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ABSTRACT Introduction of the static data mining algorithms, in 1990s, had
There has been much recent interest in on-line data mining. Exist- presented the research challenge of how to best support the large
ing mining algorithms designed for stored data are either not appli- variety of mining algorithms in an integrated manner. An obvi-
cable or not effective on data streams, where real-time response isous solution in the case of static data mining was supporting these
often needed and data characteristics change frequently. Thereforealgorithms in a DBMS. While the problem drew much interest
researchers have been focusing on designing new and improved alfrom vendors and researchers in mid-90s, effective solutions did no
gorithms for on-line mining tasks, such as classification, clustering, come quickly. Indeed performing data mining tasks using DBMS-
frequent itemsets mining, pattern matching, etc. Relatively little provided constructs and functions, proved to be exceedingly dif-
attention has been paid to designing DSMSs, which facilitate and ficult' [38]. Therefore, in their visionary paper [27], Imielinski
integrate the task of mining data streams—i.e., stream systems thaénd Mannila called for a quantum leap in the functionality and
provide Inductive functionalities analogous to those provided by usability of DBMSs, whereby mining queries can be formulated
Weka and MS OLE DB for stored data. In this paper, we propose With the same ease of use as most usual queries in a relational
the notion of an Inductive DSMS—a system that besides providing DBMS. The notion of Inductive DBMS (IDBMS) was thus born

a rich library of inter-operable functions to support the whole min- (a.k.a. the ‘high-road’ approach) [27], which inspired appresch

ing process, also supports the essentials of DSMS, including opti- such as MSQL [26], DMQL [24], and Mine Rule [33]. These ap-
mization of continuous queries, load shedding, synoptic constructs, proaches feature SQL-based mining languages to specify the data
and non-stop computing. Ease-of-use and extensibility are addi- to be mined and the kind of patterns to be derived. Although these
tional desiderata for the proposed Inductive DSMS. We first review proposals have made a number of research contributions, they suf-
the many challenges involved in realizing such a system and thenfer from two main limitations, generality and performance. For
present our approach of extending the Stream Mill DSMS toward instance, MSQL and Mine Rule only consider association rule min-
that goal. Our system features (i) a powerful query language whereing.

mining methods are expressed via aggregates for generic streams

and arbitrary windows, (i) a library of fast and light mining algo-  Therefore, instead of taking the ‘high-road’ approach to inductive
rithms, and (iii) an architecture that makes it easy to customize and DBs, commercial DBMS vendors have answered users’ demands

extend existing mining methods and introduce new ones. by less ambitious approaches that are largely based on the addition
of mining libraries to their DBMSs. For example, DB2 Intelligent
1. INTRODUCTION Miner [4], Oracle Data Miner [5], and OLE DB for DM [42]. Also

these libraries are often enhanced with graphical interfaces. How-
ever, all vendor proposed approaches are closed, i.e. provide little
in terms of flexibility, extensibility, and integration with SQL. This
lack of openness represents a significant weakness with respect to

Data mining has received much attention in database community
over the last decade [17, 18, 42, 4, 23]. Similarly, research on data
streams has also received considerable interest [8, 30, 7, 20, 41, 6
19]. On-line data stream mining represents the confluence of these . e .
twn]) research areas and has rgcerﬁ)tly received much attention [12§pQC|aI|zcd data mining s_ystemc, such as Weka [14], which have
18, 13, 43, 16, 23]. gained wlde acceptance in the flclq. Weka is an open source tool

for machine learning and data mining, implemented in Java. The

This interest is largely due to the growing set of streaming appli- """ advantages of Weka are as follows:

cations where mining plays a critical role; these include network e All algorithms follow standard Java API for extensibility,

traffic monitoring, web click-stream analySiS, hlghWay traffic con- o A Comprehensive set of data pre_processing (f||ter|ng) too's'
gestion analysis, market basket data mining, credit card fraud de- and
tection, etc.

e Built-inimplementation for many learning algorithms for clas-
sification, clustering, and frequent itemsets mining.
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On-line data stream mining raises many new problems that were enough to satisfy the real-time response requirements. Thus, the
not encountered in static data mining. For instance, changing datasecond approach is not attractive since it requires rebuilding a com-
characteristics represent the first such problem, often known as con plete DSMS and yet, does not reduce the effort of implementing
cept shifts/drifts. Since the data is continuously arriving the data new on-line mining algorithms.
values may experience a change in the distribution, for example the
mean and the variance for a temperature reading may vary as seaTherefore, we have selected the first approach and extended the
sons change. Furthermore, the underlying concepts that generaté&tream Mill DSMS to support the rich functionality of an Induc-
the data may also change, for example in credit card fraud detec-tive DSMS. While Stream Mill provides a good platform (e.g.,
tion, the types of frauds may evolve over time. Thus, a classifier it supports a very powerful query language), the task remains a
learned over stale credit card transactions may not be accurate informidable one. To the best of our knowledge on-line data stream
predicting behavior of current transactions. Therefore, we must mining has not been attempted previously by other DSMS projects.
continuously and actively learn the data mining model over the lat- Providing a full suite of well-integrated on-line mining functions
est training data. represents only the first of these challenges. The second chal-
lenge consists in making these functiayenerici.e., independent
Another problem in on-line mining is the real-time response re- on the number and types of attributes in the incoming data streams.
quirement of data streams, which severely limits the use of complex Advanced techniques for on-line mining, such as ensemble based
mining algorithms requiring multiple passes over the data. In fact, boosting and bagging, also have to be supported generically, i.e.
these applications may sacrifice the accuracy of the mining modelsover arbitrary mining algorithms. The third problem is to sup-
in order to support the real-time constraints. Therefore, these newport the efficient computation of these mining functions on dif-
problems present two main research challenges. ferent types of windows, including continuous windows, sliding
i. Finding new algorithms that suit the requirements of the on- windows, anq tumbles. The fourt_h challenge is to ensure thz_;lt the
: system remains open and extensible, so that users can modify and

B “n? a}ppllcatlons. . . . extend it for their own application classes (a property that is lacking
ii. Building systems that efficiently support such algorithms i , m0st commercial systems).

an integrated and extensible manner.

