
SnappyData: Streaming, Transactions, and Interactive
Analytics in a Unified Engine

Jags Ramnarayan1 Barzan Mozafari1,2 Sumedh Wale1 Sudhir Menon1

Neeraj Kumar1 Hemant Bhanawat1 Soubhik Chakraborty1

Yogesh Mahajan1 Rishitesh Mishra1 Kishor Bachhav1

1SnappyData Inc., Portland, OR 2University of Michigan, Ann Arbor, MI
1{jramnarayan,barzan,swale,smenon,nkumar,hbhanawat,schakraborty,ymahajan,rmishra,kbachhav}@snappydata.io

2mozafari@umich.edu

ABSTRACT
In recent years, our customers have expressed frustration in
the traditional approach of using a combination of disparate
products to handle their streaming, transactional and ana-
lytical needs. The common practice of stitching heteroge-
neous environments in custom ways has caused enormous
production woes by increasing development complexity and
total cost of ownership. With SnappyData, an open source
platform, we propose a unified engine for real-time oper-
ational analytics, delivering stream analytics, OLTP and
OLAP in a single integrated solution. We realize this plat-
form through a seamless integration of Apache Spark (as
a big data computational engine) with GemFire (as an in-
memory transactional store with scale-out SQL semantics).

After presenting a few use case scenarios, we carefully
study the challenges involved in marrying these two sys-
tems with drastically different design philosophies: Spark is
a computational model designed for high-throughput ana-
lytics whereas GemFire is a transactional engine designed
for low latency operations.

Moreover, we find that even in-memory solutions are often
incapable of delivering truly interactive analytics (i.e., a cou-
ple of seconds), when faced with large data volumes or high
velocity streams. SnappyData therefore combines state-of-
the-art approximate query processing techniques and a va-
riety of data synopses to ensure interactive analytics over
both streaming and stored data. Through a novel concept
of high-level accuracy contracts (HAC), SnappyData is the
first to offer end users an intuitive means for expressing their
accuracy requirements without overwhelming them with sta-
tistical concepts.

1. INTRODUCTION
Many of our customers, particularly those active in finan-

cial trading or IoT (Internet of Things), are increasingly re-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’16 June 26–July 1, 2016, San Fransisco, CA, USA
© 2016 ACM. ISBN 0-89791-88-6/97/05.

DOI: 10.1145/1235

lying on applications whose workflows involve (1) continuous
stream processing, (2) transactional and write-heavy work-
loads, and (3) interactive SQL analytics. These applications
need to consume high-velocity streams to trigger real-time
alerts, ingest them into a write-optimized store, and perform
OLAP-style analytics to derive deep insight quickly.

While there have been a flurry of data management so-
lutions designed for one or two of these tasks, there is no
single solution that is apt at all three (see section 9 for a
detailed survey).

SQL-on-Hadoop solutions (e.g., Hive [37], Impala [24] and
Spark SQL [14]) use OLAP-style optimizations and colum-
nar formats to run OLAP queries over massive volumes of
static data. While apt at batch-processing, these systems
are not designed as real-time operational databases, as they
lack the ability to mutate data with transactional consis-
tency, use indexing for efficient point accesses, or handle
high-concurrency and bursty workloads.

Hybrid Transaction/Analytical Processing (HTAP) sys-
tems support both OLTP and OLAP queries by storing
data in dual formats—row-oriented fashion (on disk or tra-
ditional database cache buffers) and compressed in-memory
columns—but are often used alongside streaming engines
(e.g., Storm, Kafka, Confluent) to support streaming pro-
cessing.

Finally, stream processors (e.g., Samza [1]) provide some
form of state management, but only allow for simple ana-
lytics for data streams. Complex analytics require the same
optimizations used in a OLAP engine [16, 26], such as colum-
nar formats and efficient operators for joining, grouping, or
aggregating large histories. For example, according to our
customers in Industrial IoT, meaningful insight often re-
quires ingesting unbounded streams of data at very high
speeds, while running continuous analytical queries on win-
dows correlated with large quantities of history.

Consequently, the demand for mixed workloads has re-
sulted in several composite data architectures, exemplified
in the “lambda” architecture, requiring multiple solutions to
be stitched together—an exercise that can be hard, time
consuming and expensive.

