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Abstract— This paper considers the practical aspects of using
a control barrier function induced by a robust controlled
invariant set for supervising user inputs. Our focus application
is path following/lane keeping functionality in advanced driver
assist systems. We define specific normalized barrier functions
for ellipsoidal and polytopic invariant sets. Then, we use the
magnitude of these barriers to determine an optimum safe
control input as well to determine when to blend this input with
the user’s input. This method allows for a smooth overriding of
the user input and is well defined in the case that the barrier
is violated due, for instance, to model mismatch. The method
is demonstrated in a realistic simulation environment. These
simulations show the proposed method to be a computationally
light way to safeguard user inputs in a smooth manner.

I. INTRODUCTION

Improving the safety of passenger vehicles can have great
societal impact as traffic accidents are one of the major
causes of death around the world. Many accidents are a result
of human error, hence automation can help eliminate some of
these accidents. Two main approaches to tackle this issue are
to take the human out of the driver’s seat as in autonomous
vehicles (AVs) or to enhance the human driving performance
via advanced driver assist systems (ADAS). While many
ADAS systems, such as adaptive cruise control and lane
keeping, are being deployed in high-end vehicles, formal
approaches to prove their safety are relatively recent [1], [2],
[3]. One way to ensure safety in ADAS is to supervise the
human’s or driving algorithm’s inputs via controlled invariant
sets or barrier functions [2], [4], [5], [6], [7].

In this work, we develop new techniques for blending
human driver’s inputs with an input computed according to
a safety barrier to ensure that the system stays in a safe
set (e.g., within the lane boundaries, or away from the lead
vehicle). Such shared autonomy or guardian architectures
have been studied before [8], [9], [10], [11], [12], [13], which
do not necessarily enjoy strong safety guarantees. There are
also recent works that employ barriers and invariant sets for
supervision, ensuring permissiveness and safety [14], [2] by
projecting the user input to the set of safe inputs only when
the input would cause the vehicle to the leave the invariant
set. However, in practice, this projection method is likely
to fail maintaining invariance if there is a model mismatch
or a violation of the assumptions used in the design of the
invariant set. Moreover, it leads to abrupt overrides and large
control rates, which might be undesirable, counter-intuitive,
and scary for the driver.
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Motivated by the potential practical shortcomings of sim-
ple projection-based supervision using barriers, we develop
several blending techniques that more smoothly integrate
user input with safe input, while still providing some degree
of permissiveness. We demonstrate these techniques on a
path following/lane keeping example, where the safe set
is defined as keeping the vehicle within a certain distance
from the path/lane center. We consider two types of barriers,
polytopic and ellipsoidal, and leverage recent results in
incorporating input delays and preview in their computation
[15]. Finally, these blending techniques are integrated in
a realistic simulation model provided by Toyota Research
Institute (TRI) and thoroughly evaluated in this simulation
environment.

II. INVARIANT SETS AND BARRIERS

Consider a linear discrete-time system:

x(k + 1) = Ax(k) +Bu(k) + E1dm(k) + E2dum(k) (1)

where x is the state, u ∈ U an input, U are the input bounds,
dm and dum are measurable and unmeasurable disturbances
with bounds Dm and Dum, respectively. By measurable
disturbance, we mean that the value dm(k) is known when
deciding on the input value u(k) so we have a preview on
the value of measurable disturbances.

A robust controlled invariant set (or, invariant set, for
short) [16] for a system of the form (1), is a set Cinv of states
inside a safe set Xsafe (i.e., Cinv ⊆ Xsafe) that satisfies:

x ∈ Cinv ⇒ ∀ dm ∈ Dm ∃u ∈ U ∀dum ∈ Dum
Ax+Bu+ E1dm + E2dum ∈ Cinv

(2)

Given an invariant set Cinv , a state x inside it, and a
measured disturbance dm, the safe (i.e., admissible) input
set, Usafe(x, dm), can be defined as:

Usafe(x, dm) = {u ∈ U |Ax+Bu+ E1dm+

E2dum ∈ Cinv,∀dum ∈ Dum}.
(3)

This safe input set governs what input can be taken at a given
state so that the system state is guaranteed to be kept within
the invariant set.

