
This paper is included in the Proceedings of the
26th USENIX Security Symposium
August 16–18, 2017 • Vancouver, BC, Canada

ISBN 978-1-931971-40-9

Open access to the Proceedings of the
26th USENIX Security Symposium

is sponsored by USENIX

Ensuring Authorized Updates in Multi-user
Database-Backed Applications

Kevin Eykholt, Atul Prakash, and Barzan Mozafari, University of Michigan Ann Arbor

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/eykholt

Ensuring Authorized Updates in Multi-user Database-Backed Applications

Kevin Eykholt
University of Michigan Ann Arbor

Atul Prakash
University of Michigan Ann Arbor

Barzan Mozafari
University of Michigan Ann Arbor

Abstract
Database-backed applications rely on access control

policies based on views to protect sensitive data from
unauthorized parties. Current techniques assume that
the application’s database tables contain a column that
enables mapping a user to rows in the table. This as-
sumption allows database views or similar mechanisms
to enforce per-user access controls. However, not all
database tables contain sufficient information to map a
user to rows in the table, as a result of database normal-
ization, and thus, require the joining of multiple tables.
In a survey of 10 popular open-source web applications,
on average, 21% of the database tables require a join.
This means that current techniques cannot enforce secu-
rity policies on all update queries for these applications,
due to a well-known view update problem.

In this paper, we propose phantom extraction, a tech-
nique, which enforces per user access control policies on
all database update queries. Phantom extraction does not
make the same assumptions as previous work, and, more
importantly, does not use database views as a core en-
forcement mechanism. Therefore, it does not fall victim
to the view update problem. We have created SafeD as
a practical access control solution, which uses our phan-
tom extraction technique. SafeD uses a declarative lan-
guage for defining security policies, while retaining the
simplicity of database views. We evaluated our system
on two popular databases for open source web appli-
cations, MySQL and Postgres. On MySQL, which has
no built-in access control, we observe a 6% increase in
transaction latency. On Postgres, SafeD outperforms the
built-in access control by an order of magnitude when
security policies involved joins.

1 Introduction
Stateful (server-side) applications often rely on a back-
end database to manage their state. When sensitive data
is involved, these databases become prime targets for
attackers. Web applications, especially, are subject to

attacks due the large number of users and easy access
through the Internet. To protect the sensitive data these
web application store in thee database, proper access
control is required. Unfortunately, securing web applica-
tions has remained a challenge, mainly for three reasons:
(i) the incompatibility of modern web architecture and
the security mechanisms of database systems, (ii) limi-
tations of the automated techniques for enforcing a se-
curity policy, and (iii) failure to write secure, non-buggy
code when implementing access contol logic within the
application.

1. Architectural Incompatibility — Some database
systems provide vendor-specific syntax for fine-grained
access control [13, 16, 18, 23, 24] with support for se-
curity policies that involve joins. However, use of a spe-
cific database’s access control mechanism makes the ap-
plication DBMS-specific. A larger problem is that exist-
ing the web application architecutre is incompatible with
the database access control architecture. Most modern
web applications use an over-privileged database account
with the authority to access and modify any information
stored in the database [19, 21]. This setup is popular
because it avoids the performance overhead of creating
(and tearing down) new database connections on-the-fly
for possibly millions of end users. Using an overprivi-
leged account, the web application can simply maintain
a pool of active database connections that can execute
queries on behalf of any end user.

To use a DBMS’ mechnisms, (1) each application user
must be assigned a unique database account, and (2)
a separate database connection (using the assigned ac-
count) must be used for processing each user’s requests.1

Making such changes to web applications would prevent

1This is because most databases, for security reasons, disallow [31]
or limit [20, 23, 41] a connection’s ability to switch its user context
once it is created. Databases that allow but limit context switching
for existing connections are still vulnerable to (1) application bugs in
switching users, and (2) SQL injection whereby malicious users ma-
nipulate the functionality to switch to previous user contexts.

USENIX Association 26th USENIX Security Symposium 1445

them from using a connection pool, and result in perfor-
mance degradation [33, 48].
2. Limitations of Existing Techniques — The incom-
patability of DBMS access control with modern web ap-
plication has resulted in numerous access control solu-
tions, which exist as a security layer between the appli-
cation and the database. These solutions restrict each ap-
plication user to a portion of the database [39, 43, 36].
Before issuing a query, the application rewrites the query
to use the restricted portion of the datbase based on
the authenticated user. Often, database views are the
central mechnism these systems rely on [39, 43]. Al-
though current techniques can fully restrict database
reads [43, 45], they do not support database updates (i.e.,
INSERT, DELETE, and UPDATE queries) due to the view
update problem [27]. The view update probem states that
write queries cannot execute on a view when there is not
a “one-to-one relationship between the rows in the view
and those in the underlying table” [22]. Such a problem
can occur when a view definition contains a join query.

Consider OsCommerce, an open-source e-commerce
web application, which allows customers to leave re-
views on products. The metadata for reviews is stored
in the reviews table. In OsCommerce, customers can
only review products they have purchased. The follow-
ing query represents the allowable set of rows that con-
form to this access control policy:

SELECT R.*

FROM review R,orders_products OP ,

orders O

WHERE O.customer_id=current_id

AND

O.orders_id=OP.orders_ID

AND

OP.product_id=R.product_ID

AND

R.customer_ID=current_id;

The first three conditions in the WHERE clause obtain
the set of products a customer has ordered, and the last
condition ensures that the customer and the current user
are the same. Although this view definition correctly
captures the intended access control policy, it cannot be
enforced with existing query re-writing techniques, as
such a view is not updatable. This is because there is no
one-to-one mapping between the rows in the view and
those in the base tables, e.g., a user can purchase a prod-
uct multiple times across different orders.

Previous work has largely ignored the view update
problem by assuming that any table on which a security
policy is defined contains the user id, thus joins are not
required to map a user to rows in the table [36, 39, 43].
Unfortunately, as our survey of popular open-source web
applications in this paper reveals, on average, 21% (and

up to 50%) of the tables do not contain sufficient infor-
mation to map a user to rows in the table due to a lack of
a user id field or similar, thus a join query is required. In
other words, existing access control solutions would not
be able to fully support database updates for any of these
popular applications.
3. Unsecure and Buggy Code — In today’s web appli-
cation architecture, developers cannot rely on databases
to enforce access control policies due to the reliance
of the applications on a pool of persistent connections.
They cannot use existing access control solutions either,
due to the lack of support for write queries when tables
that do not contain user information. As a result, de-
velopers often implement their own access control login
within the application and such implementations must be
secure [47]. In theory, the application will only issues
queries in accordance with the access control rules for
the authenticated user.

In practice, however, most implementations have se-
curity flaws. According to a five-year study of 396 open-
source web applications, over 200 security vulnerabili-
ties were discovered [26]. Likewise, a study of vulner-
abilities in open-source Java projects [12] found 8.61
defects for every 100,000 lines of code. Unsecure or
buggy code leave web applications vulnerable to numer-
ous access control bypass attacks, such as SQL injec-
tion [8, 25, 28, 34, 35, 38, 42] and insecure direct ob-
ject reference attacks [14, 44]. These issues allow at-
tackers to cause the application to issue unauthorized
queries with respect to the current user and leak sensitive
data. For example, a vulnerability in Symantec’s web-
based management console allowed authenticated low-
privileged users to execute arbitrary SQL queries on the
backend database, and change their account privileges to
administrator level [25]. Data leaks have also occurred
in mobile apps, such as Uber and SwiftKey, that use a
database-backed web service [15, 30].

Such vulernerabilities occur because there is not a
declarative way to define an access control policy within
the application. Rather, developers have an idea of what
the security policy should be and attempt to implement
in code whenever database queries are issued. A proper
access control solution should exist between the appli-
cation and the database and allow a devloper to declar-
atively define an access control policy in a centralized
location. Furthermore, the solution should meet the fol-
lowing key criteria:

C1. Generality: The access control policy can be en-
forced for all read (SELECT) and write (UPDATE,
INSERT, and DELETE) queries on any table (whether
it contains the user id as a column or not);

C2. Correctness: The application user should only be
able to access and modify authorized information as

1446 26th USENIX Security Symposium USENIX Association

defined by the developer’s policy;

C3. Database Independence: The mechanism should
not rely on vendor-specific features of the backend
database; and

C4. Connection Sharing: For compatibility with ex-
isting web applications, the solution should allow
for reusing a set of persistent and over-privileged
database connections to serve requests of multiple
end users.

Our Approach — We introduce the phantom extrac-
tion technique for enforcing access control on write
queries, while being robust to policies that involve joins.
Before executing a write query, we copy the rows from
the target table that the user is authorized to modify into
a temporary table. The query is then copied and modi-
fied to operate on the temporary table. We refer to mod-
ified copy as the query’s phantom. Once SafeD deems
the phantom’s modifications on the temporary table to
be safe, the changes are copied over to the original table.
The view update problem does not apply to phantom ex-
tractions because database views are not used in any part
of the process. The correctness of phantom extraction
is established with a formal notion of query safety that
guarantees a query is compliant with a given security pol-
icy (see Section 5). We present necessary and sufficient
conditions to achieve that guarantee.