For instance, in capital markets, a real time market surveil-
lance application has to stream in trades at very high rates
and detect abusive trading patterns (e.g., insider trading).
This requires correlating large volumes of data by joining a
stream with historical records, other streams, and financial

10.1145/1235

reference data (which may change throughout the trading
day). A triggered alert could in turn result in additional an-
alytical queries, which need to run on both the ingested and
historical data. Trades arrive on a message bus (e.g., Tibco,
IBM MQ, Kafka) and are processed using a stream processor
(e.g., Storm [38]) or a homegrown application, writing state
to a key-value store (e.g., Cassandra) or an in-memory data
grid (e.g., GemFire). This data is also stored in HDFS and
analyzed periodically using SQL-on-Hadoop OLAP engines.

Increased TCO (total cost of ownership) — This het-
erogeneous architecture, which is far too common among our
customers, has several drawbacks (D1–D3) that significantly
increase the total cost of ownership for these companies.

D1. Increased complexity: The use of incompatible
and autonomous systems has significantly increased the total
cost of ownership for these companies. Developers have to
master disparate APIs, data models, configurations and tun-
ing options for multiple products. Once in production, op-
erational management is a nightmare. Diagnosing the root
cause of problems often requires hard-to-find experts that
have to correlate logs and metrics across different products.

D2. Lower performance: The required analytics necessi-
tates data access across multiple non-colocated clusters, re-
sulting in several network hops and multiple copies of data.
Data may also need to be transformed when dealing with
incompatible data models (e.g., turning Cassandra Colum-
nFamilies into domain objects in Storm).

D3. Wasted resources: With data getting duplicated,
increased data shuffling wastes network bandwidth, CPU
cycles and memory.

Lack of Interactive Analytics — Achieving interactive
SQL analytics has remained an on-going challenge, even for
modest volumes of data. Unfortunately, any analytical
query that requires distributed shuffling of the records can
take tens of seconds to minutes, hardly permitting interac-
tive analytics (e.g., for exploratory analytics). Moreover,
distributed clusters can be shared by hundreds of users con-
currently running such queries.

Our Goal — The challenge here is to deliver interactive-
speed analytics with modest investments in cluster infras-
tructure and far less complexity than today. SnappyData
aims to fulfill this promise by (i) enabling streaming, trans-
actions and interactive analytics in a single unifying system—
rather than stitching different solutions—and (ii) delivering
true interactive speeds via a state-of-the-art approximate
query engine that can leverage a multitude of synopses as
well as the full dataset.

Our Approach — We envision a single unified, scale out
database cluster that ingests static data sets (e.g., from
HDFS), acquires updatable reference data from enterprise
databases, manages streams in memory, while permitting
both continuous SQL analytics on the streams and interac-
tive queries on entire data (acquired from streams, HDFS or
enterprise DBs). To achieve this goal, our approach consists
of a deep integration of Apache Spark, as a computational
framework, and GemFire, as an in-memory transactional
store, as described next.

Best of two worlds — Spark offers an appealing program-
ming model to both modern application developers and data

scientists. Through a common set of abstractions, Spark
programmers can tackle a confluence of different paradigms
(e.g., streaming, machine learning, SQL analytics). Spark’s
core abstraction, a Resilient Distributed Dataset (RDD),
provides fault tolerance by efficiently storing the lineage of
all transformations instead of the data. The data itself is
partitioned across nodes and if any partition is lost, it can
be reconstructed using the lineage information. The benefit
of this approach is avoiding replication over the network and
operating on data as a batch for higher throughput. While
this approach provides efficiency and fault tolerance, it also
requires that an RDD be immutable. In other words, Spark
is simply designed as a computational framework, and there-
fore (i) does not have its own storage engine, and (ii) does
not support mutability semantics.

On the other hand, GemFire is an in-memory data grid,
which manages records in a partitioned row-oriented store
with synchronous replication. It ensures consistency by in-
tegrating a dynamic group membership service (GMS) and a
distributed transaction service (DTS). Data can be indexed
and updated in a fine grained or batch manner. Updates
can be reliably enqueued and asynchronously written back
out to an external database. Data can also be persisted on
disk using append-only logging with offline compaction for
fast disk writes.

Therefore, to combine the best of both worlds, Snap-
pyData seamlessly fuses the Spark and GemFire runtimes,
adopting Spark as the programming model with extensions
to support mutability and HA (high availability) through
GemFire’s replication and fine grained updates. For in-
stance, when ingesting a stream, we process the incoming
stream as a batch, avoid replication, and replay from the
source on a failure. Here, the processed state could be writ-
ten into the store in batches to avoid a tuple-at-a-time repli-
cation. Recovery from failure will thus be limited to the time
needed to replay a single batch.