Recent years have seen the emergence of many on-line mining al-Therefore, the main contributions of this paper are as follows:
gorithms [12, 18, 13, 43, 16, 23], however many research prablem
are still unsolved in this area, e.g. better algorithms for frequent
itemsets mining over sliding windows are still being proposed [34].

On the other hand, the second challenge of investigating systems e Efficient and robust techniques have been developed for in-
that can efficiently support a wide variety of these algorithms, has tegrating key data mining functions into a DSMS. These in-

not received much research attention. Therefore, this paper pro- clude classification and association rule mining.

poses an Inductive Data Stream Management System (IDSMS) that
precisely addresses this issue.

e To the best of our knowledge this is the first attempt to design
and implement an Inductive DSMS.

e Constructs and techniques have been proposed to support
flexible windows andjenericimplementations of the on-line
mining functions. Techniques, such as ensemble-based bag-

There are two alternatives for building such a system that supports ging and boosting, have also been developed to tackle concept-

arbitrary on-line mining algorithms over data streams. drifts and shifts [43, 13, 23]
i. E>_<tend an exigti_ng Data S'Fr_eam Management System (DSMS) 4 ap open architecture, which enables the declarative speci-
with on-line mining capability fication and integration of new mining algorithms into the
ii. Extend a cache-mining system such as Weka to handle stream IDSMS, has been developed and tested.
mining

. . . The organization of this paper is as follows. The next section dis-
The second approach advocates extending an existing static dat,sses related work in the areas of Inductive DBMSs, on-line min-
mlnlnbg package, such las V\(]e.ka, t?] support on-line dﬁtg MINING. jnq algorithms, and DSMSs. In Section 3, we take Naive Bayesian
Database users can select this cache-mining approach because thg,sgification as a sample mining task and present the extensions
DBMS essentials, such as recovery, concurrency control, and datay, 5t are required to support on-line mining in a DSMS. In Section
independence, etc. are not requisites to the execution of mining 4, we discuss the support for advanced mining methods in the ex-

functions required fc_)r data_mlmng gpphcaﬂon_s. Thus,_lt IS SIM- tanded Stream Mill system. Section 5 and Section 6 present future
ple for users to provide their own mining functions by either cod- |, 0.« and conclusion respectively.

ing them in a procedural language or by using a mining library.

However, the situation could not be more different for data streams,

where DSMS essentials such as scheduling, response time/memor. RELATED WORK

optimizations, support for synopses, Q0S, non-stop continuoueguerOn-line data stream mining has been the focus of many research
etc. are required by all applications, including on-line mining ap- efforts. For instance, [12] presents, Moment, a differential algo-
plications. Thus, users would prefer to rely on the system, for these rithm to maintain closed frequent itemsets over continuous win-
basic features, rather than having to provide them directly as part of dows, whereas [34] proposes, SWIM, an algorithm to maintain fre-
their applications. Thus, any such on-line mining system will have quentitemsets over large sliding windows. Similarly, [43] presents
to provide all stream related extensions, such as windows, slides,an ensemble based bagging technique to improve the accuracy of
load shedding, etc. Furthermore, the pull-based architecture ex-classifiers in the presence of concept-drifts and shifts. [13] and
pected by the static data mining packages will have to be changed[23], present other similar techniques to improve the accuracy of
to the push-based architecture posed by data streams. Finally, then-line classifiers. [16] extends a static clustering algorithm, namely
complex data mining algorithms supported by these static data min- DBScan, to be continuous. Thus, on-line mining algorithms repre-
ing systems might be of little use, since they are not fast and light sent a vibrant area of current research.



On the other hand, DSMSs have also been introduced to supportgenericNBC—i.e., one that will work on any given table or data
continuous applications. DSMSs provide in-built support for many stream with an arbitrary schema. Indeed, Genericity is an important
advance techniques, such as buffering, approximate query answerproperty supported in systems such as Weka or OLE DB, where
ing, sampling, load shedding, scheduling, windows, slides, etc., to algorithms can be applied on tables with arbitrary schema.
effectively manage data streams. STREAM is one such DSMS that

uses an SQL-like language and focuses on techniques for windowThe first step toward achieving this genericity in a DSMS, is ta-
management [7]. Instead of extending SQL, the Aurora/Borealis ble verticalization Thus our training set is verticalized into col-
project defines query plans via an attractive ‘boxes and arrows’ umn/value pairs whereby the first two tuples in Table 1 are now
based graphical interface [19]. The TelegraphCQ [20] project pro represented by the eight tuples shown in Table 2.

poses an SQL-like language with extended window constructs, in-
cluding a low-level C/C++-like for-loop, aiming at supporting more

general windows such as backward windows. This paper focuses R'lD CO';m” \S/a'“e ,D\lec
on extending the Stream Mill system, which supports the Expres- 1 5 ot | Ne
sive Stream Language (ESL). ESL's expressive power is superior 1 3 High | No
to other data stream query languages, both theoretically [30] and 1 4 Weak | No
practically [9]. 2 1 Sunny | Yes
2 2 Hot Yes
As discussed in Section 1, Inductive DBMSs have also been the fo- g i Sngh $e5
cus on many research projects. Furthermore, DBMS vendors have trong | Yes
also added mining libraries to their respective DBMSs to provide
integrated support [4, 5, 42].
At the convergence of these three research areas, namely DSMSs, Table 2: Verticalized PlayTennis relation

IDBMSs, and on-line mining algorithms, is the research on systems

that support on-line mining algorithms (i.e. Inductive DSMSs), Furthermore, we can convert each attribute to a real value, much

which has not been the focus of any research projects. Therefore,in the same way as Weka, so that the vertical tuples can be passed

this paper proposes an IDSMS that generically supports data strearto a UDA. Conversion of attributes with type date, int, and real to

mining algorithms and allows adding new algorithms declaratively. real is trivial. For attributes of type string, nominal, and relational
each possible value is assigned an index, which is stored as a real.