With phantom extraction, we created SafeD (Safe
Driver), a pratical access control solution that supports
policy enforcement for both read and write queries.
SafeD extends existing database drivers, such as JDBC
and ODBC, and transparently enforces an application’s
access control policy. Policies are defined by a set of
declarative statements which use a syntax similar to dat-
base views. Since the access control is evaluated at the
driver level, SafeD does not require a new database con-
nection to establish a new user context, nor is it tied to
a particular database backend. The user context is estab-
lished when users authenticate themselves to the appli-
cation, and SafeD enforces the access control policy for
all database connections in the application’s connection
pool.
Contributions —

1. We surveyed 10 popular open-source web applica-
tions and show that complex row-level access con-
trol policies with joins queries are required for, on
average, 21% of the tables to define per-user poli-
cies (Section 3).

2. We establish a formal notion of query safety and
prove the necessary and sufficient conditions for
the safety of all database operations, i.e., SELECT,
DELETE, INSERT, and UPDATE (Section 5).

3. We present a new technique, phantom extraction,
which ensures the safety of database updates with
full generality (Section 6).

4. We present SafeD as a practical solution for en-
forcing per-user access control policies within the
database. On MySQL (which lacks built-in support
for row-level access control for read/write queries),
a 6% increase in transaction latency is observed
(Section 8.1). On Postgres, SafeD provides com-
parable performance to Postgres’ access control for
simple policies, but outperforms it by an order of
magnitude for row-level access control policies with
joins in terms of transaction latency and throughput
(Section 8.2).

2 Related Work
The related work on access control can be categorized
into application-centered versus database-centered ap-
proaches.

2.1 Application Access Control
CLAMP[43] and Nemesis [36] have similarities to SafeD
in that each defines a per-user access policy in terms of
views on the underlying tables. However, both works as-
sume the underlying tables contain a column, such as a
user id, which enables mapping a user to rows in the ta-
ble. If the underlying table does contain a column, such
as a user id [column], a join with one or more additional
tables is necessary. For example, in OsCommerce, the
security policy for reviews requires joining reviews with
orders and orders products to map a user to the set of re-
views they can update (see Section 1). A view defined by
a join query can result in the view update problem [27]. A
database view is updatable only when there is a one-to-
one mapping of rows in the view to rows in the underly-
ing table. Therefore, CLAMP does not support per-user
access control for write queries when the database view
is not updatable. SafeD does not use database views to
define per-user access control policies. Rather, SafeD
rewrites queries to conform to the defined access control
policy and executes the modified queries on tables in the
database, thus avoiding the view update problem entirely.

In addition to assuming a table contain a column that
enables mapping a user to rows in the table, Nemesis [36]
also assumes that INSERT statements do not read exist-
ing rows in the database. However, this may not hold in
many cases (e.g., consider INSERT INTO T1 AS SELECT

* FROM T2). This query reads information from table T2
and copies it into T1. In contrast, SafeD makes no such
assumption and can handle both blind and nested INSERT
queries.

Diesel [39] implements module-based access control,
whereby an application is broken into a series of code

USENIX Association 26th USENIX Security Symposium 1447

Solution Generality Correctness Database
Independent

Connection
Sharing

Diesel [39] x x � �
CLAMP [43] x � � �
Nemesis [36] x � � �
Oracle [13] � � x x
Postgres [23] � � x x
SafeD � � � �

Table 1: Comparison of SafeD to existing solutions. (See
Section 1 for criteria definitions.)

modules, each restricted to only a portion of the database
needed to complete its task. While the authors remark
that Diesel can be extended to user-based access control
(e.g., by duplicating all the modules for each connected
user), they also acknowledge that their solution would
not scale [39] and suggest using database access control
in conjunction. SafeD does not require database access
control and is thus compatible with today’s web architec-
ture.

Table 1 summarizes SafeD’s differences with prior
work.

2.2 Database Access Control
Stonebraker and Wong presented the first database ac-
cess control through query rewriting in INGRES [46],
which supported read queries, but not write queries. IN-
GRES’ treatment of read access restrictions as predicates
has been adopted by modern databases. For instance,
Oracle’s VPD allows administrators to define a series of
functions for each relation based on the mode of access.
These functions append a predicate to the query to en-
force access rules based on the user context [29]. Defin-
ing these functions via procedural code offers flexibility,
but is also more error-prone compared to simply writing
declarative policy statements as in SafeD.

More recently, Postgres 9.5 has added support for
fine-grained access control, whereby administrators de-
fine two policy conditions for each table and each role.
The first condition is evaluated against SELECT and
DELETE queries, while the second condition is evaluated
for INSERT queries. (UPDATE queries are treated as a
DELETE followed by an INSERT.) Postgres’s design as-
sumes that if users can view information, they should
also be able to delete it. SafeD does not make this as-
sumption, decoupling a user’s read and write permis-
sions.

As mentioned in Section 1, the key advantage of
SafeD over access control features of database systems
is that the former is compatible with today’s web appli-
cation architecture. Both Oracle and Postgres rely on
the database connection to obtain user context. Web
applications have avoided this approach due to perfor-
mance implications of creating new database connec-
tions [33]. In contrast, SafeD allows applications to share

connections across users. SafeD also provides database-
independence, and offers a simple syntax for defining a
security policy compared to database solutions. SafeD
only requires an understanding of SELECT queries. Or-
acle and Postgres each use a different syntax, and re-
quire developers to understand more complicated con-
cepts, such as creating system contexts, system context
triggers, and policy functions. (See Table 1.)

3 Survey of Modern Web Applications
Modern web applications currently define and enforces
access control policies within the code. MediaWiki, for
example, stores user groups and the associated access
control rules within a PHP config file [4], and the ac-
cess control rules are enforced within the PHP functions.
As evidenced by numerous attacks on web applications,
the current apporach is flawed [8, 25, 28, 34, 35, 38, 42].
Thus, prior work has proposed alternatives that decouple
access control logic from the application, but all exist-
ing work cannot handle write queries when a declarative
policy definition requires a join. These types of policies,
which we call join policies, occur when a database table
does not contain a field corresponding to a user, such as
user id, which enables a mapping of rows in the table to
a user. To determine the prevalence of join policies in
modern web applications, we surveyed 10 open-source
Java web applications of varying size and complexity.

Before determining which tables require a join policy,
we first must identify the user information table. Typi-
cally, the user information table contains a unique user
ID that is used in other tables to map a row to a user.
Given two tables, A and B, we say that table A is the par-
ent of table B if B has a column that refers to the primary
key of A. Similarly, given two tables, A and B, we say
table A is the grandparent of table B if B has a column
which refers to the primary key of a child of A. Often,
these relationships are represented as a foreign key ref-
erence, but some of the applications we surveyed did not
contain any such declarations. The lack of explicit for-
eign key declarations required us to infer the implied par-
ent and grandparent relationships based on the database
schema and structure.

In general, any table that has the user information ta-
ble as its grandparent requires a join policy to define a
per-user access control policy. Additional tables are in-
cluded in our evaluation if accompanying documentation
indicates a relationship between a user and a table de-
spite no parent or grandparent relationship with the user
information table. For example, in MediaWiki, pages can
be semi-protected so only confirmed and autoconfirmed
users2 can modify them. In MediaWiki 1.10 and later,
this information is stored in the page restriction table. In

2Users whose account is at least four days old and has at least ten
edits to Wikipedia

1448 26th USENIX Security Symposium USENIX Association

Web App Total Tables Tables Requiring Join Policy
Wordpress [10] 12 4 (33%)
hotCRP [40] 24 6 (25%)
LimeSurvey [3] 36 18 (50%)
osCommerce [7] 40 4 (10%)
MediaWiki [4] 48 10 (21%)
WeBid [9] 55 5 (9%)
Drupal [2] 60 12 (20%)
myBB [5] 75 8 (11%)
ZenCart [11] 96 18 (19%)
Cyclos [1] 185 24 (13%)
Average Percent 21%

Table 2: Summary of the number of tables in 9 web ap-
plications that require a join query to define a per-user
policy declaratively.

Figure 1: Two web application architectures. A trusted
authentication component within the app or on the server
provides SafeD with the correct user context.

order to define a policy for the page table, a join with
page restriction is necessary to determine which pages a
user can edit.

For each web application, we recorded the total num-
ber of tables in the database and the fraction of those
tables that require a join query in a declarative policy
definition to enforce a per-user policy.