Challenges — Spark is designed as a computational en-
gine for processing batch jobs. Each Spark application (e.g.,
a Map-reduce job) runs as an independent set of processes
(i.e., executor JVMs) on the cluster. These JVMs are re-
used for the lifetime of the application. While, data can be
cached and reused in these JVMs for a single application,
sharing data across applications or clients requires an ex-
ternal storage tier, such as HDFS. We, on the other hand,
target a real-time, “always-on”, operational design center—
clients can connect at will, and share data across any number
of concurrent connections. This is similar to any operational
database on the market today. Thus, to manage data in the
same JVM, our first challenge is to alter the life cycle of
these executors so that they are long-lived and de-coupled
from individual applications.

A second but related challenge is Spark’s design for how
user requests (i.e., jobs) are handled. A single driver orches-
trates all the work done on the executors. Given our need
for high concurrency and a hybrid OLTP-OLAP workload,
this driver introduces (i) a single point of contention for all
requests, and (ii) a barrier for achieving high availability
(HA). Executors are shutdown if the driver fails, requiring
a full refresh of any cached state.

Spark’s primary usage of memory is for caching RDDs
and for shuffling blocks to other nodes. Data is managed in
blocks and is immutable. On the other hand, we need to

manage more complex data structures (along with indexes)
for point access and updates. Therefore, another challenge
is merging these two disparate storage systems with little
impedance to the application. This challenge is exacerbated
by current limitations of Spark SQL—mostly related to mu-
tability characteristics and conformance to SQL.

Finally, Spark’s strong and growing community has zero
tolerance for incompatible forks. This means that no changes
can be made to Spark’s execution model or its semantics for
existing APIs. In other words, our changes have to be an
extension.

Contributions — SnappyData makes the following contri-
butions to deliver a unified and optimized runtime.

(a) Marrying an operational in-memory data store
with Spark’s computational model. We introduce
a number of extensions to fuse our runtime with that of
Spark. Spark executors run in the same process space
as our store’s execution threads, sharing the same pool
of memory. When Spark executes tasks in a partitioned
manner, it is designed to keep all the available CPU
cores busy. We extend this design by allowing low la-
tency and fine grained operations to interleave and get
higher priority, without involving the scheduler. Fur-
thermore, to support high concurrency, we extend the
runtime with a “Job Server” that decouples applications
from data servers, operating much in the same way as
a traditional database, whereby state is shared across
many clients and applications. (See section 5).

(b) Unified API for OLAP, OLTP, and streaming.
Spark builds on a common set of abstractions to provide
a rich API for a diverse range of applications, such as
MapReduce, Machine learning, stream processing, and
SQL. While Spark deserves much of the credit for be-
ing the first of its kind to offer a unified API, we fur-
ther extend its API to (i) allow for OLTP operations,
e.g., transactions and inserts/updates/deletions on ta-
bles, (ii) be conformant with SQL standards, e.g., al-
lowing tables alterations, constraints, indexes, and (iii)
support declarative stream processing in SQL. (See sec-
tion 4.)

(c) Optimized Spark applications Our goal is to elim-
inate the need for yet another external store (e.g., a
KV store) for Spark applications. With a deeply inte-
grated store, SnappyData improves overall performance
by minimizing network traffic and serialization costs. In
addition, by promoting colocated schema designs (ta-
bles and streams) where related data is colocated in the
same process space, SnappyData eliminates the need for
shuffling altogether in many scenarios. We describe and
evaluate these optimizations in sections 7 and 8.

(d) To deliver analytics at truly interactive speeds, we have
equipped SnappyData with state-of-the-art AQP tech-
niques, as well as a number of novel features. Snappy-
Data is the first AQP engine to (i) provide automatic
bias correction for arbitrarily complex SQL queries, and
(ii) provide an intuitive means for end users to express
their accuracy requirements as high-level accuracy con-
tracts (HAC), without overwhelming them with numer-
ous statistical concepts. Finally, unlike traditional load
shedding techniques that are restricted to simple queries,

(iii) SnappyData can provide error estimates for arbi-
trarily complex queries on streams.

After reviewing our use case scenarios in section 2.1, we
provide a system overview in section 3. We present our data
model in section 4, our cluster manager in section 5, and our
AQP features in section 6. Additional optimizations offered
by SnappyData are described in section 7, followed by our
experimental results in section 8. Finally, we review the
related work and conclude in sections 9 and 10, respectively.