In this work, we will consider two types of invariant sets:
polytopic invariant sets and ellipsoidal invariant sets. When
the safe set Xsafe, disturbance sets Dum, Dm, and the input
set U are symmetric around the origin1, we can restrict

1A set X ⊆ Rn is symmetric around the origin if for all x ∈ X , we
have −x ∈ X . In this case, we also write X = −X .



attention, without loss of generality, to invariant sets that
are also symmetric around the origin.

Proposition 1: Let C ⊆ Rn be an invariant set for a
linear system, i.e., C satisfies (2), with symmetric safe, input,
disturbance sets. Then, Sym(C) .

= C ∪ −C also satisfies (2)
with the same safe, input, disturbance sets.

Proof: Take any x′ ∈ −C, then x′ = −x for some x ∈
C. We can write (2) as −x ∈ −C ⇒ ∀−dm ∈ −Dm ∃−u ∈
−U ∀ − dum ∈ −Dum − Ax − Bu − E1dm − E2dum ∈
−C. Define u′ .= −u, d′m

.
= −dm, and d′um

.
= −dum, and

use the symmetry of the sets U , Dm, and Dum, to write
∀d′m ∈ Dm ∃u′ ∈ U ∀d′ ∈ D Ax′ + Bu′ + E1d

′
m +

E2d
′
um ∈ −C. Thus, there is an input for any point in C or

−C (hence in their union) that ensures remaining in these sets
so Sym(C) satisfies (2). Finally, since Xsafe is symmetric,
we have Sym(C) ⊆ Xsafe.

Given a compact invariant set C containing the origin, we
associate with this set a novel barrier function r : Rn → R
that satisfies:

r :


r(x) = 0 ifx = 0

r(x) ∈ [0, 1) ifx ∈ int(C)
r(x) = 1 ifx ∈ ∂C
r(x) > 1 ifx /∈ C

(4)

where int(C) and ∂C denote the interior and the boundary of
the set C, respectively. For a given state x, r(x) is the barrier
magnitude at x. If r(x) is between 0 and 1, then the state x is
within the invariant set and r(x) > 1 indicates that the state
is outside the invariant set. The barrier magnitude measure
gives a way to assess the safety of the current state relative
to the origin. Technically the goal is to ensure that the state
never goes out of the barrier; however this might happen due
to model mismatch when pushing the vehicle to safety limits,
or violation of the assumptions on the disturbance bounds.
Therefore, we also want the barrier to be well-defined when
outside the invariant set, giving a degree of robustness to the
barrier-based design [17]. Then using the barrier, we define
an optimal control input for safety as:

u∗(x, dm) ∈ arg min
u∈U

max
dum∈Dum

r(Ax+Bu+E1dm+E2dum).

(5)
Note that when x is inside the invariant set and dm ∈ Dm,
u∗(x, dm) is guaranteed to be in Usafe(x, dm). A sufficient
condition for the uniqueness of u∗ is when B has full rank
and r(x) is strictly convex.

Remark 1: The barrier function definition in (4) is slightly
different that what is commonly found in the literature where
barrier value on the boundary of the set is 0 and it is
positive in the inside and negative outside [17]. Equation
(4) provides a normalization of the barrier magnitude for
compact sets defined around the origin, which we find helpful
while evaluating and comparing different blending methods
using barriers induced by potentially different invariant sets
for the same problem.

For the rest of the paper, we will assume the sets Xsafe,
U , Dm, and Dum are polytopes, sets that can be represented

by linear inequalities. For the invariant sets Cinv , we will
study two commonly used representations: polytopes and
ellipsoids.

One way to represent an invariant set is using polytopes:

Cinv = {x | Hx ≤ h}. (6)

We assume Hx ≤ h is a reduced representation of a polytope
symmetric around the origin. By reduced representation,
we mean that there are no redundant inequalities in the
representation and each row of Hx ≤ h corresponds to a
unique facet of the polytope. There are methods to compute
polytopic invariant sets for linear systems (please see the
Appendix for details). Given a polytopic invariant set of the
form (6) that is symmetric around the origin, a barrier can
be defined as:

rpoly(x) = max
i

(
Hix

hi
), (7)

where Hi and hi are the ith row of H and h. It is easy to
verify that this function satisfies the conditions in Eq. (4).
The admissible input set Usafe is also a polytope in this
case and can be computed by standard polytope operations
[18]. Moreover, the computation of optimal input reduces to
a robust linear program, which can further be reduced to a
standard linear program.