Our survey results, shown in table 2, indicate that an
average of 21% of an application’s database tables re-
quire a join query to define a per-user policy declara-
tively. Web applications with a large amount of normal-
ization tend to have a higher number of tables requiring
a join query in their policy. LimeSurvey, which has the
highest percentage of such tables, contains a user table
with only a few children, but the children are heavily nor-
malized resulting in numerous grandchildren. Zen Cart
and Cyclos, which contain user tables with only a few
children but multiple grandchildren, show similar trends.

4 Overview
Figure 1 shows the deployment architecture of SafeD.
SafeD extends an existing database driver (e.g., JDBC or
ODBC) to add a security layer that ensures all queries
issued by the application are compliant with the defined
declarative security policy (see Figure 2).

The application developer (or the system administra-

Figure 2: Given a query and a user context, SafeD ob-
tains the user’s security policy and creates a safe version
of the query, which is executed on the database.

tor) specifies the desired security policy via a set of
declarative rules. These rules define the read and write
permissions of each application user in the database
(Section 5). At run-time, SafeD automatically trans-
forms each query into a read-safe or write-safe query
(i.e., one that is compliant with the read and write poli-
cies). SafeD provides Truman model semantics, i.e.,
the transformed query provides the same results as if
the original query executed on a restricted view of the
database that is accessible to the user. SafeD supports ar-
bitrary read and write queries. SafeD’s query transforma-
tion module (Section 6) ensures necessary and sufficient
conditions for query safety. A developer can also use
SafeD in an experimental debugging mode of operation,
in which a query is tested for policy-compliance first. In
this mode (a.k.a. non-Truman model [45]), a query is
executed only if it is compliant, and is rejected other-
wise (see Section 6). We implement our prototype by
extending a JDBC driver (Section 7), and evaluate it us-
ing the TPC-C benchmark. Our results show that SafeD
can protect practical database-backed applications at a
negligible cost (Section 8).

4.1 Threat Model
We assume that a database app (e.g., web app) is benign,
but buggy. We assume a remote attacker who attempts to
exploit the web app, but cannot authenticate as another
user. This is a reasonable assumption since most existing
web frameworks, such as Django or Tomcat, have stan-
dardized support for authenticating users. In other words,
the web application is assumed to reliably verify the end-
user’s identity and make it available to SafeD along with
the issued query, but the query itself can be arbitrarily
over-privileged, due to bugs or remote exploits.

Note that there are two causes of data leakage in a
web application: incorrect policy definitions and incor-
rect policy enforcement. SafeD focuses on the latter, en-
suring that all queries obey the developer-defined policy.
However, if the policy is incorrectly defined, SafeD can-
not prevent the undesirable actions of authorized users.
One benefit of this decoupling is that developers are

USENIX Association 26th USENIX Security Symposium 1449

forced to explicitly define their security policies. These
explicit definitions are often easier to debug than their
implementation code.

5 Formal Results
In this section, we first describe the notion of per-user,
row-level security policies. We then formally define the
notion of safety for read and write queries. Finally,
we derive necessary and sufficient conditions to achieve
safety. These conditions are subsequently used to show
correctness of our algorithms that render queries safe
with respect to a given policy. Appendix B provides sev-
eral examples of how safety can be enforced based on the
results and definitions presented in this section.

5.1 Security Policy Definition
In SafeD, a security policy is composed of two sets of
access rules: the read policy and the write policy. Given
a user, the read policy identifies the tuples in the database
that the user can read. Likewise, the write policy iden-
tifies the tuples in the database that the user can modify,
remove, or add. These policies are specified as a read set
and a write set for each table of the database. For each
user and each table, a read (write) set identifies the set of
tuples the user can read from (modify, remove from, or
add to) that table. On a given table, the write set of a user
must be a subset of his/her read set (i.e., users can read
tuples that they can modify).

SafeD assumes that the authentication component of
the web application provides the user’s identity and, op-
tionally, a ‘role’ assigned to the user. This role is only
relevant to SafeD for selecting a policy and is not re-
lated to database roles. The user identity would usually
be based on his/her authentication cookie and, possibly,
the web request being made. SafeD takes as input a pol-
icy file comprised of a set of policy statements defining
the read sets and write sets for each user and each role.
The following are examples of policy statements for the
customer and manager roles 3 :

DEFINE WRITESET FOR

ROLE customer USER $i

ON TABLE cust_info

AS SELECT * FROM cust_info

WHERE cid=$i

Listing 1: Customer’s write set for the cust info table.

DEFINE WRITESET FOR ROLE manager USER $i

ON TABLE ordertable

AS SELECT * FROM ordertable

Listing 2: Manager’s write set for the ordertable table.

3For simplicity, we define policies at the granularity of entire rows,
but SafeD can be extended to finer granularities, e.g., at the attribute
level.

Here, $i is a wildcard that is replaced at runtime with
the attribute(s) identifying the current user.4 Read sets
are defined similarly, except that the READSET keyword
is used instead of WRITESET.

The definition of the read and write sets for a table
may involve nested queries or joins with other tables.
For example, suppose there are two additional tables in
the database: carts and cart info. The carts table maps a
customer id to a cart id (cart id), while the cart info ta-
ble contains the items in each cart. Since cart info only
contains cart id, a join with carts is necessary to retrieve
the cid. Listing 3 shows the cart info table’s read set for
different customers.

DEFINE READSET ON ROLE customer USER $i

ON TABLE cart_info

AS SELECT * FROM cart_info x,

carts y

WHERE x.cart_id = y.cart_id

AND y.cid=$i;

Listing 3: The read set for cart info involving a join.

Next, we define read and write sets formally. In
our discussion, an operation can be a SELECT, INSERT,
DELETE, or UPDATE statement. (We use query and oper-
ation interchangeably.) We denote the set S as the tuple
space, representing the (infinite) universe of all possible
tuples. A relational database consists of a collection of
tables. A table T is a finite subset of S. Since each ele-
ment of a set is unique, we allow for duplicate entries by
taking the Cartesian product of S with the natural num-
bers, N× S, and use that as our new tuple space. Du-
plicate entries will have a unique number in S. We also
denote the number of tuples in a table T as |T |. Further-
more, given any subset s⊆ S, we denote its complement
as sc = S\ s.

Given a set of users U , we define a security policy
as a pair of two functions (pr, pw), where pr is the read
policy and pw is the write policy, defined below.

Definition 1 (Read/Write Policy). Given a user u, the
read policy pr(u) is the subset of S that u is allowed to
read. Likewise, the write policy pw(u) is the subset of S
that u is allowed to add or modify.

A modification can be addition, removal, or update of
a tuple. Based on the definition of a security policy, we
now define the read set and write set for a user u.

Definition 2. (Read/Write Set) Given a user u ∈U and a
table T ⊆ S,

• The read set of T , Vr(T,u) = T ∩ pr(u), represents
the set of tuples in T that user u can read.

4Currently, we assume the mapping of the current user to their role
and identifying attribute is performed by the application.

1450 26th USENIX Security Symposium USENIX Association

• The write set of T , Vw(T,u) = T ∩ pw(u), represents
the set of tuples in T that user u can modify5.

Note that the READSET and WRITESET statements in-
troduced earlier correspond to these formal notions of
read and write sets, given a table and user information,
by simply instantiating the user identifier and applying
their SELECT statements to T .

We also define the negated read set of T as NVr(T,u)=
T \ Vr(T,u), which is the set of all tuples in T the
user cannot read. Similarly, negated write set of T
NVw(T,u) = T \Vw(T,u), which is the set of all tu-
ples in T the user cannot modify. It is trivial to show
NVr(T,u) = T \ pr(u) and NVw(T,u) = T \ pw(u).

5.2 Safe Reads and Safe Writes
Now that we have formally defined a security policy and
the read/write sets, we can formally define safe opera-
tions. We first consider read queries, which correspond
to SELECT queries in SQL, and then write queries,
which correspond to UPDATE, INSERT, and DELETE

queries in SQL.

Definition 3 (Read-safety). A query R by a user u with
read policy pr is read-safe if the query would return
the same result when executed on the subset of tuples in
the accessed tables that are readable to the user, namely
pr(u).

In other words, a read-safe SELECT query should re-
turn the same result whether executed on the original ta-
bles or on the read sets of those tables. Note that pr(u)
can, in general, be a set of tuples from multiple tables for
queries with joins.

Corollary 1. A query that only accesses tables whose
tuples are all in pr(u) is read-safe.

The above corollary implies the following: if in a
query R, each table Ti of the database accessed in
the FROM clause is replaced by a table T ′i where T ′i =
T ∩ pr(u), then the resulting query R ′ will be read-
safe. Such an approach has been proposed by previous
systems [43, 46], and is also taken by SafeD. (As we
will discuss shortly, enforcing safety for write queries is
more challenging.) SafeD automatically transforms any
SELECT queries (including those nested within other
queries) by appending additional tables and conditions
to the operation’s FROM and WHERE clauses, respectively,
that are implied by the READSET policy rules. We refer
to this process as read policy intersection. Also, note
that checking whether a query is read-safe can be more
expensive than transforming it to be safe, since checking
may require executing the query twice.