2. TARGET WORKLOAD

2.1 Use Case Scenarios
Market Surveillance — Trading in financial markets has
become almost entirely algorithmic and machine driven. In
this environment, financial firms need to be able to detect
abusive, collusive, and rogue trading and flag them in real-
time before more damage is done. This requires surveillance
systems to ingest post transactional data streams, analyze
trades over a specific time window, and correlate with pre-
vious time windows involving the same set of instruments
and groups of subscribers in order to quickly decide which
trades to flag for further inspection. Data involved in market
surveillance includes (i) streaming time series post trans-
actional data, (ii) reference data, which can be updated
by transactions, and (iii) historical data regarding a large
number of instruments (e.g., multiple terabytes). These
datasets are processed by streaming, OLTP and analytical
queries. SnappyData offers an integrated solution to this
problem by supporting transactional updates on reference
data, while analyzing incoming streams joined with large
historical datasets. Moreover, when faced with a sudden
burst of incoming streams, SnappyData can still provide in-
teractive speeds by resorting to approximate results accom-
panied with accuracy guarantees. For example, computing
an activity’s exact risk score is unnecessary as long as its ap-
proximated value is accurate enough to establish its relative
position with respect to the acceptable risk level.

Location based services from telco network providers
—The global proliferation of mobile devices has created a
growing market for location based services. In addition
to locality-aware search and navigation, network providers
are increasingly relying on location-based advertising, emer-
gency call positioning, road traffic optimization, efficient call
routing, triggering preemptive maintenance of cell towers,
roaming analytics, and tracking vulnerable people[35] in real
time. Telemetry events are delivered as Call Detail Records
(CDR), containing hundreds of attributes about each call.
Ingested CDRs are cleansed and transformed for consump-
tion by various applications. Not being able to correlate cus-
tomer support calls with location specific network congestion
information is a problem that frustrates customers and net-
work technicians alike. The ability to do this in real time
may involve expensive joins to history, tower traffic data and
subscriber profiles. Incoming streams generate hundreds of
aggregate metrics and KPIs (key performance indicators)
grouped by subscriber, cell phone type, cell tower, and loca-
tion. This requires continuous updates to counters accessed
through primary keys (such as the subscriberID). While the
generated data is massive, it still needs to be interactively
queried by a data analyst for network performance analysis.

Figure 1: SnappyData’s core components

Location-based services represent another common problem
among our customers that involves high concurrency, con-
tinuous data updates, complex queries, time series data, and
a source that cannot be throttled.

2.2 Design Assumptions
Based on the above use case scenarios, we design Snappy-

Data based on the following assumptions.

Operational real-time data analytics — Spark is well
designed for periodic, batch-centric workloads. While we
retain all of Spark’s functionalities, we focus more on inter-
active and streaming workloads. In fact, SnappyData must
resemble an “always on” operational database that is capable
of concurrently serving both low-latency OLTP requests and
OLAP-style analytics.

Terabytes not Petabytes — Similar to Spark, Snappy-
Data manages datasets primarily in main-memory. Cur-
rently, we do not target workloads with extremely large vol-
umes. In the near term, we anticipate most workloads using
SnappyData to be less than 50–100TB. Based on our experi-
ence with enterprise customers, provisioning DRAM at this
scale is currently deemed cost prohibitive.

Micro-batch stream processing — We are not targeting
streaming use cases that require very low latency event-at-
a-time processing (e.g., high frequency algorithmic trading).
Instead, we use the micro-batch approach of Spark Stream-
ing, which is geared towards high throughput and stream
processing at a second’s granularity. Per-event stream pro-
cessing will be particularly unrealistic since our target work-
loads involve complex stream analytics, which may require
joins and aggregations with historical data.

3. SYSTEM OVERVIEW
This section presents a high level overview of Snappy-

Data’s core components, as well as our data pipeline as
streams are ingested into our in-memory store and subse-
quently interacted with and analyzed.

3.1 System Architecture
Figure 1 depicts SnappyData’s core components (Spark’s

original components are highlighted in gray).
The storage layer is primarily in-memory and manages

data in either row or column formats. The column format
is derived from Spark’s RDD caching implementation and
allows for compression. Row oriented tables can be indexed
on keys or secondary columns, supporting fast reads and

Figure 2: Data ingestion pipeline in SnappyData

writes on index keys (sections 4.1).
We support two primary programming models—SQL and

Spark’s API. SQL access is through JDBC/ODBC and is
based on Spark SQL dialect with several extensions. One
could perceive SnappyData as a SQL database that uses
Spark API as its language for stored procedures. We pro-
vide a glimpse over our SQL and programming APIs (sec-
tion 4.2). Our stream processing is primarily through Spark
Streaming, but it is integrated and runs in-situ with our
store (section 4.3).

The OLAP scheduler and job server coordinate all OLAP
and Spark jobs and are capable of working with external
cluster managers, such as YARN or Mesos. We route all
OLTP operations immediately to appropriate data parti-
tions without incurring any scheduling overhead (sections 5
and 7).