3. DATA STREAM SYSTEMS AND MINING Therefore, Weka creates a generic type (real) array for each input
Our approach consists in building an IDSMS by integrating effi- _tuple. In the case of Strea_m Mill we crea_\te_ a S|m|la_1r array, but
cient stream mining algorithms into the Stream Mill DSMS. To mst(_aad store it asa t_al_:)le, since Stream Millis a relational system.
achieve such an integration, however a number of language and':Or instance, verticalizing a tuple such as

system extensions need to be added to Stream Mill. We will next DataTuple(aINT, b REAL, cINT, d TIMESTAMP)

discuss these extensions using Naive Bayesian Classifier(NBC) as he followi |
an example, since (i) it represents a very important classifier fre- we get the following tuples.

qguently used in applications [40], and (ii) unlike other data min- VerticalTuple(Column INT, Value REAL, TotColumns INT)
ing algorithms, it is simple enough to be expressible in standard VerticalTuple(1, a, 4)
SQL [44] and thus provides an excellent vehicle for explanation. VerticalTuple(2, b, 4)

VerticalTuple(3, c, 4)

. . VerticalTuple(4, d, 4
Take for instance the Play-Tennis example of Table 1, where we erticalTuple( )

want to predict thePlay attribute (‘Yes’ or ‘No’) given a training This simple example tuple contains 4 attributes, two integers, one
set consisting of tuples similar to the ones shown in Table 1. real, and one timestamp. The resulting vertical tuples always have
three attributes, first attribute is an integer, namely column number,
which is self-explanatory. Second attribute is a real and acts like an

RID [ Outlook [ Temp [ Humidity [ Wind | Play entry in Weka real array. The third and final attribute is the num-
% 23223’ :gt ::gﬂ ;Ntr%ik YNeOS ber of columns in the dataset (mainly required for book-keeping).
y 19 9 While this verticalization can be easily achieved in Stream Mill us-
3 Overcast| Hot High Weak | Yes . - . .
. ing user defined table functioAsfor user convenience we extend

Stream Mill with a built-in function callederticalize, which takes
) . an arbitrary number of arguments and verticalizes them based on a
Table 1: The relation PlayTennis given configuration table.

Building a Naive Bayesian classifier from a table like this (contain-
ing the training tuples) only requires (i) the count of the number Thus, from this vertical representation, the descriptive part of the
of tuples, (i) the number of tuples belonging to each class, and NBC is implemented by simply counting the occurrences of Yes
(iii) for each (column, value) pair the number of tuples belonging and No with a statement such as follows:
to each class. Using the statistics so collected in this descriptive
phase, we can now perform the predictive task of deciding whether SELECT ts.Column, ts.Value, t.Dec, count(t.Dec) as Cnt
"Yes’ or 'No’ is more probable for a new incoming tuple where all FROM traningset AS t,
the attribute values, but the classification, are known. TABLE(verticalize(Outlook, Temp, Humidity, Wind)) AS ts

= o ) » ) 2User defined functions represent a very useful SQL:2003 con-
Genericity. While implementing such a classifier on a table with  struct now supported by most DSMSs, which are similar to DB2
a given schema is simple in our IDSMS, we want to implement a table functions [2, 1]




GROUP BY ts.Col, ts.Value, t.Dec and outputs théec value with the highest probability (INSERT
INTO RETURN statement). This procedure is repeated for each
testing tuple. Both thémptable and theredtable are emptied af-
ter the computation is completed, i.e. at the end of the ITERATE
statement for the last vertical tuple. This UDA is invoked in the
same way as built-in aggregates are in SQL, as shown below.

This query (with small modifications) results in the following de-
scriptor table, where the last attribute, normCnt, is the normalized
count (normalized with respect to the number of tuples with the
same Dec value).

DescriptorThbl(Col: int, Value: int, Dec: int, normCnt: rea I) SELECT classify(ts.Column, ts.Value, ts.TotColumns)

L . . L FROM testingstream as t,
Then, the predictive part of the Naive Bayesian classifier is imple- TABLE(velgticaIize(Outlook Temp, Humidity, Wind)) AS ts

mented using the results of the following query: While the solution proposed above effectively solves the generic-
ity issue, it is prone to performance overhead. Since the ITERATE

SELECT L.RID, d.Dec, sum(abs(log(normCnt))) statement of the UDA will now be invoked for each vertical tuple;

FROM DescriptorThl AS d, testingsetAS t,

TABLE (verticalize(Outlook, Temp, Humidity, Wind)) AS ts if a tuple contains a lot of attributes, this overhead can be signifi-
WHERE d.Val=ts.Value AND d.Col=ts.Column cant (based on our experience with real-world datasets). Therefore
GROUP BY t.RID, d.Dec we extend Stream Mill with a special solution for aggregates that

are written in external programing language. This second solution
For each tuple, the classification with the highest value for the consists in creating temporary arrays that are only processed by
above sum will be predicted. Thus, a Naive Bayesian classifier objects outside the Stream Mill system, i.e. external functions and
can be implemented as a set of simple SQL queries. external UDAs. Thus, the Stream Mill system does not have to deal

with array types (a daunting task given that Stream Mill is a rela-
UDAs. However, the situation is a bit different when either the tional DSMS). Thus, a built-in function is provided that takes an
training set or the testing set is streaming. Let's first discuss the arbitrary number of arguments and creates an array of reals from
case where the testing set is streaming. In this case, for each incomit. This array is directly passed to an external UDA programmed
ing testing tuple, we must apply the above query and determine thein C/C++ or Java. Thus, the mining algorithm will be implemented
best classification. Stream Mil/ESL provides User Defined Ag- as an external UDA. The main advantage of this second approach
gregates(UDAs) specially for this purpose, i.e. ESL UDAs allow is that it results in an efficient implementation compared to the first
specifying arbitrary operations to be performed over each arriving approach.
tuple. In general, UDAs provide tremendous power and flexibility
as discussed in [8] ESL UDAs consist of two states, INITIALIZE The first approach suffers from verticalization overhead and has to
(executed for the first tuple of the stream) and ITERATE (executed process large number of ‘vertical’ tuples. However, the second ap-
for each sub-sequent tuple). Furthermore, ESL allows definition proach is only suitable when the algorithm is implemented as an
of tables, which are shared by the INITIALIZE and the ITERATE external UDA. Therefore, the users are likely to use the first verti-
states, i.e. these tables can store any information needed for subsegalization approach with natively defined UDAs when they are test-
quent execution of ITERATE statements. These shared tables alsdng and fine-tuning their algorithms. However, the users will switch
make UDAs highly suitable for state-based computations. Thus, to UDAs written in a lower level language, such as C, and use the
given a statistics tablDescriptorThl, the UDA of Example 1 per- second approach for verticalization, during deployment for better

forms classification for each tuple. performance. Therefore, the extended Stream Mill system allows
the user flexibility to choose between declarative (thus simpler) im-
ExAMPLE 1. Defining Classification Aggregate plementation and performance. Indeed, Stream Mill employs the
second technique to implement many built-in mining algorithms,
AGGREGATE classify(colINT, val CHAR(10), totCols INT) : INT { which can be generically applied over arbitrary data streams.