Another invariant set representation we use is ellipsoids:

Cinv = {x | xTMx ≤ 1}, (8)

where M is a positive definite matrix. There are techniques
for computing ellipsoidal invariant sets inside polytopic safe
sets [19], with some trade-off between computational effi-
ciency and conservatism. We provide an alternative algorithm
in the Appendix. The barrier induced by an ellipsoid of the
form (8) can be defined as:

rellip(x) = xTMx. (9)

Again this function can be shown to satisfy the properties
in Eq. (4). In this case, the admissible input set Usafe is
an intersection of ellipsoids with the polytope U , and the
computation of u∗ reduces to a convex quadratic program.

Moreover, in the case of a single input, i.e., u ∈ R, we
can compute u∗ in Eq. (5) for both polytopic and ellipsoidal
barriers from a bisection search algorithm.

III. VEHICLE MODEL AND SAFE SET

We focus on the safety in lane keeping/path following
scenarios. The lane keeping problem is one of keeping a
vehicle within its lane bounds. This can be done for either
Autonomous Vehicles (AVs) where one has full control
over the vehicles actions or in Advanced Driver Assistance
Systems (ADAS) where one monitors a human driver’s input
to keep safe driving [20], [21], [22]. Same problem also
occurs when, instead of a physical lane, the aim is to follow
a path, within a bounded error, generated by a path planner



or by predicting human intent. For this purpose, we consider
the following lateral dynamics model of the vehicle: l̇˙̃θ

δ̇

 =


V sinθ̃

α5V δ + α6V
2δ +

V κ(s)cosθ̃

lκ(s)− 1
α7(δcmd − δ)

 . (10)

The states are offset error l (m), heading error θ̃ (rad), and
steering angle δ (rad). Offset is the lateral deviations of the
center of the vehicle from the center of the path/lane, heading
error is the rotational deviations from the angle of the path,
and steering angle is the angle of the wheels. α5, α6, and
α7 are learned parameters which Toyota Research Institute
(TRI) provided for their test vehicle. The input to the system,
δcmd, is the wheel angle commanded by the steering wheel,
and the disturbance, κ(s) (m−1), is the curvature of the road
which we have preview of. A visual representation can be
found in Fig. 1. The other variables in Eq. (10) are constant
parameters of the model.

Fig. 1: Visual representation of the states of θ̃ and l.

This model is then linearized at a constant velocity, v0,
and a constant road curvature κ0:

A =

 0 v0 0
v0κ

2
0 0 (α5v0 + α6v

2
0)

0 0 α7

 ,
B =

 0
0
α7

 , E1 =

 0
−v0

0

 .
(11)

Then, for a given sampling time T , a time-discretized
model is obtained with matrices:

Ad = eAT , [Bd E1,d] =

∫ T

0

eAτdτ [B E1]. (12)

Finally, we also include an additional unmeasurable distur-
bance term with E2,d = [1, 1, 0]ᵀ and disturbance set Dum
to account for the mismatch between the linearized model
and the nonlinear model, where the last term in E2,d is 0
since that part of the dynamics is already linear.

Another thing to account for, is a rather significant pure
delay on the input of p time steps (overall delay is pT sec-
onds) which TRI provided for their test vehicle. Combining
the above, we obtain:

x(k+1) = Adx(k)+Bdu(k−p)+E1,ddm(k)+E2,ddum(k)
(13)

where x .
= [l, θ̃, δ]ᵀ, u .

= δcmd, and dm = κ.

The safe set is defined as

Xsafe = {x | −0.5 ≤ l ≤ 0.5 (m),−π/4 ≤ δ ≤ π/4 (rad)}.
The actuator limits impose constraints on the input via
U = [−π/4, π/4] (rad). And, the road curvatures that will
be navigated are assumed to be bounded by the disturbance
set Dm = [1/100,−1/100] (m−1).

One of the main results in [15] shows that for systems
of the form (13) with delay and preview, there is a slightly
modified auxiliary system without delay whose invariant sets
can be used for constructing invariant sets for the delayed
system. We use this reduction to compute an ellipsoidal
and a polytopic invariant set for the discrete auxiliary linear
dynamics. These invariant sets are shown in Fig. 2.