To support replica consistency, fast point updates, and in-
stantaneous detection of failure conditions in the cluster, we
use a P2P (peer-to-peer) cluster membership service that en-
sures view consistency and virtual synchrony in the cluster.
Any of the in-memory tables can be synchronously repli-
cated using this P2P cluster (section 5).

In addition to the “exact” dataset, data can also be sum-
marized using probabilistic data structures, such as strati-
fied samples and other forms of synopses. Using our API,
applications can choose to trade accuracy for performance.
SnappyData’s query engine has built-in support for approx-
imate query processing (AQP) and will exploit appropriate
probabilistic data structures to meet the user’s requested
level of accuracy or performance (section 6).

3.2 Data Ingestion Pipeline
The use cases explored in section 2.1 share a common

theme of stream ingestion and interactive analytics with
transactional updates. The steps to support these tasks are
depicted in Figure 2, and explained below.

Step 1. Once the SnappyData cluster is started and before
any live streams can be processed, we ensure that the histor-
ical and reference datasets are readily accessible. The data
sets may come from HDFS, enterprise relational databases
(RDB), or disks managed by SnappyData. Immutable batch
sources (e.g., HDFS) can be loaded in parallel into a colum-
nar format table with or without compression. Reference
data that is often mutating can be managed as row tables.

Step 2. We rely on Spark Streaming’s parallel receivers to
consume data from multiple sources. These receivers pro-
duce a DStream, whereby the input is batched over small
time intervals and emitted as a stream of RDDs. This
batched data is typically transformed, enriched and emit-
ted as one or more additional streams. The raw incoming
stream may be persisted into HDFS for batch analytics.

Step 3. Next, we use SQL to analyze these streams. As
DStreams (RDDs) use the same processing and data model
as data stored in tables (DataFrames), we can seamlessly
combine these data structures in arbitrary SQL queries (re-
ferred to as continuous queries as they execute each time
the stream emits a batch). When faced with complex ana-
lytics or high velocity streams, SnappyData can still provide
answers in real time by resorting to approximation.

Step 4. The stream processing layer can interact with the
storage layer in a variety of ways. The enriched stream can
be efficiently stored in a column table. The results of con-
tinuous queries may result in several point updates in the
store (e.g., maintaining counters). The continuous queries
may join, correlate, and aggregate with other streams, his-
tory or reference data tables. When records are written into
column tables one (or a small batch) at a time, data goes
through stages, arriving first into a delta row buffer that is
capable of high write rates, and then aging into a columnar
form. Our query sub-system extends Spark’s Catalyst to
merge the delta row buffer during query execution.

Step 5. To prevent running out of memory, tables can be
configured to evict or overflow to disk using an LRU strategy.
For instance, an application may ingest all data into HDFS
while preserving the last day’s worth of data in memory.

Step 6. Once ingested, the data is readily available for
interactive analytics using SQL. Similar to stream analytics,
SnappyData can again use approximate query processing
to ensure interactive analytics on massive historical data in
accordance to users’ requested accuracy.

4. DATA MODEL

4.1 Row and Column Oriented Tables
Tables can be partitioned or replicated and are primarily

managed in memory with one or more consistent replicas.
The data can be managed in Java heap memory or off-heap.
Partitioned tables are always partitioned horizontally across
the cluster. For large clusters, we allow data servers to be-
long to one or more logical groups, called “server groups”.
Tables can be restricted to a subset of the nodes by speci-
fying the groups they belong to. The storage format can be
“row” (either partitioned or replicated tables) or “column”
(only supported for partitioned tables) format. While a row
formatted table incurs higher in-memory storage costs (with
any record being a key hash lookup away) this is well suited
for OLTP scenarios where random updates and deletes or
point lookups are common. In-memory indexes provide fur-
ther optimization for row tables. Column tables manage
column data in contiguous memory and can be compressed
using dictionary, run-length, or bit encodings [39]. We ex-
tend Spark’s column store to support mutability.

Writing to column tables — When records are written
into column tables one (or a small batch) at a time, they
go through stages; first arriving into a delta row buffer that
is capable of high write rates and then age into a columnar
form. The delta row buffer is merely a partitioned row table
that uses the same partitioning strategy as its base column
table. This delta buffer table is backed by a conflating queue
that periodically empties itself as a new batch into the col-
umn table. Here, conflation means that consecutive updates
to the same record result in only the final state getting trans-

ferred to the column store. For example, inserted/updated
records followed by deletes are removed from the queue. The
delta row buffer itself uses copy-on-write semantics to en-
sure that concurrent application updates and asynchronous
transfers to the column store do not cause inconsistency [7].
Our query sub-system extends Spark’s Catalyst optimizer
to merge the delta row buffer during query execution.