TABLE tmp(column INT, value CHAR(10));
TABLE pred(decINT, tot REAL);

INITIALIZE: ITERATE: { Windows. Coming _ba_u:k to our PIay-T_e_nnis exa_tmple, let's now
INSERT INTO tmp VALUES (col, val); suppose that the training set is also arriving continuously. In many
INSERT INTO pred SELECT d.Dec, sum(abs(log(normCnt))) on-line mining applications this represents a realistic scenario. For

FROM DescriptorTbl AS d, tmp AS t instance, consider a loan approval application in a bank, where a
WHERE col = totCols AND d.Val=t.value loan request is approved or denied based on the customer’s credit
GRSB‘F‘? gfg_';;i‘_"“m” rating, age, income, etc. While many cases can be marked eas-

INSERT INTO RETURN SELECT decFROM pred ily via a classification tool, some cases may require human experts.
WHERE col = totCols Thus, the system may use these human classified examples as train-

AND tot = (SELECT max(tot) FROM pred); ing set to learn new trends and to improve the accuracy. There-

DELETE FROM tmp WHERE col = totCols; fore, the training model will have to be relearned to adopt to these

DELETE FROM pred WHERE col = totCols; changes. In general, in a streaming environment the mining mod-

} els should be learned on the latest training dataset to cope with the

} changes in the data, a.k.a concept drifts and shifts. In general, the

mining model should be continuously relearned from the training
stream. This requires that the system maintains a mining model
that is based on N most recent training tuples (or tuples that arrived
_ o ) in past N time units). Therefore, upon arrival of a new tuple, the
of the last vertical tuple of an original tuple, it computes the prob- ,4est tuple is discarded and a new model is learned based on the
ability of each possibl®ecvalue (INSERT INTO pred statement) ot recent N tuples. Thus, ESL UDAs allow a delta maintenance
While we only discuss mining related features and advantages of Strategy, where by a tuple can be added/removed from the model.
UDAs here, [9] presents an in depth discussion of UDAs ESL allows the user to define a special EXPIRE state in the UDA,

The UDA of Example 1 buffers the vertical tuples of each original
tuple (INSERT INTO tmp statement), till it receives the last vertical
tuple of an original tuple, signified bgol = totCols Upon arrival




which is invoked for each expiring tuple. This allows the user to ESL UDAs and windows over UDAs naturally support such ad-
take any actions required for an expiring tuple. This method works vanced mining queries. However, in some cases it is difficult to
very well for Naive Bayesian classifier, as seen in Exampfe 2  determine the optimal size of the window and the number of classi-
Example 2, shows thiearn UDA, which collects the statistics re-  fiers to keep. Indeed, smaller window sizes can lead to over-fitting,
quired for the Nave Bayesian classifier, i.e. updates the Descrip- whereas larger window sizes cannot detect concept-drifts/shifts in
torTbl table upon arrival/expiration of a tuple. In other words, this a timely manner. Therefore many advanced techniques for improv-
UDA continuously learns the mining model for an NBC. Note, in ing the accuracy of classifiers, in the presence of concept-drifts and
this case the learned model is updated at the arrival/expiration of shifts, have been proposed, e.g. ensemble based bagging [43] and
each tuple. Such windows are called continuous windows, since boosting [13]. Such advanced methods are generically supported
the window moves one tuple at a time. efficiently in Stream Mill, as discussed in Section 4.

In general, ESL with UDAs can support many mining algorithms
efficiently. Furthermore, windows and slides over arbitrary UDAs
find natural applications in on-line data mining. Additionally, min-
ing algorithms implemented as UDAs can be applied over arbitrary
streams, since these algorithms can be nggaeericbased on ver-
ticalization. Finally, ESL UDAs allow the user to easily introduce
new mining algorithms and modify existing ones, since ESL UDAs
can be written declaratively, i.e. in SQL itself. Therefore, ESL with
UDAs provides an ideal platform to perform on-line data stream
mining. Next, we discuss how advanced techniques, such as en-
semble based bagging and other mining algorithms are integrated
in this framework.

EXAMPLE 2. Defining Windowed Learning Aggregate

WINDOW AGGREGATE learn(col INT, val CHAR(10),
decINT):INT {
INITIALIZE: ITERATE: {
UPDATE DescriptorTbl SET normCnt = normCnt + 1
WHERE Col = col AND Val = val AND Dec = dec;
INSERT INTO DescriptorThl VALUES (col, val, dec, 1)
WHERE SQLCODE =0;

}
EXPIRE: {
UPDATE DescriptorTbl SET normCnt = normCnt - 1
WHERE Col = oldest().colAND Val = oldest().val
AND Dec = oldest().dec;

} 4. ON-LINE MINING ALGORITHMS

Many existing on-line mining algorithms are provided as built-in
. . . algorithms in Stream Mill as we discuss next.
Such windowed UDAs are invoked in the same way as OLAP ag-

gregates are in SQL:2003, as shown below. 4.1 Classification

Classification is the task of predicting certain attribute(s) of testing
tuples based on other attributes of the tuple and a mining model
learned from the training tuples. The assumption is that both the
testing and the training tuples are generated from the same under-
ling process. Classification is also known as supervised learning,
While this represents an effective solution to continuously learn since it requires a training set. NBC represents the simplest clas-
the mining model, it may not work for some classifiers. For in- sification algorithm and was discussed in Section 3. Many other
stance, maintaining a decision tree classifier differentially, is rather classification algorithms, such as decision tree classifier, k-nearest
complex. In such cases another technique can be applied; this techneighbor classifier, etc., can be efficiently integrated in the pro-
nique consists in learning a new classifier every N number of tuples posed framework. We discuss decision tree classifiers below, since
(or every hour), maintaining M such recent classifiers, and voting they are more descriptive compared to NBCs.

among these recent classifiers to determine the class label for the

tuples. This strategy can be realized by the ESL query given below. 4.1.1 Decision Tree Classifier