5Since an INSERT query adds tuples not in T , the write set is eval-
uated after the new tuples are added (See Section 5.2)

We next define the notion of read-safety and write-
safety for a write query. As in SQL, we assume that a
write query can read any set of tables (via nested SE-
LECT statements), but modify only a single table and re-
turn, as its result, the modified table. Intuitively, a write
query by a user u that updates a table T is write-safe if
1) it does not modify anything outside table T ’s write set,
and 2) any nested SELECTs within it are also read-safe
(so that it does not leak data via the writes). Formally,

Definition 4. A write query W by a user u that modifies
table T is read-safe if all of its nested queries (which
must be SELECTs) are read-safe. Furthermore, it is
write-safe if it does not modify the set of tuples that
are outside its write set for table T , i.e., NVw(T,u) =
NVw(W (T),u), where W (T) represents the tuples in ta-
ble T after executing W .

Let A = W (T) \ T represent the new entries added
by W to T , and let D = T \W (T) represent the en-
tries removed from T . It trivially follows that W (T) =
(T ∪A)\D. For INSERT queries, D will be an empty set
and for DELETE queries, A will be an empty set. For
UPDATE queries, both A and D could be non-empty.

We denote 〈W (T)〉 to be the sum of the cardinality
of A and the cardinality of D for tuples added or deleted
from T as a result of executing W . It can be formally
shown that the definition of write-safety does not require
comparing W (T) with T , but only examining cardinality
of changes. In particular, the following theorem can be
shown to hold:

Theorem 1. Given a user u∈U, a tuple space S, a set of
tuples s ⊆ S, a table T ⊆ S, a write operation W that is
read-safe, the write policy pw, and the write set Vw(T,u),
the following conditions,

(1) Vw(W (T),u) = W (Vw(T,u))

(2) 〈W (T)〉= 〈W (Vw(T,u))〉

are necessary and sufficient to ensure W is write-safe,
i.e.,

NVw(T,u) = NVw(W (T),u).

Intuitively, condition (1) states that the resulting table
from a write-safe write query should be the same whether
the write is done on the original table T or on the write
set Vw(T,u). Condition (2) states that the total count of
tuples added/deleted in T from executing W (T) should
be identical to the count of tuples added/deleted if W was
instead executed on Vw(T,u). This ensures that W does
not cause any tuples to be moved outside its write set as
a result of changes. We defer the proof of Theorem 1 to
the Appendix.

We now can define the notion of a query being safe in
terms of read-safety and write-safety for the four types
of queries addressed in this paper.

USENIX Association 26th USENIX Security Symposium 1451

Definition 5 (Safe Query). Given a policy (pr, pw), we
consider a SELECT query for a user u to be safe if it is
read-safe. We consider an INSERT, DELETE, or UPDATE
query to be safe if it is read-safe and write-safe.

Corollary 2 (Safety of INSERT). INSERT queries: If all
created tuples by an INSERT query are within the write
set of the user, then the query is write-safe.

Proof outline: In this case, the same tuple(s) will be
added, irrespective of whether they are added to T or
Vw(T,u). Thus, conditions (1) and (2) in Theorem 1 hold.

Corollary 3 (Safety of DELETE). DELETE queries: A
DELETE query that only deletes from Vw(T,u) is write-
safe.

Proof outline: The query only deletes tuples in the
write set so tuples in NVw(T) are not changed. There-
fore, it trivially satisfies Definition 4. of Theorem 1 and
takes advantage of the properties of DELETE.

Corollary 4 (Safety of UPDATE). UPDATE queries: An
UPDATE query W that only updates tuples in Vw(T,u) is
write-safe if W (Vw(T,u)) \Vw(T,u) is within the user’s
write set.

Proof outline: An UPDATE can be thought of as a
DELETE of the old tuples followed by an INSERT of the
new tuples. From Corollary 3, we know the DELETE op-
eration of the UPDATE is safe. If W (Vw(T,u))\Vw(T,u)
is in the user’s write set, then the INSERT operation of
the UPDATE is write-safe due to Corollary 2.

The new value of an updated tuple has to be within the
write set. If T is replaced by Vw(T,u) in Theorem 1, it
can be shown that the condition in the corollary implies
both conditions of the theorem.

6 SafeD Design and Algorithms
SafeD operates as a modified JDBC driver that is trans-
parent to the application. It transforms a submitted query
into a safe query and returns the corresponding result. To
do that, SafeD applies the Truman model [32] semantics
for read queries, in which a query only sees tuples in its
read sets. For write queries, SafeD uses a novel tech-
nique, called phantom extraction, to ensure only the por-
tion of the table within the write set is updated (Section
6.1).

SafeD also provides an experimental (i.e., debugging)
mode in which a read/write operation is carried out only
if it is safe in the first place (a.k.a. “non-Truman”
model [45]). Unfortunately, with the current state of the
art, providing such a semantics is expensive. Consider
a SELECT query. To know whether the query is safe,
one needs to run the query on the original tables as well
as their read sets and compare the results. Truman se-
mantics avoid the need to execute the query twice since

execution of the query on the original tables is not re-
quired. We prototyped this strategy and tested it with the
TPC-C benchmark and found it to thrash at low transac-
tion rates. We thus focus on the strategy of transforming
queries to make them safe in rest of the paper.

6.1 Phantom Extraction
We say that a write query’s phantom is a read-safe copy
of the query, which only updates rows in the write set. In
SafeD, write queries issued by the application are never
executed on the database. Instead, each query’s phan-
tom is extracted and evaluated for write-safety. Phantom
extraction involves 3 steps. First, transform the original
query into a read-safe query using read policy intersec-
tion (Section 5.2). Then, modify the read-safe query so it
only updates rows in the write set. This modified query is
the phantom. Finally, determine if the phantom is write-
safe. If the query’s phantom is write-safe, the phantom’s
changes to the database are made permanent. Otherwise
a permission violation error is returned and the changes
are rolled back. In 6.2, we present two algorithms for
phantom extraction.

6.2 Query Transformation Strategy
The transformation module automatically transforms a
query Q into a safe query that is guaranteed to satisfy the
two conditions in Theorem 1 for read-safety and write-
safety, while providing the illusion that the query oper-
ates on the view of tables that are in the user’s read set
and write set. The algorithm we present can, at times, re-
quire issuing multiple queries to the database to check
write-safety. Appendix B provides several illustrating
examples of query transformation using the algorithms
presented in this section.

Algorithm 1 shows the general transformation logic
to transform a query Q issued by a user u. The queries
currently handled by SafeD include SELECT, INSERT,
UPDATE, and DELETE queries, which require row-level
access controls. The transformation algorithm is a two-
step process. First, SafeD must ensure that the trans-
formed query is read-safe, i.e., s⊆ pr(u) is true, where s
is the set of tuples read by the query and gives the illusion
that the query is running against the read set of accessed
tables in the database (lines 2-5). Given a user u and
a query Q, SafeD uses read policy intersection (Section
5.2) to create a read-safe query rsQ. Read policy inter-
section automatically transforms a SELECT query in Q
into one that is read-safe by appending additional tables
and conditions to each query based on the read policy.

Nested Queries (read-safety) — SELECT queries can
be nested within other queries, including write queries.
SafeD transforms them recursively to make them read-
safe. Starting from the deepest sub-query, SafeD con-
catenates the associated read view predicates to the

1452 26th USENIX Security Symposium USENIX Association

WHERE clause of the sub-query.

Write Queries (write-safety) — Given rsQ, a read-
safe transformation of Q, SafeD next executes the Phan-
tomExtract function that results in a write-safe execution
of the query using the phantom extraction technique (line
8). An input to PhantomExtract is the WRITESET def-
inition that applies to this query (which is essentially a
SELECT statement – see Section 5.1).

Algorithm 1 General Safe Execution Algorithm

1: function SAFEEXECUTE(USER u, QUERY Q)
2: read policy← GetReadPolicy(u)
3: rsQ← IntersectReadPolicy(Q,readpolicy)
4: if (Q is a Select query) then
5: return Execute(rsQ)
6: T← GetWriteTable(rsQ)
7: writesetde f ← GetWriteSetDef(u,T)
8: return PhantomExtract(rsQ,T,writesetdef)

SafeD uses one of two strategies for implementing the
PhantomExtract function: V-Copy or No-Copy. Both al-
gorithms will result in only allowing permissible writes
on the database. We present V-Copy strategy first.