4.2 Unified API
Spark provides a rich procedural API to query, transform

and work with disparate data models (e.g., JSON, Java Ob-
jects, CSV and SQL). To simplify and retain a consistent
programming style, SnappyData hides the native GemFire
API and instead, offers its additional functionalities as ex-
tensions to Spark SQL and the DataFrame API. The SQL
extensions add support for mutability and follow the SQL
standard. Some of SnappyData-specific configurations are
either specified at cluster startup or via SQL DDL (Data
Definition Language) extensions. These extensions are com-
pletely compatible with Spark; applications that do not use
our extensions, will observe Spark’s original semantics.

Below is the syntax that highlights some of the key exten-
sions to create table to exploit the data model offered by
SnappyData.

1 CREATE [Temporary] TABLE [IF NOT EXISTS] table_name (
2 <column definition>
3)
4 USING [ROW | COLUMN]
5 −− Should it be row or column oriented?
6 OPTIONS (
7 PARTITION_BY ’PRIMARY KEY | column(s) ’,
8 −− Partitioning on primary key or one or more columns
9 −− Will be a replicated table , by default

10 COLOCATE_WITH ’parent_table’,
11 −− Colocate related records in the same partition ?
12 REDUNDANCY ’1’ ,
13 −− How many memory copies?
14 PERSISTENT [Optional disk store name]
15 −− Should this persist to disk too?
16 OFFHEAP "true | false"
17 −− Store in off−heap memory?
18 EVICTION_BY "MEMSIZE 200 | HEAPPERCENT",
19 −− Heap eviction based on size or occupancy ratio ?
20 ...)

Listing 1: Create Table DDL in SnappyData

In Spark, a DataFrame is a distributed collection of data
organized into named columns. It is conceptually equiva-
lent to a table in a relational database or a data frame in
R/Python, but with richer optimizations [14]. Any table
is accessible as a DataFrame, and any DataFrame can be
registered as a table. A DataFrame can be accessed from a
SQLContext, which itself is obtained from a SparkContext

(a SparkContext represents a connection to the Spark clus-
ter). Most of SnappyData’s extension API is offered through
a SnappyContext, which is an extension of the SQLContext.
Below is an example of working with DataFrames using
the SnappyContext, showing how to access a table as a
DataFrame, create a table using a DataFrame, and append
state from a DataFrame to a row table.

1 //Create a SnappyContext from a SparkContext
2 val context = new org.apache.spark.SparkContext(conf)
3 val snContext = org.apache.spark.sql.SnappyContext(context)
4

5 //Create table using SQL and access as DataFrame
6 snContext.sql(" CREATE TABLE MyTable")
7 myDataFrame: DataFrame = snContext.table("MyTable")
8

9 //Create a new ROW table using dataFrame ’myDataFrame’
10 snContext.createExternalTable(tableName, "column",

airlineDataFrame.schema, props)
11 myDataFrame.schema, props);
12

13 //Append contents of DataFrame into ROW table
14 someDataDF.write.format("ROW").mode(SaveMode.Append)
15 .options(props).saveAsTable("T1");

Listing 2: Working with DataFrames

4.3 SQL-based Stream Processing
The use of a scale-out in-memory key-value stores when

processing streams is pervasive, e.g., using Redis or Cas-
sandra with Storm. A common pattern we have observed
is summarizing streams either using counters on different
attributes over fixed time intervals or using more complex,
multi-dimensional summaries through custom programs. These
patterns are often implemented in the application program
with simple get/put requestsÊto the key-value store. While
these solutions scale well, we also find that users modify their
search patterns and trigger rules on these streams quite of-
ten. These modifications require expensive code changes,
often leading to brittle, hard to maintain systems.

In contrast, SQL-based stream processors offer a richer,
higher level abstraction to work with streams. Majority of
these products on the market are commercial, and also pri-
marily depend on external stores [2, 6]. Their built-in stor-
age engines are row-oriented and typically limited in scale.
As mentioned before, several of our use cases require contin-
uous queries with joins, scans, aggregations, top-K queries,
and complex correlations that involve historical and refer-
ence data. Thus, to ensure scalability of stream analytics,
we believe that some of the same optimizations found in
OLAP databases must be incorporated in streaming egines
as well [26]. SnappyData therefore extends Spark Streaming
with the following optimizations:

1. OLAP optimizations —By integrating and colocating
stream processing with our hybrid in-memory storage en-
gine, we leverage our optimizer and column store for expen-
sive scans and aggregations, while providing fast key-based
operations with our row store.