Fig. 2: A visual representation of the polytopic Cinv (right) and
the ellipsoid Cinv (left) for the lane-keeping problem. The ellipsoid
Cinv has a volume of 0.0440 from a ∼2 second computation time
while the polytope Cinv has a volume of 0.9743 from a ∼3 hour
computation time. For this polytope H contains 246 rows,

In order to account for the delay in supervision and
blending (as discussed in the next section), we predict the
state p time steps ahead using the current state, past control
inputs, and disturbance preview information:

x̂(k + p) =Apdx(k) +

p−1∑
i=0

AidBdu(k − 1− i)+

p−1∑
i=0

AidE1,ddm(k + p− 1− i)

(14)

This state, x̂(k + p), in combination with the disturbance
preview, dm(k + p), are the values used for the calculation
of u∗ and Usafe for supervising this system. dum is ignored
as the prediction error ‖x(k+p)− x̂(k+p)‖ is bounded and
taken into account by the controlled invariant set constructed
in [15] so that the safety constraints are satisfied.

IV. BLENDING WITH HUMAN INPUT

Given the invariant sets, in this section, we describe how
these sets and induced barriers can be used to monitor and
supervise a human driver within a guardian architecture. We
start by explaining a baseline approach from the literature.

A. Safe Input Projection
One way to blend the user input with the barrier is to

project the user input uD onto the safe input set [2], [14]2:

u = arg min
u∈Usafe

||u− uD||2, (15)

2For simplicity of notation, we use Usafe to denote Usafe(x̂(k +
p), dm(k + p)) in the rest of this section.



Note that when the user input uD ∈ Usafe, it is unaltered,
that is, we have u = uD, providing permissiveness. This
projection guarantees that the vehicle will stay within the
invariant set under the modelled dynamics, however, has no
statements on the control rate. Since it tends to react when
the system operates close to the boundary of the invariant
set Cinv , it may lead to overriding actions with very high
control rates, which physically results in jerking the system
away from the user, which is undesirable. Another problem
with reacting close to the boundary of Cinv is that this
leaves no room for error, namely that Cinv can be violated
in application if the modelled dynamics are unable to fully
encapsulate the true dynamics. If Cinv is exited, Usafe = ∅,
resulting in no corrective action. We will use this method as
a baseline.

B. Barrier Magnitude

These limitations with the safe input projection lead to
the idea of using barrier magnitude to blend. The barrier
magnitude evaluates how safe the current state is, and if
the user’s input needs to be modified. The input is modified
by blending the user input with the optimal control input
available via:

u = cu∗ + (1− c)uD, (16)

where u∗ is a shorthand for the optimal input u∗(x̂(k +
p), dm(k + p)) defined in (5), uD is the driver’s input (with
both uD, u ∈ U), and c is the barrier value dependent
blending ratio.

To account for the effect of the user input, we define

r∗(x̂(k + p), uD(k)) = max
dum

r(Adx̂(k + p) +BduD(k)+

+E1,ddm(k + p) +ApdE2,ddum).
(17)

This gives us a worst case prediction of the barrier magnitude
due to the user’s action. Note that if uD ∈ Usafe, Eq. (17)
gives r∗ ≤ 1. For simplicity of notation, we use r or r(k)
to denote r∗(x̂(k + p), uD(k)) in the rest of this section.

We take c to be a piece-wise affine function of r:

c = f1(r) =


0 if r ≤ r3
(r − r3)/(r4 − r3) if r ≤ r4
1 if r ≥ r4

(18)

where r3 is the barrier magnitude prediction in which blend-
ing first occurs and r4 is the barrier magnitude prediction
where the user is fully overridden by the optimal input. This
is similar to applying a proportional feedback term on the
barrier magnitude once r3 is surpassed. With this analogy,
we notice that if r is increasing rapidly towards r3, the su-
pervisor will respond with a respectfully fast blending action
resulting in an undesired high control rate. To respond we
introduce damping on the barrier magnitude rate r′, which
we compute in discrete-time as r′(k) = (r(k)−r(k−1))/T ,
where T is sampling time, by first redefining c:

c = co + cb 0 ≤ c ≤ 1 (19)

where co is a blending term based on the barrier magnitude,
r, and cb is the a blending term based also on the barrier
magnitude rate, r′. We then compute these terms using:

co = f1(r), cb = f(r, r′) = fb(r)(r
′), (20)

where fb(r) and b are defined as:

fb(r)(r
′) =

{
b(r)r′ if r′ > 0

0 if r′ ≤ 0
(21)

b(r) =


0 if r ≤ r1
bmax(r − r1)/(r2 − r1) if r ≤ r2
bmax if r ≥ r2

(22)