The V-Copy strategy is shown in Algorithm 2. Instead
of modifying T directly, an empty temporary table with
the same schema as T is created in the database and the
corresponding reference (i.e. the table name), tempT, is
returned. The algorithm uses Corollary 2 to check the
safety of INSERT (line 3), which means all inserts are
performed on an empty table, tempT . For UPDATE or
DELETE, the write set of T is added to tempT during
initialization (lines 5-6). After initilizing tempT , rsQ
is modified to execute on it, thus creating phantom, the
phantom of the original query. After executing phantom
on the database (line 8) , either (1) new tuples are in-
serted into tempT ; (2) tuples are deleted from tempT ; or
(3) tuples are updated in tempT ;. The check on Line 10
holds if the query’s phantom is write-safe. The remain-
ing lines of Algorithm 2 ensure that inserted or updated
tuples have not gone outside the user’s write set for ta-
ble T (if they have, an exception is raised). Finally, T is
modified based on the state of addTup and rmTup

An alternate strategy, No-Copy (Algorithm 3), can
sometimes reduce the amount of work performed by the
database and evaluates the conditions of Theorem 1 lo-
cally when possible. If the write set does not contain a
join, No-Copy parses non-nested queries and determines
if the query would result in tuples outside of the write
set. This parsing can be always done for blind INSERT

queries, which contain the new values for a tuple in the
VALUE clause. Sometimes, the parsing can be done for
UPDATE queries as well. If the UPDATE’s SET clause
does not assign values based on a computation, i.e., “at-

Algorithm 2 V-Copy PhantomExtract

1: function PHANTOMEXTRACT(QUERY rsQ,
STRING T, WRITESET writesetde f)

2: if rsQ is an Insert Query then
3: tempT← CreateTemp(T, null)
4: else
5: authTup← GetAuth(T, writesetdef)
6: tempT← CreateTemp(T,authTuples)
7: phantom← ChangeWriteTable(rsQ, tempT)
8: Execute(phantom)
9: curTup← GetAll(tempT)

10: authTup← GetAuth(tempT, writesetdef)
11: rmTup←∅; addTup←∅
12: if curTup == authTup then
13: authTup← GetAuth(T, writesetdef)
14: addTup← SetMinus(curTup,authTup)
15: if rsQ is not an Insert Query then
16: rmTup← SetMinus(authTup,curTup)
17: else Raise permission exception
18: Insert(T, addTup)
19: Delete(T, rmTup)

tribute name = function()”, parsing can be performed.
No-Copy creates a list of the attributes modified by the
query and checks if any of the attribute are part of the
write set’s definition, i.e., contained in the WHERE clause
of the write set. If so, then the value assigned to the at-
tribute must satisfy the conditions defined in the write
set. If the conditions are not satisfied, then the query
will always result in tuples outside of the write set and is
therefore not write-safe.

For DELETE queries, due to the Corollary 3, No-Copy
executes the DELETE query on the subset of T that is
within its write set, ensuring that only writable tuples are
deleted.

Write set intersection is also used to transform rsQ
into phantom if rsQ is an UPDATE. Since rsQ does not
add tuples outside of the write set, phantom will not ei-
ther, which means condition (1) of Theorem 1 is satisfied.
Condition (2) requires that the number of modifications
made to a table is equal to the number of modifications
made in the write set of the table. Since the query’s phan-
tom only modifies tuples in the write set by definition,
the number of changes made by phantom on T is equal
to 〈W (Vw(T,u))〉 where W is the write operation repre-
senting phantom.

7 Implementation
We have implemented a prototype of SafeD by extend-
ing the JDBC driver. As previously shown in Figure 2,
SafeD is comprised of two key modules: a transforma-
tion module and a policy one. The transformation mod-
ule requires 317 lines of code in V-Copy and 452 lines in

USENIX Association 26th USENIX Security Symposium 1453

Algorithm 3 No-Copy PhantomExtract

1: function QUERY rsQ, STRING T, WRITESET
writesetde f)

2: phantom← NullQuery
3: if rsQ is not an Insert then
4: phantom← IntersectWriteSet(rsQ,writeset)
5: else
6: phantom← rsQ
7: if phantom is a Delete then
8: return Execute(phantom)
9: if (phantom is a nested query) OR

(writeset contains a join) then
10: Use Algorithm 2
11: attList← GetAttributes(phantom)
12: if not(CanEvaluateLocal(modifiedList, writeset))

then
13: Use Algorithm 2
14: condList← GetWhereConditions(writeset)
15: for all a ∈ modi f iedList do
16: if condList.contains(a.name) then
17: pass←IsValidValue(condList, a.value)
18: if pass == f alse then
19: return Execute(NullQuery)
20: return Execute(phantom)

No-Copy. The policy module requires 119 lines.
Our policy module stores the read and write policies

defined by the developer for each role, as well as a
mapping between users and roles. Upon establishing a
database connection, this module creates a connection
state object that contains the security policy. When a user
is identified, the module uses the supplied user context
to initialize the read and write sets for the user. Given a
SQL query and a user context, SafeD either verifies the
compliance of the query before sending it for execution
(in debug mode), or transforms it into a compliant query
(in run-time mode).

8 Evaluation
Our experiments seek to answer the following questions:

1. What is SafeD’s performance overhead for a
database without built-in support for access control?
(Section 8.1)

2. How does SafeD’s performance compare to that of
a built-in mechanism in a database that does support
row-level access control? (Section 8.2)

3. How does SafeD’s performance vary with the ratio
of unsafe queries in the workload? (Section 8.3)

When studying SafeD’s performance, we compare the
V-Copy and No-Copy strategies. We experiment with

both MySQL and Postgres. MySQL is perhaps the most
popular open source database used by web applications,
including several high-volume web sites, such as Face-
book and Zappos [6]. However, given MySQL’s lack of
built-in support for row-level access control, web appli-
cations implement their own security policies. Postgres,
on the other hand, offers row-level access control and
thus provides a comparison point between a database-
enforced access control with the costs of SafeD’s ap-
proach. Postgres is also popular for small to medium-
sized web applications [17].

Setup — In all experiments, we used two machines run-
ning Ubuntu 12.04 with 32GB of memory, configured as
a client and a database server. The server had 8 CPUs
(2.40 GHz each), while the client had 12 Xenon CPUs
(2.67 GHz each). The client machine was used to send
TPC-C queries to the database sever using the OLTP-
Bench suite [37]. For TPC-C, we used its standard mix-
ture of transactions (43% payment, 4% order status, 4%
delivery, 4% stock-level, and 4% new order) and a scale
factor of 20. For our database, we used MySQL 5.7 and
Postgres 9.5.

Security Policies — Based on the semantics of the TPC-
C benchmark, we used two different security policies.
For both policies, there existed an administrator role
with full read and write access to every table. In Pol-
icy 1, we defined two non-admin roles: a manager role
and a customer role. A manager’s user context contains
two attributes: the warehouse id (WID) and the district
id (DID). A customer’s user context contains three at-
tributes: the warehouse id (WID), the district id (DID),
and the customer id (CID). Most of the database tables
contain attributes that can be mapped directly to values
in the user context. In these cases, a user is given read or
write access (or both) to tuples where the user context
matches the associated attributes in the tuples. When
the target tables do not contain the necessary attributes
to map the current user to tuples in the table, i.e, the
New Order and Order Line tables, a join between the tar-
get table(s) and the OOrder table is necessary to obtain
the set of order ids (O ID) that the current user can ac-
cess. The access rules for each role in Policy 1 are sum-
marized in Table 3. We assigned each transaction type in
TPC-C to one of the roles. Customers execute the new
order, order status, and payment transactions, while man-
agers execute the delivery and stock-level transactions.

Our second policy, Policy 2, tests the sensitivity of
the performance results of SafeD and Postgres’s row-
level access control by adding restrictions to Policy 1.
We modified the manager policy for the OOrder and
New Order tables as follows. First, a manager can read
or modify tuples in the OOrder table only when the
O C ID ≥ 0. Second, a manager can only read and

1454 26th USENIX Security Symposium USENIX Association

Table Name Customer Manager

Customer(C ID, C D ID, C W ID) =(CID,DID,WID) Full Access
District(D ID, D W ID) =(DID,WID) =(DID,WID)
Warehouse(W ID) =(WID) Full Access
OOrder(O C ID, O D ID, O W ID) =(CID,DID,WID) =(DID,WID)
New Order(NO O ID) Full Access Full Access
Order Line(OL O ID) Full Access Full Access
History(H C ID, H D ID, H W ID) =(CID,DID,WID) Full Access
Item Full Access Full Access
Stock No Access Full Access

Table 3: Policy 1 access rules for users. The user context
is compared to the attributes in the table to determine if
the user can read/write a tuple. Here, the read and write
permissions are identical.

modify tuples in the New Order table that correspond to
authorized tuples in the OOrder table. Note that Pol-
icy 2 is still semantically equivalent to Policy 1 for the
benchmark application since O C ID≥ 0 is always true.
However, the purpose of these constraints is to intro-
duce artificial join constraints in the manager policy, and
thereby assess their impact on SafeD’s performance. Ta-
ble 4 summarizes the change and shows how it alters the
database account’s privileges.