2. Reduced shuffling through co-partitioning —With
SnappyData, the partitioning key used by the input queue
(e.g., for Kafka sources), the stream processor and the un-
derlying store can all be the same. This dramatically reduces
the need to shuffle records.

3. Approximate stream analytics —When the volumes
are too high, a stream can be summarized using various
forms of samples and sketches (see section 6) to enable fast
time series analytics. This is particularly useful when appli-
cations are interested in trending patterns, for instance, ren-
dering a set of trend lines in real time on user displays [32].

4. SQL support. — To realize our goal of lowering the
TCO, we extended Spark Streaming so that streams can be
declared and processed using SQL. Below is an example for
defining streams using SQL-like syntax. Here, we parallely
ingest micro-batches from Kafka, transform the stream tu-

ples to comply with a schema and ingest them into a column
table (with possibly one or more stratified samples incre-
mentally maintained). A “stream table” is accessible to the
application as a DStream.

1 CREATE STREAM TABLE [IF NOT EXISTS] table_name (
2 <column definition>
3)
4 USING kafka_stream
5 OPTIONS (
6 storagelevel ,
7 zkQuorum ,
8 groupId,
9 topics ,

10 streamToRow
11)

Listing 3: Stream Table DDL

A SQL query that involves a “stream table” is called a
continuous query (CQ) and is continuously executed as the
stream emits batches. When a CQ is registered from the
application code, it returns a SchemaDStream (an extension
to DStream that is tied to a specific schema). We extended
the Spark SQL syntax to add support for “stream table”
and window semantics. Below is an example illustrating a
windowed CQ within an application code:

1

2 val resultSet = strSnapCtx.registerCQ("
3 select retweets, max(retweets) from tweetstreamTable
4 window (duration ’10’ seconds, slide ’10’ seconds)
5 group by retweets")
6

7 resultSet . foreachRDD(rdd => {
8 val dataFrame = strSnapCtx
9 .createDataFrame(rdd, resultSet.schema)

10

11 dataFrame.write.format("column")
12 .mode(SaveMode.Append)
13 .saveAsTable("externalTable")
14 }
15)

Listing 4: Continuous queries on streams in SnappyData

5. HYBRID CLUSTER MANAGER
As shown in Figure 3, spark applications run as inde-

pendent processes in the cluster, coordinated by the appli-
cation’s main program, called the driver program. Spark
applications connect to cluster managers (e.g., YARN and
Mesos) to acquire executors on nodes in the cluster. Ex-
ecutors are processes that run computations and store data
for the running application. The driver program owns a sin-
gleton (SparkContext) object which it uses to communicate
with its set of executors.

While Spark’s approach is appropriate for compute-heavy
tasks scanning large datasets, SnappyData must meet addi-
tional requirements (R1–R4) as an operational database.

R1. High concurrency — SnappyData use cases involve
a mixture of compute-intensive workloads and low latency
(sub-millisecond) OLTP operations such as point lookups
(index-based search), and insert/update of a single record.
The fair scheduler of Spark is not designed to meet the low
latency requirements of such operations.

Figure 3: Spark’s runtime process architecture

Figure 4: SnappyData’s cluster architecture

R2. State sharing — Each application submitted to Spark
works in isolation. State sharing across applications requires
an external store, which increases latency and is not viable
for near real time data sharing.

R3. High availability (HA) — As a highly concurrent
distributed system that offers low latency access to data, we
must protect applications from node failures (caused by soft-
ware bugs and hardware/network failures). High availability
of data and transparent handling of failed operations there-
fore become an important requirement for SnappyData.

R4. Consistency — As a highly available system that of-
fers concurrent data access, it becomes important to ensure
that all applications have a consistent view of data.

After an overview of our cluster architecture in section 5.1,
we explain how SnappyData meets each of these require-
ments in the subsequent sections.

5.1 SnappyData Cluster Architecture
A SnappyData cluster is a peer-to-peer (P2P) network

comprised of three distinct types of members (see figure 4).

1. Locator. Locator members provide discovery service for
the cluster. They inform a new member joining the group
about other existing members. A cluster usually has more
than one locator for high availability reasons.

2. Lead Node. The lead node member acts as a Spark
driver by maintaining a singleton SparkContext. There is
one primary lead node at any given instance but there can be
multiple secondary lead node instances on standby for fault
tolerance. The lead node hosts a REST server to accept and
run applications. The lead node also executes SQL queries
routed to it by “data server” members.

3. Data Servers. A data server member hosts data, em-
beds a Spark executor, and also contains a SQL engine ca-
pable of executing certain queries independently and more
efficiently than Spark. Data servers use intelligent query
routing to either execute the query directly on the node, or
pass it to the lead node for execution by Spark SQL.