Decision tree classifier represents another simple type of classi-
fiers. Generating a decision tree classifier however, is a signifi-
cantly more complicated as compared to creating a simple Naive
Bayesian classifier. The process requires close inspection of data
distribution, which may require multiple passes of the data. There-
fore, itis expensive to continuously learn a decision tree model over

In ESL such windows can be applied over arbitrary UDAs, not just an_incoming training stream. Instead _awindowed approach is more
built-in aggregates. The OVER clause defines the size of the win- Suitable, where a new mining model is learned every N number of
dow. Whereas the SLIDE clause defines interval of execution, i.e. tuPles, where N is a user defined number. Thus, in the windowed
the execution of the iterate state is bundled for SLIDE number of @PProach a new decision tree is created for every window of N tu-
tuples (or for tuples that arrive in SLIDE time, if a time range is ples using the following 3-step procedure, starting at the root node.
specified for SLIDE). When the slide size and the window size are

the same as in this case, itis called a tumble, since each subsequent 1 compute the entropy of each column (S) using a formula

window is disjoint from the previous window. More discussion of such as that of Equation 1 [3] — many other formulas can

SELECT learn(ts.Column, ts.Value, t.dec)
OVER (ROWS 1000 PRECEDING)
FROM trainingstream AS t,
TABLE(verticalize(Outlook, Temp, Humidity, Wind)) AS ts

SELECT learn(T.col, T.val, TS.dec)
OVER (ROWS 999 PRECEDING SLIDE 1000)
FROM trainingstream TS,
TABLE(verticalize(outlook, temp, humidity, wind)) AS T

different kinds of windows supported in ESL and their optimiza- also be used.

tion can be found in [9]. Thus in this example a new classifier .

is learned every 1000 tuples and a few such recent classifiers can Entropy(S) = ) _ pi * log2(pi) @)
vote to determine the class value for a testing tuple. Therefore, pard

“Note, we have omitted the normalization of counts in this example
for clarity.

wherep; is the portion of instances in the dataset that take
the:*” value of the target attribute and c is the number of
possible distinct values the attribute can attain



2. Pick the column with the least entropy (ties broken randomly). as shown in [43, 13, 23]. It is imperative that such techniques are
For each distinct value of the chosen column, create a new supported in an on-line mining system to achieve higher accuracy
node and an edge connecting the current node to the newin on-line mining. Stream Mill system generically supports both of
node. these extensions as discussed next.

3. Recursively invoke this procedure on all new nodes.

o ) . ... Ensemble Based Weighted Baggingfhe ensemble based weighted
Note thgt the entropy computed. in distinct recursive c.alls is d!f- bagging approach was proposed in [43]. The approach is applica-
ferent, since the tuples that qualify at each node are different, i.e. iy the setting described earlier, i.e. when there are two parallel

while computing entropy, only tuples that maich partial assign- gyeams; a training stream and a testing stream and both of these
ments of ascendant nodes are considered. Also note that the abov treams are generated by the same underlying concepts. The ap-

algorithm terminates, i) if all ‘qualifying’ tuples at the node are of .5 ch givides incoming training data stream into blocks of data
the same class or ii) if all columns are already assigned values. In ¢|jeq tymbling windows) and learns a new classifier for each win-
this case, the algorithm makes a probabilistic decision based on theyq,, | earning can be performed using any arbitrary classifier, such
qualifying’ tuples. A decision tree generated in this manner can be 4 NBC or decision tree classifier (called the base classifier). Thus,
stored in tables such as the following. These tables store traversal, o have an ensemble of learned classifiers. one for each recent
edges and leaf nodes, respectively. training window. The approach uses the latest training window to
TABLE traverse(src_nodelNT, column INT, o!e_termlne_ the accuracy of existing cIagsn_ﬁers on t_h_e c_urrent!y ar-
value CHAR(10), dest_nodeNT) riving testing data. Thus, each pre-existing classifier is assigned
TABLE accept_node(nodéNT, classValueINT) a weight proportional to its accuracy on the most recent training
window. The newly arriving testing tuples are first classified using
The evaluation of such a decision tree also presents an interestingeach of the classifiers from the ensemble. Then, a weighted vot-
problem, since it is a graph traversal problem. This traversal is ing scheme is employed to determine the final classification of the
performed via a recursive UDA that that starts at the root node and tuple. Figure 1 shows this process in detail.
traverses the tree based on the testing tuple values. Eventually, &

leaf node is reached, which stores the classification (accept_nodg| Tamnestrean Cassification Ensemble Update Enserable
table above). This indeed is a very elegant solution as shown in | > Task >_’ Decisions Weights
[21].

. . . Classifier Next Ensemble i
Note that the approach presented above is a constrained version 0] classiﬁﬁmmmcs ;
the decision tree classifier. The decision tree presented above only i
handles equality-splits, i.e. less than and greater than based splite| t.4ingsteeen ,—— ¥ 77777 )
are not handled. However, in general a more flexible approach is ngﬁﬁzmmm
required, which can be achieved as follows. First modify the tra-

verse table as follows, where the comparison attribute describes th
operator (=<, >, <, >) that needs to be satisfied in order to follow

the edge. Figure 1: Generalized Weighted Bagging
TABLE traverse(src_nodelNT, column INT, As shown in Figure 1, the training stream is fed to a UDA, named
value CHAR(10), dest_noddNT, comparisonINT) ‘Classifier Building’, which learns the next classifier to be stored

) ] ) with other classifiers. The training stream is also sent to a ‘Classifi-
Furthermore, the entropy calculation needs to consider this new cation’ UDA that predicts the classification of each tuple using each
paradigm. The reader is referred to [29], which discusses how to ¢|assifier in the ensemble. These predictions are then used to assign

calculate entropy for continuous variables. Finally, the recursive weights (based on accuracy) to the ensemble classifiers for the next

account for this change. Task’ UDA that predicts classification for each tuple based on each
] ] classifier in the ensemble. These predictions are then combined us-
4.1.2 Concept-Drifts and Shifts ing weighted voting. Figure 1 also provides insights into how this