Here b acts as a damping coefficient. The parameters
r1, r2, r3, r4, and bmax are tuned while obeying that
0 < r1 < r2 ≤ r3 < r4. r1 is selected so that the user
has a region in the Cinv where they have full control, i.e.,
no blending occurs. Once this region is exited, r > r1,
damping is introduced with a ramp to prevent discontinuous
jump of c. r2 is selected so that the damping saturates at a
known bmax, to give a greater level of control for tuning.
r3 is when proportional action on r begins more strongly
correcting the system. Between r3 and r4, c can be seen as
a proportional/derivative controller that aims to correct the
potential violations of the barrier. Finally, r4 is the threshold
when full overriding occurs, which gives an upper bound on
r for the system. These functions are plotted in Fig. 3.

Fig. 3: Functions described in Eqs. (18), (21), and (22).

The profile of f1 ensures that as we reach the barrier
boundary, the optimum solution is more heavily weighted.
However, this is leading to very high control rates when the
barrier is approached rapidly. To accommodate for that, we
add a damping term cb determined in fb to reduce severe
control rate takeovers. To avoid similar discontinuous jumps
in control rates we blend the damping coefficient, b(r).

Although these blending techniques are heuristics with
tunable parameters, as long as r4 ≤ 1, the supervisor will
fully override the user with u∗, a control input steering the
system towards the origin of the Cinv before the boundary is
met. This means that as long as assumptions on the model
and disturbance bounds hold, these techniques inherit the
invariance and safety guarantees provided by the barrier.
Even if assumptions fail, since r is well-defined outside of
the Cinv , these techniques are also well-defined outside of
the Cinv , providing a certain degree of robustness.



Fig. 4: The target trajectory for all simulations. This course has two
turns with a curvature of 1/100m and is performed at a constant
velocity of 10m/s. This trajectory was chosen since it was deemed
most difficult to operate at the disturbance bounds.

V. RESULTS AND EVALUATION

In this section, we evaluate the proposed blending tech-
niques and compare them with the projection-based base-
line. A simulator, provided by TRI, with nonlinear vehicle
dynamics was used for the tests. The road profile/path used
for the test is shown in Fig. 4, that is navigated by keeping
a constant velocity at 10m/s. The road has two turns with
curvature κ = 1/100.

A user input was used that purposefully violated the barrier
during the turns and the blending methods of safe input set,
blending without damping, and blending with damping were
tested for both the polytopic and ellipsoidal barriers. The
parameters used for these tests are given in Table I.

TABLE I: The parameters used for both the polytope and ellipsoid
blending simulations

Parameter Without Damping With Damping

r1 0.00 0.40
r2 0.00 0.75
r3 0.85 0.85
r4 0.95 0.95

bmax 0.00 0.20

One thing to note is that the polytopic and ellipsoidal
barrier magnitudes vary greatly in scale as shown in Fig.
5 due to the difference in the sizes of the corresponding
invariant sets. To account for this, the user inputs were scaled
to violate each barrier with the same profile to make a fairer
comparison. In particular, we generated an aggressive human
input to test the polytope barrier and a mild human input to
test the ellipsoid barrier. Their lateral offsets are show in
Fig. 6.

We depict the simulation results in Figs. 7 and 8 for
polytopic and ellipsoidal barriers, respectively. These sim-
ulations had very similar patterns with the difference of
barrier magnitude measurements being taken into account for
scaling human input. The human input for each respective
simulation shown in Figs. 7a and 8a violate each respective
barrier magnitude by the same respective amount for each

Fig. 5: For the same trajectory, the polytope barrier magnitude was
much smaller than the ellipsoid barrier magnitude. This is as the
polytopic invariant set is larger than the ellipsoidal one, cf. Fig. 2,
thus leading to points which are on the ellipsoids boundary being
within the polytope.