Table Name Manager

OOrder(O C ID) O C ID≥ 0
New Order(NO O ID) Contain (OID) in OOrder

Table 4: Changes to Policy 1 to get Policy 2 and the new
privileges for a database account. The changes result
from modifications made to the manager role.

8.1 Performance Overhead of MySQL +
SafeD

Since MySQL does not natively support row-based ac-
cess control, we evaluated the overhead of adding ac-
cess control to it using SafeD. Figure 3 shows the latency
overhead on MySQL when SafeD verifies and enforces
Policy 1 for varying transaction rates. The results show
that SafeD can enforce a fine-grained security policy at a
negligible cost to latency compared to having no protec-
tion (6.1% for No-Copy and 5.9% for No-Copy strategy).

8.2 Postgres + SafeD versus Postgres’s
Built-in Access Control

Unlike MySQL, some databases such as Postgres come
with their own built-in row-level access control. The
main advantage of SafeD over such built-in mechanisms
is its compatibility with the common architecture of ex-
isting web applications (See Section 1). Nonetheless, we
also wanted to compare the performance of the two ap-
proaches. We thus compared the costs of enforcing Poli-
cies 1 and 2 in Postgres using its internal access control
versus using SafeD.

For Policy 1, to allow for reusing the same connec-

Figure 3: The performance overhead of different access
control strategies compared to no access control (NULL)
for TPC-C and Policy 1 on MySQL.

tions, we created a single role in Postgres for the bench-
mark application, and granted it the union of the priv-
ileges of all users so that the application can execute
transactions on behalf of both customers or managers.
The results are shown in Figure 4a, where NULL rep-
resents the baseline at which no access control was en-
forced. All three access control strategies (built-in, V-
Copy, and No-Copy) had a maximum throughput of 350
to 400 transactions per second. Overall, the average la-
tencies of all three strategies were also comparable (i.e.,
within 5% of one another). However, note that these re-
sults represent best-case scenarios for Postgres’s built-in
mechanism, since the benchmark application had full ac-
cess to every table.

We conducted a second set of experiments using Pol-
icy 2 in order to artificially force both strategies (SafeD
and built-in) to perform joins during their access control
checks.

The results are shown in Figure 4b. In Policy 2, the
write set for the New Order table was defined as a join
between the New Order and OOrder tables. This consid-
erably lowered the performance of V-Copy, due to its cre-
ation of temporary tables and copying of the write sets.
Since V-Copy resulted in database thrashing and was un-
able to sustain any transaction rates, it is omitted from
Figure 4b. The Postgres’s throughput also dropped sig-
nificantly with its built-in access control, down to only 9
tps (transactions per second). The throughput with No-
Copy remained an order of magnitude higher, namely 85
tps. As reported in Table 5, even at 9 tps, Postgres’s built-
in mechanism is 387 times slower than SafeD when pro-
cessing delivery transactions. The delivery transaction
executes a large number of SELECT and UPDATE queries
on the New Order table. These results indicate that when
a user’s write set contains joins, SafeD using No-Copy
significantly outperforms Postgres’s built-in access con-
trol.

While SafeD outperforms the built-in access control,
the performance of both strategies could be improved. In
particular, we identified two sources of overhead when

USENIX Association 26th USENIX Security Symposium 1455

(a) Postgres: Policy 1 (b) Postgres: Policy 2

Figure 4: The performance overhead of different access control strategies compared to no access control (NULL),
using TPC-C on Postgres for Policy 1 (a) and Policy 2 (b). All numbers are average latencies.

Transaction Null(s) Built-in(s) No-Copy(s) Speedup

Delivery 0.05247 41.03159 0.10597 x387

Table 5: Transaction latency at 9 tps. Speedup is SafeD’s
performance compared to the built-in access control.

Figure 5: Average latency in SafeD for varying ratio of
unsafe queries in the workload, at 100 tps.

enforcing Policy 2: (1) when the write set contains a join,
a join query is issued to the database to create a copy of
the write set; and (2) when the transformed query intro-
duces a join or a nested sub-query. Thus, to reduce the
performance overhead, we repeated the experiment with
a denormalized database, i.e, we added a new column,
NO C ID, to the New Order table. As shown in Figure
4b, while the performance of both strategies improved
significantly, SafeD remained the superior strategy.

8.3 Impact of Unsafe Queries on Perfor-
mance

Unsafe queries are those that attempt to view or modify
unauthorized tuples. In previous experiments, we mea-
sured SafeD’s overhead when all queries in the work-
load were safe. To measure the impact of having unsafe
queries on SafeD’s performance, we modified the TPC-
C workload by adding additional queries that are unsafe
under Policy 1. We varied the ratio of such queries be-
tween 1% to 10% of the overall workload. The results
for this experiment are shown in Figures 5 and 6.

As the number of unsafe queries increases, V-Copy’s

Figure 6: Achievable throughput in SafeD for varying
ratio of unsafe queries in the workload.

latency greatly increases, whereas No-Copy’s latency
overhead is relatively constant. This is because V-Copy
creates temporary tables and executes additional queries
to verify write-safety. Consequently, when 3% of the
workload is unsafe, V-Copy thrashes. Figure 6 shows
a similar trend for throughput. In conclusion, when a
large number of unsafe queries are expected, No-Copy is
a superior choice in terms of performance.

8.4 Developer Effort
The primary manual effort required by developers when
using SafeD is the defining of desired security policies.
SafeD’s policies are relatively compact. For example,
Table 6 reports the number of lines of code needed to
define Policy 1 in SafeD, Oracle (which also offers row-
level access control), and Postgres. For SafeD, we count
each read or write set declaration as one line of code.
For Oracle, the count includes all of the procedural code
necessary to establish the user context and enforce the
read and write policies. For Postgres, we count each pol-
icy declaration and each ALTER TABLE command as one
line. We also count the lines of code required to create
an administrator role and a default role with no access.

We observe that Oracle requires the most lines of
code, while Postgres and SafeD both require consider-
ably fewer lines. Furthermore, Oracle requires the de-
veloper to understand how to define policy functions,
policies, and system context triggers. Postgres requires

1456 26th USENIX Security Symposium USENIX Association

Access Control Mechanism LOC

SafeD 36
Postgres’s Built-in Access Control 54
Oracle’s Built-in Access Control (a.k.a. VPD) 544

Table 6: Lines of code required to define a policy using
three different syntaxes.

developers to work with DBAs to define policies and
manage end-user roles. SafeD requires an understanding
of SELECT statements to define policies. Thus, overall,
defining security policies in SafeD seems to be relatively
straightforward.

SafeD also simplifies developer effort when ensuring
the application issues safe queries. To enforce a desired
access control policy, developers add multiple security-
oriented checks within the code to protect the database.
For example, in WordPress 4.6.1, we identified about 515
lines of security-oriented checks in the code base. Each
check is required to ensure no sensitive data is leaked,
but there may be more checks necessary to fully protect
the database [8], especially if the application’s code is
updated. SafeD reduces the effort required to protect the
database because the security policies are declared ex-
plicitly within SafeD, thus they exist separately from the
application and persist despite changes made to the ap-
plication’s code.

9 Conclusion
Database-backed application developers often imple-
ment their access control policies procedurally in code
because the access control mechnisms of database sys-
tems are not adequate for enforcing access control for
multi-user applications. Implementing access control
procedurally in applicaton logic is both cumbersome and
error-prone. Previous work has examined access con-
trol solutions for such situations, often using database
views as the main mechanism for enforcing per-user ac-
cess control. However, due to the view update problem,
database views are not updatable when the view defini-
tion involves a join query. As our survey of 10 popular
open-source web applications showed, on average, 21%
of the tables require a join query to define a security pol-
icy. Therefore, previous work cannot enforce access con-
trol rules on write queries.

We proposed a new technique, phantom extraction
that, given a write query, extracts a similar write query
(known as the query’s phantom), which only modifies
permitted tuples in the database. Phantom extraction
does not use database views, thus avoiding the view up-
date problem. The correctness of the technique is estab-
lished by a formal notion of query safety. We incorpo-
rated this technique into a system, SafeD, and provided

a simple syntax for defining per-user (or per-role) access
control policies declaratively. We also provide two possi-
ble design strategies, V-Copy and No-Copy, for perform-
ing query extraction.

References
[1] Cyclos: Online & mobile banking software. http:

//www.cyclos.org/.

[2] Drupal. https://www.drupal.org/.

[3] Limesurvey. https://www.limesurvey.org/.

[4] Mediawiki. https://www.mediawiki.org/

wiki/MediaWiki.

[5] Mybb. https://mybb.com/.

[6] MySQL customers. https://www.mysql.com/

customers/.

[7] oscommerce. https://www.oscommerce.com/.

[8] Sql injection vulnerability in ninja forms. http:

//tinyurl.com/z277h9f.