One of the core issues in on-line data mining is considered to be ensemble based classification can be generalized for different clas-
the change in the underlying data due to gradual or sudden concepsification algorithms. The general flow of data tuples, both train-
changes of the external environment [15]. As discussed before, ing and testing, does not depend on the particular classification al-
there are two types of changes that need to be considered, changgorithm. In fact, only the boxes labeled ‘classifier building’ and

in the data distribution and change in the underlying concepts that ‘classification task’ are dependent on the particular classifier used.
generate the data. In general, these changing data characteristic¥hus, any classification algorithm that provides implementation for
prohibit the use of existing static data mining algorithms. A simple these two ‘boxes’ can be used as a base classifier for the weighted
solution, which is used in many current approaches, is to decay thebagging approach. Of course, the ‘boxes’ should follow the API
weight of data tuples as they get old. As tuples get old their weight expected by the adjoining boxes. In Stream Mill, the boxes simply
approaches 0 and they are discarded. However this simple approachepresent UDAs implemented in ESL or an external programming
creates the following dilemma, if the weight decay rate is low, old language. In general, built-in and arbitrary user defined classifi-
concepts are present during classification, thus the accuracy is re-cation algorithms can take advantage of weighted bagging without
duced. If the decay rate is high, the classifier over-fits the latest sethaving to reimplement the technique. Thus, Stream Mill supports
of training tuples. The problem has been studied in detail by [43, generic implementation of ensemble based weighted bagging.

13, 23] and ensemble based bagging and boosting are proposed to

improve the accuracy of classifiers over data streams. These techAdaptive Boosting: Boosting in context of data stream classifi-
niques effectively and efficiently cope with concept-shifts and drifts cation was introduced in [13]. The assumption of two parallel



streams, one for training and one for testing, is also applicable here.called SWIM [34], that provides better performance than state-of-
As before the training stream is partitioned into tumbling windows the-art algorithms [11, 31, 12] by optimizing incremental compu-
and an ensemble of classifiers are generated. However, instead ofation over sliding windows. SWIM has been implemented as a
assigning weights to the classifiers, a tuple boosting mechanism isbuilt-in UDA in our system, in ways that fully preserve the abil-
used. A training tuple is first classified using the ensemble of clas- ity of the end-user to specialize (and optimize) its application by
sifiers. These classifications are combined using a simple voting specifying which items and patterns should be included/excluded
scheme (e.g. average). If the overall classification of the training (in addition to support, confidence, and window size). Next, we
tuple is wrong, then the tuple is weighted highly during new clas- briefly review this incremental mining algorithm.

sifier generation. Finally, the testing tuples are classified using the L ) .
ensemble of classifiers and a simple voting scheme determines the4.2.1  SWIM (Sliding Window Incremental Miner)
eventual classification. According to experiments shown in [13], SWIM [34] exploits the well-knownfp-tree [25] data structure,
adaptive boosting handles concept-drifts and shifts more elegantly, which allows a compact representation of transactions. SWIM splits
i.e. the accuracy of the classifiers recovers more quickly with re- the window into several slides and then for each stidanserts the
spect to concept-drifts and shifts, as compared to ensemble basedransactions in a separdigtree Then, it computes the frequent
bagging. As shown in Figure 2, training tuples are first predicted itemsets in this small slide using any of existing static-data frequent
using the ensemble of classifiers. These predictions are combinedminers (e.g. FP-growth [25]). These frequent itemsets for sfide
using a simple voting mechanism. If the resulting combined predic- are shown as,(S) in the pseudo code, Figure 3, wherds the

tion is incorrect, a higher weight is assigned to this tuple, so that the given minimum support. Since slides are mined separately and the
new classifier will increase the probability of correctly classifying occurrence of each pattern should be counted over all slides (to de-
this tuple. The testing tuples are predicted using the ensemble oftermine the total frequency), counting becomes a major bottleneck
classifiers and these predictions are combined using simple voting.of the algorithm. The counting in SWIM is thus performed using
a separate fast algorithm, which is basedconditional counting

Trdning Strear 7 Enserble (=verification), called verifier. The verifier internally uses another

W Decisions Pfemm fp-tree to store the patterns that need to be counted. This latter
Training tuples \‘1 tree is called a Pattern Tre®T’). Then, counting is performed via

conditionalizing both the pattern tree and tpereeof the slide in

_ Classifier Mezt Ensemble parallel. More details can be found in [34].
Boosting Building Class fier IManagemert Engernbles
Testing Str H
bk Classification Enserrhle For Each New SlideS
Task Decisions Voting Frediction 1: For each patterp ¢ PT

updatep. freq overS

2: Mine S to computer, (.S)

3: For each existing pattegne o, (S) N PT
remembelS as the last slide in whichis frequent

Similar observation to one made before for weighted bagging, can 4: For each new patteme o, (S)\PT

Figure 2: Generalized Boosting

be made here. Again only two boxes labeled ‘Classification Task’ PT — PT U{p}
and ‘Classifier Building’ are classifier specific. Thus, the same data remembers as the first slide in whiclp is frequent
flow model can be used to enable boosting on any arbitrary classi-  create auxiliary array fop and start monitoring it
fication algorithm. Thus, Stream Mill generically and effectively
supports such advanced techniques over data streams. For Each Expiring Slide S

5: For each patterp € PT
Furthermore, the extensibility provided by the Stream Mill system updatep. freg, if S has been counted in
leaves room for implementation of other such techniques. For in- updatep.auz_array, if applicable
stance, [23], proposes a similar technique for handling concept- reportp as delayed, if frequent but not reported
drifts and shifts. The technique again generates an ensemble of atquery time

classifiers and augments training and testing tuples with predictions ~ deletep.auxz_array, if p has existed since arrival &f
from previous classifiers. These predictions help the new classifier ~ deletep, if p no longer frequent in any of the current slides
achieve better accuracy. Like ensemble based bagging and boost-

ing, this technique can also be implemented as a generic built-in Figure 3: SWIM pseudo code.

method is Stream Mill. In the next section, we explain why and how the SWIM algorithm is
provided as a built-in implementation in the extended Stream Mill

4.2 Association Rules system, and we discuss some of its features.

Association rule mining of data streams is required in many ap-
plications, including IP traffic monitoring and on-line recommen-
dation systems. However, among the core mining methods, this
presents one of the hardest research problems because of the di
ficulty of finding fast & light algorithms for determining frequent