Fig. 6: The lateral offset of the Aggressive and Mild human inputs.
It is shown that the aggressive human input violates Xsafe, while
the mild user does not.

simulation. In Figs. 7b and 8b, the human input is supervised
with the input projection method. This method of supervision
results in undesirable behavior as it corrects the human input
with high control rates, which physically would result in
jerking of the steering wheel from the driver which we deem
an unpleasant experience. In Figs. 7c and 8c, the human
input is supervised with barrier magnitude blending with no
damping. This results in keeping the system farther away
from the boundary as the controller engaged at a barrier
magnitude value of r = 0.85. This, however, also results in
severe blending control rates, and some oscillatory behavior
as the vehicle bounces off the lane boundary on both sides
for overly corrective blended inputs. In Figs. 7d and 8d, the
human input is supervised with barrier magnitude blending
with damping. With this damping term, the blended control
rates are two orders of magnitude smaller than those of
input projection/blending without a damping term. This is
a significantly better user experience as the steering wheel is
gently pushed to the correct position to guide the user, with
the proportional term in case the system still approaches the
barrier boundary. These more proactive, smoother blending
resulted in smaller overall barrier magnitudes when com-
pared to the other blending methods. Not seen in simulation
but important to note is that another advantage of this method
is that since the barrier magnitude is well defined outside of
the barrier, the safety controller is still able to operate if the
barrier is violated.

We also investigate some quantitative metrics as summa-
rized in Table II. In particular, we consider maximal control
rate u′max; time blended Tb, defined as sampling time T
times the cardinality of the set K = {k ∈ [0, ktotal] | u(k) 6=
uD(k)}; number of engagements, which is the number of
consecutive segments in the set K; total deviation ∆ from



the user input, defined as ∆ =
∑ktotal

k=0 |u(k)− uD(k)|; and
average deviation, that is, ∆/(TbT ). From Table II, it can
be seen that u′max and average deviation improved for both
Cinv when the blending method went from input projection
to barrier magnitude blending with damping. The polytopic
Cinv is also tested with the mild human input, which results
in zero blending action from all three methods, highlighting
the permissiveness of the polytopic Cinv .

These methods are also tested with different trajectory
profiles, leading to similar results. We find that the difficulty
to supervise increases with larger road curvature. Thus the
trajectory in Fig 4 is chosen as it includes two turns at the
minimum and maximum bounds of Dm, acting as a difficult
test case.

VI. CONCLUSIONS

In this paper, we propose a new blending method using
barriers to safeguard human inputs. This blending method
uses barrier magnitude to determine an optimal control input
and how much blending action should be taken. A key insight
is to incorporate the derivative of the barrier magnitude
in blending decision, making the approach more proactive
and less abrupt. The approach is demonstrated via lane
keeping computer simulations with barriers safe guarding
a human input that intentionally violates the barrier. Our
results show that our proposed method has a much smoother
override action on a user when compared to projecting the
input onto a safe input set and provides a good trade-off
between permissiveness and driving comfort (measured by
input rates), while not compromising the theoretical safety
guarantees of barrier-based approaches. Our future work is
to bring these blending methods onto a real vehicle, and
to adapt them to be used in a varying speed environment.
We would also like to run some user tests (either on a real
vehicle or on a simulator) to understand the trade-offs and
user preferences better.
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APPENDIX

A. Iterative invariant set computation

Robust controlled invariant sets can be computed using an
iterative algorithm that starts with the safe set and shrinks
it by eliminating the parts that cannot remain in the safe
set at each iteration [23], [16]. A pseudo-code for such an
algorithm is given in Alg.1 for a generic discrete-time system
Σ.

Algorithm 1 Outside-in invariant set calculation within a
safe set Xsafe

1: function GETCINVS(Σ, Xsafe)
2: C ←underapproximate(Xsafe)
3: while True
4: Cpre ←underapproximate(pre(Σ, C) ∩ C)
5: if C ⊆ Cpre
6: break
7: else C ← Cpre
8: return C
9: end function

In addition to standard set operations, the algorithm
includes, the subrountines “underapproximate” and “pre”.
“underapproximate” refers to any techniques that returns a
subset of the set in its argument, which might be needed
when exact representation of the sets is impossible or costly.
For a system Σ and a set X of states, “pre(Σ,X )” computes
the controllable predecessors of X , that is, the set of all states
which can be enforced to be in X in one step by the choice
of proper control input.

For the case with polytopic invariant sets and linear sys-
tems with polytopic safe sets, we can remove the “underap-
proximate” in lines 2 and 4 as the “pre” can be exactly com-
puted, and if Alg. 1 terminates, the exact maximal controlled
invariant set is computed. The toolbox PCIS [24] implements
this algorithm and is used in this paper. On the other hand,
for ellipsoidal sets under approximation of the exact sets can
provide extra computational benefits. We briefly summarize
how to implement the algorithm with ellipsoidal sets in a way
that is computationally more efficient (yet more conservative)
than polytopes in the next section.

