e and θ̃ in (9). Since the uncertainty bounds
are assumed to be hyper-boxes, these quantifiers can be
eliminated by observing that:

max
|Ã|≤ΩÃ

PiÃx = max
|Ã|≤ΩÃ

Tr
(
|xPi| |Ã|

)
= |PiΩÃ| |x|

max
|Ẽ|≤ΩẼ

PiẼd = max
|Ẽ|≤ΩẼ

Tr
(
|dPi| |Ẽ|

)
= |PiΩẼ | |d|

max
|e|≤ΩA

Pie = |Pi|ΩA,

(11)

where ΩÃ ∈ Rn×n and ΩẼ ∈ Rn×l are the bounds on
|Ã| and |Ẽ| induced from ΩM respectively. The absolute
value constraints can be converted to linear constraints using
standard LP techniques but, for the sake of keeping the
notation simple, we will keep the absolute value form for
the remainder of the paper.

With these simplifications, the one-step propagation prob-
lem takes the following robust optimization form:

min
Kff ,Kfb,π,q+

cᵀq+ s.t. π ∈ Σ,

∀x ∈ P(P, q),∀d ∈ D,

P
(
Â (π)x+ B̂

(
Kᵀ
ffd+Kᵀ

fbx
)

+ Ê (π) d
)

+
∣∣PΩÃ (π)

∣∣ |x|+ ∣∣PΩẼ (π)
∣∣ |d|+ |P |ΩA (π) ≤ q+

Kᵀ
ffd+Kᵀ

fbx ∈ U .
(12)

The above optimization simultaneously searches for 1) an
admissible model, 2) a linear controller that satisfies the
input bound constraint, and 3) S+ = P(P, q+), the polytopic
set containing all possible x+ under the selected model and
controller. It is a robust LP in the sense that the constraints
have to be satisfied for all x ∈ S and all d ∈ D. The next
lemma, proof of which follows from [2], shows an equivalent
LP that is obtained via duality.

Lemma 1. Consider the following robust LP problem:

min
α

cᵀα s.t.

∀β ∈ P(F, f),

Hi
1β + αᵀHi

2β +Hi
3α ≤ hi, i = 1, ...,M

(13)

where α is the decision variable, β is the uncertain variable,
P(F, f) is the bound for uncertainty, and Hi

1, Hi
2, Hi

2,
and hi are constant matrices and vectors of appropriate
dimensions. This problem is equivalent to a standard LP of
the form:

min
α,λ

cᵀα s.t.

Hi
3α+

(
λi
)ᵀ
f ≤ hi

Hi
1 + αᵀHi

2 =
(
λi
)ᵀ
F

λi ≥ 0, i = 1, ...M,

(14)

where the uncertain variable β is eliminated and the dual
variable λ is introduced.

Observe that the one-step propagation in (12) is in the
robust LP form of (13), by taking α = [Kff ,Kfb, q

+, π] and
β = [x, d]. Therefore, by Lemma 1, it can be transformed to
a standard LP and can be solved efficiently.

B. Iterative algorithm

As mentioned previously, if S+ ⊆ S, S is a robust control
invariant set. With the one-step propagation solvable as an
LP, it is possible to devise two different iterative methods
that solve for an invariant set, the outside-in method and the
inside-out method [15], [17], [19]. In our implementation,
the inside-out algorithm is used to solve for an RCI, and
the outside-in algorithm is used to shrink a known RCI to a
smaller size.

1) Inside-out algorithm: The inside-out algorithm starts
with a small initial S, iteratively solves for S+ with the
one-step propagation and replaces S with S+, until S+ ⊆ S
is satisfied.

Algorithm 1 Inside-out algorithm for mRCI

1: procedure RCI-IO(Σ, P , q0, D, U , ε)
2: q ← q0

3: do

4:

Find
[
q+, π,Kff ,Kfb

]
s.t. π ∈ Σ,

∀x ∈ P(P, q),∀d ∈ D,Kffd+Kfbx ∈ U ,
x+ ∈ P(P, q+ − ε1L)

5: q ← q+

6: while q+ ≤ q + ε1L
7: return [q, π,Kff ,Kfb]
8: end procedure

The algorithm is shown in Algorithm 1, where 0 < ε <<
1 is a small constant that helps accelerate the convergence.