4.2.2 Built-in Support of SWIM

SWIM follows the standard windowed aggregates, by specifying
f(_:omputation for the EXPIRE and the ITERATE state. Further-
more, it is implemented in C/C++ for performance reasons; this
itemsets in an incoming stream of transactions [28]. Traditional tgges kz:ld\{anta%e (t)f th:be)gltte r n?l UDASt gtupport'[edlby Eﬁ L [{CE.' I?]e-
algorithms for static data are no longer feasible here, because ofsr'] efs”av!ng adas and buiit-in frequent itemsets aigonithm, this has
the massive amount of data, the real-time requirements, bursty ar-t ¢ following advantages.

rivals, and even more importantly concept shifts/drifts. To address Benefits. As discussed in [10], an inductive DBMS must be able
this difficult problem we have developed a new mining algorithm to optimize the computation of frequent patterns and rules by tak-



ing advantage of the constraint specified by the user in the mining OVER (ROWS 1000000PRECEDING SLIDE 10000)
query, and special constructs and techniques were thus proposedROM Transactions T, Items |

to achieve that [10]. Since the extended Stream Mill system al- WHERE I.Name = iPOD’ _

lows UDAs to access the user’s post processing constraints (i.e.,HAVINi:l%pgﬂgizf?i&léNEEégqudggg\; I:n?é?:stin Patters)
theHAVlNG Clause.) while they .al’e runnin.g, these UDAs CanIE)f' AND RuIenght NOT IN (SELECT * FROM AvgldPatterns)
ploit those constraints to optimize execution. Indeed, the built-in AND CONTAINS(l.Id, RuleLeft);

SWIM algorithm, utilizes these constraints to achieve better per-

formance through better tuning. As noted by previous research projects [10], this filtering is impor-

tant from both the user and the system perspective. The user is
likely to take full advantage of this feature, by specifying the post
filtering conditions in theHAVING clause, since she does not want
to receive a long list of uninteresting patterns. Of course, the UDA
e Including/Excluding ltems. User may only ask for certain must be written to take advantage of these post conditions to con-
items to be included in (or excluded from) the mining pro- strain the search for uninteresting frequent patterns and improve its
cess. In case of inclusion, such items will be the only ones performance. Thus, while the DSMS is not responsible for these
that are considered in the conditionalization of the giffen algorithm specific optimizations, since it passes the information in
treeand PT, resulting in much smaller trees and better per- theHAVINGclause to the UDA, the UDA can exploit them. There-
formance. For the exclusion instead, SWIM does the con- fore, users can add new data mining algorithms as UDAs and take
verse. advantage of this feature to optimize execution without requiring
e Including/Excluding Patterns. User may even specify a set of any modifications to the Stream Mill compiler. This approach as-
interesting patterns (or association rules) as the only ones thatsures user-extensibility of the system—since, users can add new
she wants to monitor (or not monitor) over the data stream Mining algorithms to the library, each with its method-specific op-
(for example, when they are permanently validated/rejected timizations, without touching the system internals.
by an analyst). Such constraints can also be easily enforced
and exploited by appropriately marking the corresponding 4.3  Other Mining Algorithms
nodes of the pattern tre7" with a never-removgor never- In addition to the classifiers, classifier ensembles, association rules,
add) flag. we are now building into the extended Stream Mill, a DM library
e Window/Slide size. As for any other query written in ESL,  with several key DM methods and improvements, such as cluster-

the window size and slide size can be easily recognized by ing and sequential pattern detection discussed next.
the query processor and be passed down to the UDA (here,

SWIM algorithm) so that it adjusts its internal data structures
accordingly.

e Report frequency. Instead of reporting all frequent patterns
(or association rules) over the entire window, for each arrival
or expiration of a slide, we only report new patterns or the
expired ones (called delta reporting). Thus, the user himself
does not have to determine the new/expired patterns by com-
paring the algorithm’s output against the current ones. By
extracting the frequency report from the user’s query, SWIM
can also be adjusted for further performance improvement by
having larger slide size.

In addition to constraints studied in [10], user can also specify the
window size and the slide size. The set of the constraints that the
built-in SWIM UDA can extract (and exploit) are discussed next.

4.3.1 On-line Clustering

The extended Stream Mill currently supports window versions of
DBScan [17] and K-means [22]. Density-based clustering over
tumbling windows is performed using DBScan [17] algorithm. The
basic DBScan algorithm takes two parameters; neighborhood ra-
dius Ep9 and number of required neighborei(iPtg. Points within

the epsdistance of a particular point are considered its neighbors;
distance can be a user defined function that gives some measure
of dissimilarity between the points and follows standard distance
function properties, such as non-negativity, reflexivity, symmetry,
and triangle inequality. If a point has more thamPtsneighbors

. . then it is eligible to create (or participate in) a cluster. Given these
In Example 3, the query asks for continuously reporting of the 15 parameters the DBScan algorithm works as follows: pick an

new association rules and expired ones over a window worth of grpyitrary pointp and find its neighbors. I has more thaminPts
1000, 000 tuples (transactions made in an on-line store), every time neighbors then form a cluster and call DBScan on all its neigh-

that it slides ble, 000 tuples. Inte_resting and_/or uninteresting pat-  pors recursively. Ifp does not have more thaninPtsneighbors
terns are also given by the user in two relational tables ndmed  hen move to other un-clustered points in the database. This can
terestingPatternand AvoidPatternsrespectively. The user inthis  po viewed as a depth first search. Comparing the cluster results

example has asked only for the rules whose antecedent (left handyeyeen successive windows provides an effective way to monitor
side) is among the set of interesting patterns and whose consé+rands and concept shifts and drifts [32].