[9] Webid. http://www.webidsupport.com/.

[10] Wordpress. https://wordpress.com/.

[11] Zen cart. https://www.zen-cart.com/.

[12] Coverity scan open source report 2014. Technical
report, 2014.

[13] Oracle database online documentation 12.1. http:
//tinyurl.com/jjgzavq, 2014.

[14] Snapchat - gibsec full disclosure. http://

tinyurl.com/h6yk3za, 2014.

[15] Bug in Uber app leaks driver information. http:

//tinyurl.com/gtj5t54, 2015.

[16] Elements of row level security. http://tinyurl.
com/jctpcll, 2015.

[17] PostgreSQL powers all new apps for 77% of
the database’s users. http://tinyurl.com/

zlhnfuf, 2015.

[18] Row and column access control (rcac) overview.
http://tinyurl.com/zavtmtx, 2015.

[19] Creating MySQL database and user. http://

tinyurl.com/huv7uh7, 2016.

[20] Execute as (transact-sql). http://tinyurl.com/
jjkd2fjFDB, 2016.

[21] Manual:security. http://tinyurl.com/

qhylfza, 2016.

USENIX Association 26th USENIX Security Symposium 1457

[22] MySQL internals manual. http://tinyurl.

com/j8sou7y, 2016.

[23] PostgreSQL 9.5.0 documentation. http://

tinyurl.com/hnjf7u6, 2016.

[24] Row-level security. http://tinyurl.com/

jq7q2p2, 2016.

[25] Symantec patches high risk vulnerabilities in
endpoint protection. http://tinyurl.com/

zlgpfsg, 2016.

[26] R. Abela. Infographic: Statistics about the security
scans of 396 open source web applications. http:
//tinyurl.com/zur7yfj, 2016.

[27] F. Bancilhon and N. Spyratos. Update semantics of
relational views. ACM Trans. Database Syst., 1981.

[28] D. Bisson. The talktalk breach: Timeline of a hack.
http://tinyurl.com/jpp9epx, 2015.

[29] K. Browder and M. A. Davidson. The Virtual Pri-
vate Database in Oracle9iR2. Oracle Corporation,
2002.

[30] S. Buckley. Swiftkey leaked user email ad-
dresses as text predictions. http://tinyurl.

com/zj5wv37, 2016.

[31] cguler. Can I switch the ’connected’ user within
an sql script that is sourced by mysql? http://

tinyurl.com/gv3rhwd, 2011.

[32] S. Chaudhuri, T. Dutta, and S. Sudarshan. Fine-
grained authorization through predicated grants. In
ICDE, 2007.

[33] I.-Y. Chen and C.-C. Huang. A service-oriented
agent architecture to support telecardiology ser-
vices on demand. Journal of Medical and Biologi-
cal Engineering, 2005.

[34] C. Cimpanu. Teamp0ison hacks time warner cable
business website, dumps customer data. http://

tinyurl.com/zxvwjmj, 2016.

[35] A. Coyne. Hacker convicted for infiltrating coun-
try liberals’ website. http://tinyurl.com/

znfsnt3, 2016.

[36] M. Dalton, C. Kozyrakis, and N. Zeldovich. Neme-
sis: Preventing authentication & access control vul-
nerabilities in web applications. In USENIX, 2009.

[37] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-
Mauroux. Oltp-bench: An extensible testbed for
benchmarking relational databases. In PVLDB,
2013.

[38] D. Drinkwater. Up to 100k archos customers
compromised by sql injection attack. http://

tinyurl.com/jpv6mhj, 2015.

[39] A. P. Felt, M. Finifter, J. Weinberger, and D. Wag-
ner. Diesel: Applying privilege separation to
database access. In ICCS, 2011.

[40] E. Kohler. hotcrp. https://hotcrp.com/.

[41] A. Levai. Using queryband. http://tinyurl.

com/hu2l6cj, 2014.

[42] J. Murdock. Qatar national bank leak: Security
experts hint ’sql injection’ used in database hack.
http://tinyurl.com/h7ew4zf, 2016.

[43] B. Parno, J. M. McCune, D. Wendlandt, D. G. An-
dersen, and A. Perrig. Clamp: Practical prevention
of large-scale data leaks. In S & P, 2009.

[44] I. Raafat. Vulnerability in Yahoo allowed me
to delete more than 1 million and half records
from Yahoo database. http://tinyurl.com/

hb4jvn2, 2014.

[45] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy.
Extending query rewriting techniques for fine-
grained access control. In SIGMOD, 2004.

[46] M. Stonebraker and E. Wong. Access control in a
relational data base management system by query
modification. In ACM Annual Conference, 1974.

[47] N. Teodoro and C. Serrao. Web application se-
curity: Improving critical web-based applications
quality through in-depth security analysis. In i-
Society, 2011.

[48] S. Visveswaran. Dive into connection pooling with
j2ee. http://tinyurl.com/hpfl9b9, 2000.

A Proof of Theorem 1
To prove Theorem 1, we first prove the following lem-
mas.

Lemma 1. Distributive Laws for Tables and their Read-
/Write Sets

The read and write set, V ∈ {Vr,Vw}, are distributive
with respect to the basic set operations. That is, for any
tables or other subsets A,B⊆S ,

V (A∪B,u) =V (A,u)∪V (B,u)

V (A∩B,u) =V (A,u)∩V (B,u)

V (A\B,u) =V (A,u)\V (B,u)

1458 26th USENIX Security Symposium USENIX Association

Proof. These follow trivially from laws for set opera-
tions since V (A,u) = A∩ p(u), where p is pr or pw de-
pending on V being Vr or Vw. We omit the details. For
example, V (A∪B,u) = A∪B∪ p(u) = (A∪ p(u))∪ (B∪
p(u)) =V (A,u)∪V (B,u).

Also, these results apply for NV ∈ {NVr,NVw}, since
NV (A,u)=A\ pu(u)=A∪ pc(u), where pc(u)= S\ p(u)
and S represents the tuple space for the database.

Lemma 2. Given a policy pw, a user u ∈U, a write set
Vw, a table update operation W , and any table T ⊆S ,
the following conditions are equivalent:

(1) NVw(A,u) = NVw(D,u) =∅,

(2) NVw(T,u) = NVw(W (T),u)

where A and D are the set of tuples added and removed
from T.

Proof. Suppose that condition (1) holds. Then we find
that

NVw(W (T),u) = NVw((T ∪A)\D,u) def of W

= (NVw(T,u)∪NVw(A,u))\ NVw(D,u) Lemma 1
= NVw(T,u) by condition (1)

Conversely, suppose that condition (2) holds. Then

NVw(A,u) = NVw(W (T)\T,u) def of A

= NVw(W (T),u)\NVw(T,u) Lemma 1
= NVw(T,u)\NVw(T,u) condition (2)
=∅

The same approach also reveals that NVw(D,u) =∅.

Theorem 1. (Same statement as in Section 5)

Proof. Part 1 — First, we show that the two conditions
imply

NVw(T,u) = NVw(W (T),u)

. We can partition the sets A and D into the disjoint por-
tions consisting of those entries accessible to user u, and
those that are not, giving

〈W (T)〉= |Vw(A,u)∪NVw(A,u)|+|Vw(D,u)∪NVw(D,u)|.

From their definitions, these are each clearly disjoint so
that they may be separated into

〈W (T)〉= |Vw(A,u)|+|NVw(A,u)|+|Vw(D,u)|+|NVw(D,u)|.

If we define Av = W (Vw(T,u)) \Vw(T,u) and Dv =
Vw(T,u) \ W (Vw(T,u)), then from the definition of
〈W (T)〉, we have

〈W (Vw(T,u))〉= |Av|+ |Dv|

However, we also see that from making use of condition
(1) we have

Vw(A,u) =Vw(W (T)\T,u) def of A

=Vw(W (T))\Vw(T,u) Lemma 1
= W (Vw(T,u))\Vw(T,u) condition (1)
= Av def of Av.

Likewise, the same procedure reveals that Vw(D,u) =Dv.
Applying these two results, along with condition (2),

we find that

|Av|+ |Dv|= 〈W (Vw(T,u))〉
= 〈W (T)〉
= |Vw(A,u)|+ |NVw(A,u)|+
|Vw(D,u)|+ |NVw(D,u)|

= |Av|+ |NVw(A,u)|+ |Dv|+ |NVw(D,u)|

Removing |Av| and |Dv| from both sides, we are left with

|NVw(A,u)|+ |NVw(D,u)|= 0.

But clearly, since both values are non-negative, this
means that we must have

NVw(A,u) = NVw(D,u) =∅

Hence by Lemma 2, we also have

NVw(T,u) = NVw(W (T),u).

We have shown that conditions (1) and (2) imply this
condition.