Proposition 1. If Algorithm 1 terminates, S = P(P, q) is
an RCI.

Proof. By construction, S+ = P(P, q+ − ε1L) contains all
possible x+ with x ∈ S , d ∈ D, and since q+ ≤ q + ε1L,
S+ ⊆ S, therefore S is an RCI.

Remark 1. With ε > 0, the algorithm searches for an S+

slightly bigger than that in (12), so that we can allow ε
tolerance for the termination condition S+ ⊆ S , which
accelerates the convergence of the algorithm.

2) Outside-in algorithm: On the other hand, if an initial
RCI is known for some admissible model, the outside-in al-
gorithm can further shrink the initial RCI with a convergence
guarantee. The algorithm iteratively solves for S+ ⊆ S, and
replaces S with S+ until S can no longer be shrunk.

Algorithm 2 shows the outside-in algorithm, which is very
similar to the inside-out algorithm except for two differences.
First, the one-step propagation has an additional constraint
q+ ≤ q, which ensures that S+ ⊆ S. Second, the termination
condition is on the norm of difference between q and q+.



Although the Outside-in algorithm requires that an initial
RCI is known, it is guaranteed to converge.

Algorithm 2 Outside-in algorithm for mRCI

1: procedure RCI-OI(Σ, P , q0, D, U , ε)
2: q ← q0

3: do

4:

Find
[
q+, π,Kff ,Kfb

]
s.t. π ∈ Σ, q+ ≤ q

∀x ∈ P(P, q),∀d ∈ D,Kffd+Kfbx ∈ U ,
x+ ∈ P(P, q+)

5: q ← q+

6: while ‖q+ − q‖ ≥ ε
7: return [q+, π,Kff ,Kfb]
8: end procedure

Theorem 1. If for a certain admissible model π0, a polytopic
RCI P(P, q0) is known, then the outside-in algorithm is
guaranteed to converge.

Before proving the above theorem, we present some
required lemmas:

Lemma 2. For a non-empty compact polytope P(P, q),
suppose one moves the i-th hyperplane from qi to q̄i, and
leaves the rest unchanged, resulting in the following polytope
P(P, q′), where q′ = [q1, ...q̄i, qi+1, ...qL]ᵀ. Then there exists
a constant ci such that if q̄i < ci, P(P, q′) = ∅.

Proof. Since P(P, q) is compact, f(x) = Pix is a continu-
ous function and it always achieves its minimum value on a
compact set. Let

ci = min
x∈P(P,q)

Pix. (15)

Obviously ci ≤ qi. Note that if q̄i ≤ qi, P(P, q′) = P(P, q)∩
{x | Pix ≤ q̄i}. Therefore when q̄i < ci, P(P, q′) = ∅.

Lemma 3. Let P(P, q) be a non-empty compact polytope.
Let ci be defined as in (15). For any q′ ≤ q and c =
[c1, c2, . . . , cL]ᵀ, if the set P(P, q′) is nonempty, then q′ ≥ c.

Proof. The proof follows from Lemma 2 and the fact that
c′i = min

x∈P(P,q′)
Pix ≥ ci.

Now let’s prove Theorem 1.

Proof of Theorem 1. First we show that the one-step propa-
gation is always feasible, and every q+ during the iteration
leads to an RCI. For clarity, denote the offset q found in the
i-th iteration as qi. We show this by induction. For the first
iteration, by assumption, P(P, q0) is an RCI, so q1 = q0 is
a feasible solution for the one-step propagation in the first
iteration. Since it is an LP, thus convex, a feasible solution
can be reliably found whenever one exists. Assume at the

n-th iteration, P(P, qn−1) is an RCI. Then

∃Kff ,Kfb, π, q
n s.t. π ∈ Σ,

∀x ∈ P(P, qn−1),∀d ∈ D, |θ̃| ≤ ΩM (π) , |e| ≤ ΩA (π)

P

Â (π)x+ B̂
(
Kᵀ
ffd+Kᵀ

fbx
)

+Ê (π) d+ Ẽd+ Ãx+ e

 ≤ qn
Kᵀ
ffd+Kᵀ

fbx ∈ U , q
n ≤ qn−1.