B. Ellipsoid invariant set computation

Given M ∈ Rn×n positive definite and q ∈ Rn we can
define an ellipsoidal set centered at q as

E(M,q) = {x ∈ Rn|(x− q)TM(x− q) ≤ 1} (23)

To implement Alg. 1 with ellipsoidal approximations, we
need the following operations. On line 2, we need to find an
ellipsoid inside the polytope Xsafe. On line 4, we need to
compute an ellipsoidal under approximation of (i) “pre”, for
which we use Alg. 2, (ii) an intersection of two ellipsoids,
which can be done in closed-form for concentric ellipsoids
as the ones that we use. In Alg. 2, Minkowski Sum, ⊕,
and Minkowski Difference, 	 operators are used, which are
defined as:

S1 ⊕ S2 = {x | ∃p1 ∈ S1,∃p2 ∈ S2, x = p1 + p2}
S1 	 S2 = {x | ∀p2 ∈ S2,∃p1 ∈ S1, x = p1 − p2}

(24)



TABLE II: A summary of the key metrics measured when evaluating the different blending methods with different barriers and user
inputs.

Cinv Method Human Input u′max (rad/s) Time Blended (s) # of Engagements Total Deviation (rad) Average Deviation (rad)

Polytope Projection Aggressive 0.1662 2.9920 13 20.3952 0.0530
Polytope Blending w/o Damping Aggressive 0.0954 7.5520 38 135.2832 0.1429
Polytope Blending w/ Damping Aggressive 0.0042 6.6640 10 9.0007 0.0021
Ellipsoid Projection Mild 0.0463 1.6160 9 3.4637 0.0157
Ellipsoid Blending w/o Damping Mild 0.0424 1.3360 9 3.4202 0.0192
Ellipsoid Blending w/ Damping Mild 0.0050 3.2480 8 2.9401 0.0007
Polytope Projection Mild 0.0005 0 0 0 0
Polytope Blending w/o Damping Mild 0.0005 0 0 0 0
Polytope Blending w/ Damping Mild 0.0005 0 0 0 0

(a) Human Input

(b) Input Projection

(c) Barrier Magnitude Blending without Damping

(d) Barrier Magnitude Blending

Fig. 7: Polytope barrier magnitudes (red line representing barrier
boundary) and control inputs for the following scenarios of un-
supervised, supervised with admissible input set, supervised with
barrier magnitude blending without damping, and barrier magnitude
blending with damping. 7b, 7c, and 7d all supervised the input
provided in 7a. 7a (aggressive human input) was selected to initially
violate the polytope barrier during the turns.

(a) Human Input

(b) Input Projection

(c) Barrier Magnitude Blending without Damping

(d) Barrier Magnitude Blending

Fig. 8: Ellipsoid barrier magnitudes (red line representing barrier
boundary) and control inputs for the following scenarios of un-
supervised, supervised with admissible input set, supervised with
barrier magnitude blending without damping, and barrier magnitude
blending with damping. 8b, 8c, and 8d all supervised the input
provided in 8a. 8a (mild human input) was selected to initially
violate the ellipsoid barrier during the turns.



Algorithm 2 Calculate control pre set of a ellipsoidal set
E = E(M,q), for a system of the form (1)

1: function PRE(Σ, E)
2: E ′ ← underapproximate(E 	 E2Dum)
3: if E ′ is ∅
4: return ∅
5: E ′ ← underapproximate(E ′ ⊕BU)
6: E ′ ← underapproximate(E ′ 	 E1Dm)
7: if E ′ is ∅
8: return ∅
9: E ′.M ← Aᵀ(E ′.M)A

10: E ′.q ← A−1(E ′.q)
11: return E ′
12: end function

Then, we use Alg. 1 to continually update the set C until
it converges to an invariant set or returns an empty set. The
key advantage of this method is that in practice is converges
much more rapidly than PCIS. One relaxation is taking an
intersection with XSafe instead of C on line 4, for which
one loses convergence guarantees that come with monotonic
shrinkage but we observe termination is achieved much faster
in practice. The implementation of Algs. 1 and 2 for ellipsoid
invariant set computation are available in [25].
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