Part 2 — Now we will show that NVw(T,u) =
NVw(W (T),u), implies both condition (1) and condition
(2). Suppose that for an arbitrary update operation f,

NVw(T,u) = NVw(W (T),u)

is true. We partition the set A into its disjoint portions
consisting of the entries accessible to user u and those
that are not, giving

A =Vw(A,u)∪NVw(A,u)

=Vw(A,u)∪∅ by Lemma 2
=Vw(A,u)

USENIX Association 26th USENIX Security Symposium 1459

The same procedure shows that Vw(D,u)=D. With these
results, we find that

Vw(W (T),u) =Vw((T ∪A)\D,u) def of W (T)

= (Vw(T,u)∪Vw(A,u))

\Vw(D,u) Lemma 1
= (Vw(T,u)∪A)\Vw(D,u) Vw(A,u) = A

= (Vw(T,u)∪A)\D Vw(D,u) = D

= W (Vw(T,u)) def of W (Vw(T,u))

This shows that condition (1) is true. For condition (2),
We again partition the sets A and D into the disjoint por-
tions consisting of those entries accessible to user u, and
those that are not, giving

〈W (T)〉= |Vw(A,u)|+|NVw(A,u)|+|Vw(D,u)|+|NVw(D,u)|.

Using Lemma 2, this simplifies to |Vw(A,u)| +
|Vw(D,u)|. Focusing on Vw(A,u), we find

Vw(A,u) =Vw(W (T)\T,u) def of A

=Vw(W (T),u)\Vw(T,u) Lemma 1
= W (Vw(T,u))\Vw(T,u) condition (1)

With a similar procedure, we can show that Vw(D,u) =
Vw(T,u)\W (Vw(T,u)). If we define Av =W (Vw(T,u))\
Vw(T,u) and Dv =Vw(T,u)\W (Vw(T,u)), then from the
definition of 〈W (T)〉, we have

〈W (Vw(T,u))〉= |Av|+ |Dv|

With this, we find

〈W ,T 〉= |Vw(A,u)|+ |Vw(D,u)|
= |W (Vw(T,u))\Vw(T,u)|+ |Vw(T,u)\W (Vw(T,u))|
= |Av|+ |Dv|
= 〈W (Vw(T,u))〉

Since conditions (1) and (2) imply NVw(T,u) =
NVw(W (T),u) and vice versa, the conditions are neces-
sary and sufficient.

1460 26th USENIX Security Symposium USENIX Association

B Query Transformation Examples
To better understand the transformation described in Sec-
tion 6, we describe the steps of the No-Copy Strategy,
which is comprised of Algorithms 1 and 3, using three
example queries. In these examples, we use the osCom-
merce database schema and focus on queries that read or
modify the reviews table. In osCommerce, a customer
can read a reviews for any product but can only write re-
views for products that the customer has purchased. Af-
ter writing a review, the customer can also edit it. These
policies can be expressed in SafeD as the read and write
sets shown in Listings 4 and 5.

DEFINE READSET FOR ROLE customer USER $i

ON TABLE reviews

AS SELECT * FROM reviews

Listing 4: Customer’s read set for the reviews table.

DEFINE WRITESET FOR

ROLE customer USER $i

ON TABLE reviews

AS SELECT R.* FROM reviews

R,

orders_products OP,orders O

WHERE

O.customers_id=current_id

AND

O.orders_id=OP.orders_id

AND

OP.products_id=R.

products_id AND

R.customers_id=current_id

Listing 5: Customer’s write set for the reviews table.

B.1 Select Query Example
Suppose a customer with current id=2 manages to (e.g.,
by exploiting a bug in the application) cause the web ap-
plication to issue the following query:

SELECT * FROM reviews

WHERE products_id IN (

SELECT products_id

FROM orders_products OP , orders

O

WHERE O.customers_id = 1 AND

O.orders_id=OP.orders_id)

Listing 6: Original SELECT query issued by the
application

First, SafeD must obtain the current customer’s read
policy and intersect it with the customer’s query. The
only tables appearing in this query are reviews, orders,
and orders products. Hence, SafeD only needs to obtain

the read sets of these three tables (Alg. 1 line 2). The read
set for orders, and orders products are given in Listing 7
and Listing 8. For orders, a customer is only permitted to
view their own order information. For orders products,
a customer is only permitted to view order product infor-
mation for their own orders.

DEFINE READSET FOR ROLE customer USER $i

ON TABLE orders

AS SELECT * FROM orders O

WHERE O.customers_id=

current_id

Listing 7: Customer’s read set for the orders table.

DEFINE READSET FOR ROLE customer USER $i

ON TABLE orders_products

AS SELECT OP.*

FROM orders_products OP,

orders O

WHERE O.customers_id=

current_id

AND O.orders_id=OP.

orders_id

Listing 8: Customer’s write set for the orders products
table.

Since the query in Listing 6 is a nested query, SafeD
performs read set intersections recursively, starting with
the deepest sub-query (Alg. 1 line 3). As stated in Sec-
tion 5.2, SafeD appends additional tables and conditions
in accordance with the read set definition, thus trans-
forming each SELECT query into a read-safe one. The
original query is thus transformed into the following
read-safe query and then executed (using Alg. 1 lines 4-
5):

SELECT * FROM reviews

WHERE products_id IN (

SELECT products_id

FROM orders_products OP , orders

O

WHERE (O.customers_id = 1 AND

O.orders_id=OP.orders_id) AND

O.customers_id = 2 AND

O.customers_id = 2 AND

O.orders_id=OP.orders_id);

Listing 9: write-safe SELECT query created by SafeD

Note that, in the original query, the customer at-
tempted to see reviews for products purchased by another
customer with customers id=1. Although the customer
has full read access to reviews, it is a breach of policy for
a customer to read another customer’s information in the
orders products table.

USENIX Association 26th USENIX Security Symposium 1461

B.2 Delete Query Example
Suppose a customer with current id=2 causes the appli-
cation to issue the following query:

DELETE FROM reviews

Listing 10: Original DELETE query issued by the
application

First, SafeD obtains the customer’s read policy for ta-
bles used in any SELECT’s in the query, but there are no
SELECT queries. This means, by definition, the current
query is write-safe. SafeD then identifies the table mod-
ified by the query, reviews, and obtains the customer’s
write set definition for this table (Alg. 1 lines 6-7). SafeD
passes the user context, the write-safe DELETE query, and
the write set definition to PhantomExtract (Alg. 1 line 8).

Given that the current write-safe query is a DELETE,
SafeD performs write set intersection by appending ad-
ditional conditions to the outer query’s WHERE clause
(Alg. 3 lines 3-4). This results in the following query:

DELETE FROM reviews

WHERE customers_id = 2 AND

products_id IN (

SELECT products_id

FROM orders_products OP,

orders O

WHERE O.customers_id = 2

AND

O.orders_id=OP.orders_id)

Listing 11: Transformed write-safe DELETE query
created by SafeD 2

Since the write set includes a join (see Listing 5, an ad-
ditional nested query is added to obtain a list of products
purchased by the current customer. This list represents
the set of products the customer is allowed to reviews.

Since the transformed query is a DELETE, it is deemed
safe and executed by SafeD (Alg. 3 lines 7-8). Note that
the original query (Listing 10) attempted to remove all of
the reviews in the database, but SafeD transformed it into
a safe form, i.e., a query that only deletes the reviews of
the customer with current id=2.

B.3 Insert Query Example
As a last example, suppose a customer with current id=2
causes the application to issue the following query.

INSERT INTO reviews

(reviews_id , products_id ,

customers_id , customers_name

,

reviews_rating , date_added ,

last_modified , reviews_read)

VALUES(-1, 1, 1, ’John’,

5, 1-1-2016, 1-1-2016, 50)

Listing 12: Original INSERT query issued by the
application

Similar to the DELETE query example, the original
INSERT query is read-safe by definition. SafeD identi-
fies the table modified by the query, reviews, obtains the
customer’s write set definition for that table, and passes
the user context, the write-safe INSERT query, and the
write set definition to PhantomExtract (Alg. 1 lines 6-8).

Given that the current write-safe query is an INSERT,
SafeD does not perform write set intersection (Alg. 3
lines 5-6) . Since the query is not a DELETE and the write
set contains a join, Algorithm 2 is invoked (from Alg.
3 lines 9-10). SafeD creates an empty copy of reviews,
which we will call temp (Alg. 2 lines 3-5). Then, it ex-
tracts the phantom of the INSERT query, by copying the
write-safe query and executing it on temp (Alg 2. lines 8-
9). After execution, SafeD determines if the rows added
to and removed from temp both belong to the write set
(Alg. 2 lines 10-12). Based on the query in Listing 12,
we see that the original query adds a single row with cus-
tomers id=1. Therefore, the phantom adds a single row
with customers id=1 to temp, which is not in write set,
thus the phantom is not write-safe. No modification is
made to the reviews table (Alg. 2 line 17) and temp is
dropped.

1462 26th USENIX Security Symposium USENIX Association