(16)
This implies that the one-step propagation is feasible at the
n-th iteration. Consider the one-step propagation in the n+1-
th iteration. The only difference between the robust LP in the
n-th and n + 1-th iteration is that the uncertainty set of x
changes from P(P, qn−1) to P(P, qn). Since P(P, qn) ⊆
P(P, qn−1), the uncertainty set for the n + 1-th iteration is
a subset of that in the n-th iteration, therefore qn is still a
solution to the one-step propagation in the n+1-th iteration,
and the one-step propagation is still feasible. By induction,
the one-step propagation in the outside-in algorithm is always
feasible, and for all qn, P(P, qn) is always an RCI.

Next, let ci = min
x∈P(P,q0)

Pix. Since for all n ∈ Z≥0, q
n ≤

q0, by Assumption 1, P(P, q0) is compact, then by Lemma
3, for all n ∈ Z≥0, q

n ≥ c. Since q is monotonically de-
creasing, and lower bounded by c, by bounded convergence
theorem, {qn} eventually converges.

TABLE I: Comparison of iterative algorithms

Initialization Convergence
Inside-out Arbitrary Not guaranteed
Outside-in Need an RCI to start with Guaranteed

In conclusion, the inside-out algorithm solves for an RCI,
and the outside-in algorithm shrinks the size of a known RCI,
the comparison is shown in TABLE I

V. APPLICATION ON LANE KEEPING OF A
GROUND VEHICLE

In this section, we present an application of the proposed
method on the vehicle lane keeping problem. The measure-
ment comes from simulation data from Carsim, a commercial
software highly acknowledged by the auto industry that runs
simulations with high-fidelity physics based vehicle models.
The model we use has 113 states. A linear model with 4
states is used to approximate this detailed model.

A. Model structure

The model to be identified for the lateral dynamics of
ground vehicle is called lateral-yaw model, or bicycle model,
which has 4 states:

x = [y, vy, ψ, r]
ᵀ
, (17)

where y is the lateral displacement from the lane center, vy
is the sideslip velocity, ψ is the heading angle with respect to
the lane direction and r is the yaw rate. The model is linear,
yet the coefficient may change with forward speed vx, road



condition and vehicle condition such as mass, inertia and tire
properties. A linear discrete model with uncertainty is used
to describe the dynamics. The input is the steering angle
on the front axle δf ; the measured disturbance is the road
curvature rd.

In order to reduce the complexity of the uncertainty
characterization, certain structure is imposed on the model
based on the properties of the dynamics. The dynamics for ẏ
and ψ̇ are essentially integrators, therefore no multiplicative
uncertainty is put on these two dimensions. Similarly, since
v̇y and ṙ do not depend on y and ψ, no multiplicative
uncertainty is put on the corresponding entries of Ã. The
influence of rd follows a simple kinetic equation, therefore
Ẽ is set to 0. Thus, the model is in the following form:

ẏ
v̇y
ψ̇
ṙ

 = Â (π)


y
vy
ψ
r

+ B̂δf + Ê (π) rd

+


0 0 0 0

0 Ã22 0 Ã24

0 0 0 0

0 Ã42 0 Ã44



y
vy
ψ
r

+


e1

e2

e3

e4

.
(18)

The bounds on uncertainty are[
|Ã22| |Ã24| |Ã42| |Ã44|

]ᵀ ≤ ΩM (π) , |e| ≤ ΩA (π) .
(19)

If we were to fully parameterize the nominal model, 20
independent variables would be needed, which may not be
necessary since some entries of Â and Ê do not vary much.
Instead, we assume that Â and Ê are linearly parameterized
by some bases:

Â =

n1∑
i=1

πi1Āi, Ê =

n1+n2∑
i=n1+1

πi1Ēi, (20)

where
{
Āi
}

and
{
Ēi
}

are the bases for Â, Ê, with cardi-
nality n1 and n2 respectively.