quent (right hand side) is not among avoided patterns. Also the
left-side of the rule should contain ‘iPOD’. As described above, The other option for on-line clustering is continuous clustering.
all these given constraints can be extracted and_explonted in theThe IncDBScan algorithm proposed in [16] modifies the original
SWIM algorithm transparently from the user, to achieve better opti- pggcan algorithm to perform this continuous clustering. The basic
mization. The built-in swim UDA is calledssociationRuleand it observation in IncDBScan is that the clustering assignments only
returns a 4-tuples (RuleLe¥ARCHAR , RuleRightVARCHAR,, change if number of neighbors of a point change freomginPt9
SupportREAL , confidenceREAL ), where RuleLeftand RuleRight 14 (> minptg or the other way around. Based on this observation
are formed by appending the single items of the corresponding rule \ncpgscan proposes re-clustering only the required set of data tu-
together, in an ascending order. ples on tuple arrival and expiration. The algorithm is a simple ex-
ExAMPLE 3. An ESL query with a set of constraints for fre- tension of the DBScan algorithm, but performs much better than
quent patterns. re-clustering all tuples on arrival/expiration of each new/old tuple.
SELECT AssociationRules(T.Tid) The EXPIRE state supported in ESL UDAs represents the perfect



tool to perform this delta maintenance. An ESL UDA implement- For instance, let's consider the definition and training of a Naive

ing this algorithm can also be found at [21]. Bayesian classifier in OLE DB for DM, given in Example 4. This
example works on the well-known Iris dataset, which has 4 real
4.3.2 Sequence Detection attributes, SL, SW, PL, and PW, and a class attribute. The class at-

Sequence queries represent a very useful time-series analysis tOO|t_ribute can take one of three values (setosa, versicolor, or verginica).

They are useful in many practical on-line applications, such as
click stream analysis, stock market data analysis, etc. A few se-
guence query languages have also been proposed to express suc
queries. For instance, SEQ [39], srgl [36] SQL-LPP+ [35], and
SQL-TS [37]. The SQL-TS language is based on allowing the STREAMiris(id INT, SL REAL, SWREAL,
use of Kleene-closure expressions in Er®M clause of its query. PL REAL, PW REAL, classINT);

. - /* Create a mining model */
SQL-TS achieved unsurpassed levels of expressive power and OP-ReATE MINING MODEL NaiveBayesianFlower (idNT KEY,

h EXAMPLE 4. Naive Bayesian Classifier in OLE DB for DM

timizability [37]. SL REAL CONTINUOUS, SW REAL CONTINUOUS,
PL REAL CONTINUOUS, PW REAL CONTINUOUS,

An example sequence query, given a click stream such as the fol- classINT DISCRETE PREDICT)

lowing, would be to find a user that went from an advertisement USING Microsoft_Naive_Bayes;

. . [* Training the model */
page to a product description page and then na\{lgated o the IDrOd-INSERT INTOgNaiveBayesianFlower (id, SL, SW, PL, PW, isSetosa)
uct purchase page, a sequence of events signified by PageTypes openquery ('SELECT id, SL, SW, PL_PW. isSetosa

‘ad’, ‘pd’, and ‘pp’, respectively. FROM TrainFlowers’);
SELECT Y.PageNO, Z.ClickTime ) o ) L o
FROM Sessions While the queries in Example 4 are succinct and intuitive, similar
PARTITION BY SessNo queries in ESL are not as intuitive. Therefore, we propose that
ORDER BY ClickTime given the OLE DB for DM statements for Example 4, the sys-
Wlﬁ‘gé)é';'é)gewpe - ad' AND Y.PageType = ‘pd’ tem should automatically translate them to ESL statements. For
AND Z.PageType = ‘pp’ instance, the name of the mining model, NaiveBayesianFlower, is

analogous to the name of the table, which stores the mining model.
Such a query is very hard to write, and inefficient to execute, using Similarly, the name of the mining algorithm, Microsoft_Naive_Bayes,
SQL, whereas it is naturally specified in the efficiently executable is analogous to the name of the UDA that should be invoked to
SQL-TS. As demand for sequence pattern queries has grown inlearn the mining model. Furthermore, the user can specify addi-
both database and data stream applications, SQL standard extentional parameters for the UDA after tlusingclause, which is also
sions are being proposed by collaborating DBMS and DSMS com- consistent with OLE DB for DM. In general, mapping user queries,
panies [45]. In most respects (syntax, semantics, and optimiza-written in OLE DB for DM or other high-level mining language, to
tion) the standards are based on SQL-TS. A first implementation ESL queries is relatively straightforward. Furthermore, this exten-
of SQL-TS is currently supported in the extended Stream Mill. We sion greatly improves the usability of the system.
are now improving and extending it to support the proposed SQL

standards [45]. 6. CONCLUSION

. While DSMS and data stream mining algorithms have provided
As our reader might have observed, the success of SQL-TS also Uneparate foci for many research projects, Inductive DSMS, which
derscore that the UDA-based extensibility of the extended Stream e quire a synergetic integration of their technologies, have received
Mill is not without limitations: SQL-TS and then new SQL stan- jitje attention until now. In this paper, we first showed that this is
dard suggest that some new language constructs are needed to deg, important research topic that deserves much attention and poses
effectively with special application domains. However, our expe- jnteresting technical challenges. Then, we presented our approach
rience shows that this is more of an exception than a rule. Finally yased on extending the Stream Mill DSMS to support complex
our implementation of SQL-TS relied on mapping its sequence- syream mining algorithms. Stream Mill provides a natural platform
oriented constructs into special UDAs. While the intuitive appeal oy adding the new inductive functionality, since its query language,
of_ the orlglnal_ constructs was Ios}, this confirmed the basic gener- g provides (i) extensibility via user-defined aggregates and (ii)
ality of UDAs in terms of expressive power. powerful window facilities for both built-in and user-defined ag-

gregates. However, difficult technical challenges had to be solved
5. HIGH-LEVEL MINING LANGUAGE to turn it into an Inductive DSMS. The first is the selection and
In addition to the extensions and improvements previously described;areful implementation of mining algorithms that are fast and light
the main focus of our future work will be to improve usability and enough to be used in continuous queries with real-time response.
friendliness of the system for more casual users. Indeed, while ex- The second issue is how to support these algorithms generically—
pert users would like to implement new mining algorithms or mod- to assure that they can be used on streams with arbitrary schema.
ify existing ones naive users would find an approach such as OLE Another difficult design challenge is how to make the system open
DB for DM [42] more suitable for their needs (or at least for their and extensible—to ensure that new mining algorithms can be eas-
level of computing sophistication). ily introduced (or existing ones modified) by users working in the
declarative framework provided by our DSMS. Finally, a high-level

OLE DB for DM allows writing data mining queries in an intu-  mining language is also being designed for our system: this will fa-
itive language. Thus, we propose that the Stream Mill system cilitate the intuitive invocation of mining methods.
should support a higher level language similar to OLE DB for DM.
The system can internally translate such OLE DB for DM min- 7. REFERENCES
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