Remark 2. We run multiple simulations under different sce-
narios to obtain multiple nominal models with least square
regression, and then principle component analysis is applied
on the models obtained to extract bases for Â and Ê.

The overall π parametrization appears as

Â(π) =

n1∑
i=1

πi1Āi, Ê(π) =

n1+n2∑
i=n1+1

πi1Ēi,

ΩM(π) =
[
π1

2 , π
2
2 , π

3
2 , π

4
2

]ᵀ
,ΩA(π) =

[
π1

3 , π
2
3 , π

3
3 , π

4
3

]ᵀ
,

π = [πᵀ
1 , π

ᵀ
2 , π

ᵀ
3 ]

ᵀ
.

(21)
The parametrization is indeed affine.

B. Results

We start by collecting data from Carsim, in which the
vehicle is equipped with a simple LK controller with some
input noise and follows a prescribed route. Then the data is
used to formulate the set of admissible models Σ following

the procedure in (7). Σ is a polyhedron and every π inside Σ
corresponds to an admissible model. We pick n1 = 6, n2 =
4, so π ∈ R18. Fig. 3 shows the convergence of the inside-
out algorithm and outside-in algorithm. In fact, the inside-out
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Fig. 3: Convergence of the iterative algorithms.

and outside-in algorithms converge to the same RCI in this
case, but there is no guarantee that this will happen every
time.

Fig. 4 shows the computed RCI. For benchmark, we use
the least square regression result as the nominal model,
and let the mRCI algorithm pick the optimal bound for
multiplicative and additive uncertainty. In this case, π is
simply [πᵀ

2 , π
ᵀ
3 ]

ᵀ in (21), and π ∈ R8. The RCI with the least
square model is shown in blue, and the RCI under optimal
nominal model is shown in red. The reduction in volume is
more than 50%. Since the RCI is in R4, the plot shows the
slices of the polytope by setting one dimension to zero.

Fig. 4: Slices of the mRCIs obtained with the model identi-
fied via least squares (blue) and with the proposed algorithm
(red).

Notice that the nominal model picked by the mRCI
algorithm is only optimal for the purpose of computing the
mRCI. In fact, under the least square model, the uncertainty



bound found by the mRCI algorithm is as follows:

ΩM =
[
0 0.0307 0 0.0022

]ᵀ
,

ΩA =
[
0.0046 0.0283 0.0088 0.0116

]ᵀ
.

(22)

For the optimal nominal model, the uncertainty bounds
become

ΩM =
[
0 0.129 0 0.0112

]ᵀ
,

ΩA =
[
0.0327 0.1643 0.0088 0.0236

]ᵀ
,

(23)

which are significantly larger than the previous case. This
shows that the least square model indeed fits the mea-
surements better, but results in a larger mRCI. This again
shows the necessity of performing model selection and mRCI
computation simultaneously. Such co-optimization leads to a
model that better suits the mRCI computation.

VI. CONCLUSION

This paper presents a novel data-driven algorithm to
approximately compute a minimal robust invariant set by si-
multaneously selecting an admissible model and minimizing
the size of the RCI. The algorithm has two steps: first the set
of all admissible models with uncertainty characterization is
identified from the measurement data, then a robust LP is
formulated to iteratively search for an mRCI. The robust LP
based algorithm is able to simultaneously pick an optimal
model, finding a good tradeoff between the nominal model
and different types of uncertainties and minimize the size
of an mRCI. A vehicle lane keeping example is used to
demonstrate the method, and the result shows more than 50%
reduction in the volume of the RCI computed compared to
the benchmark.

Although the current algorithm provides a means to co-
optimize invariant set size, the selection of invariance-
inducing controllers, and the selection of models among
the models consistent with the experimentally observed data
(i.e., the computed mRCI is unfalsifiable with the existing
data), it does not necessarily provide invariance guarantees
for unseen data in cases where the unseen data can reveal
additional dynamics and can further shrink the admissible
model set. Hence, another interesting direction is to extend
the invariance guarantees to unseen data by incorporating a
priori information on the dynamics as in [20].
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