5.2 High Concurrency in SnappyData
Thousands of concurrent ODBC and JDBC clients can si-

multaneously connect to a SnappyData cluster. To support
this degree of concurrency, SnappyData categorizes incom-
ing requests from these clients into (i) low latency requests
and (ii) high latency ones. For low latency operations, we

completely bypass Spark’s scheduling mechanism and di-
rectly operate on the data. We route high latency opera-
tions (e.g., compute intensive queries) through Spark’s fair
scheduling mechanism. This makes SnappyData a respon-
sive system, capable of handling multiple low latency short
operations as well as complex queries that iterate over large
datasets simultaneously.

5.3 State Sharing in SnappyData
A SnappyData cluster is designed to be a long running

clustered database. State is managed in tables that can be
shared across any number of connecting applications. Data
is stored in memory and replicated to at least one other
node in the system. Data can be persisted to disk in shared
nothing disk files for quick recovery. (See section 4 for more
details on table types and redundancy.) Nodes in the cluster
stay up for a long time and their life-cycle is independent
of application lifetimes. SnappyData achieves this goal by
decoupling its process startup and shutdown mechanisms
from those used by Spark.

5.4 High Availability in SnappyData
To explain SnappyData’s approach to high availability,

we first need to describe our underlying group membership
service as our building block for providing high availability.

5.4.1 P2P Dynamic Group Membership Service
A Spark cluster uses a master-slave model, where slaves

become aware of each other through a single master. Ensur-
ing consistency between the slaves is coordinated through
the master. For instance, in Spark, to broadcast a dataset
and cache it on all executors, one has to first send the dataset
to the driver node, which in turn replicates the data to each
worker node. This is a reasonable strategy for small im-
mutable datasets where the driver is rarely used. In con-
trast, SnappyData relies on a P2P connected system with
an underlying active group membership system that ensures
consistency between replicas. Strict membership manage-
ment is a pre-requisite for managing the metadata govern-
ing the distributed consistency of data in the cluster. It
allows SnappyData to offer lower latency guarantees even
while faced with failure conditions. Next, we explain the
building blocks of this group membership service (inherited
from GemFire).

Discovery service — The discovery service’s primary re-
sponsibility is to provide an initial list of known members,
including all lead nodes and data servers.

Group coordination — The oldest member in the group
automatically becomes the group coordinator. A group co-
ordinator establishes a consistent view of the current mem-
bership of the system and ensures that this view is consis-
tently known to all members.

Any new member first discovers the initial membership
and the coordinator through the discovery service. All JOIN
requests are received by the coordinator who confirms and
informs everyone about the new member. When a new mem-
ber joins, it may host a replica of some existing dataset. The
coordinator also ensures virtual synchrony to ensure that no
in-flight events are missed by the new member. All members
establishe a direct communication channel with each other.

Failure handling — While failures are easy to detect when
a socket endpoint fails (e.g., a node fails or the process dies),

it is rather difficult to detect network partitions in a timely
manner. To handle failures, we use multiple failure detection
schemes, e.g., UDP neighbor ping and TCP channel. When
any member detects a lack of response from another mem-
ber, it sends a SUSPECT notification to the coordinator,
which in turn perform a SUSPECT verification sequence to
ensure the SUSPECT is indeed unreachable. If so, it it es-
tablishes a new membership view, distributes it to all mem-
bers, and finally confirms the failure with the member that
raised the suspicion.

5.4.2 Achieving High Availability (HA)
The group membership system described above plays a

vital role in achieving HA.

• Lead node HA: Multiple lead nodes go through an elec-
tion protocol to elect a primary. To accomplish this, we rely
a distributed lock service (DLS) built using the group mem-
bership service. Only the first member who acquires the lock
proceeds to become the lead node. Other lead nodes oper-
ate in a standby mode and go through the election protocol
again if the primary fails.

• Executor HA: While Spark executors run within data
servers, we have to ensure that the Spark driver can re-
schedule tasks on other executors as well. To allow this, we
use the same leader election protocol as described above.

5.5 Transactional Consistency in SnappyData
SnappyData supports “read committed” and “repeatable

read” transaction isolation levels. A transaction can be initi-
ated using JDBC or ODBC using a single connection (trans-
actions cannot span connections). Transactions are always
coordinated on a single member (typically the first member
to receive a write) and sub-coordinators are started on other
nodes involved in the transaction. The transactional state
itself is managed in an in-memory buffer on each node un-
til the commit phase. We acquire write locks on all cohorts
(replicas) as and when the write occurs. Our model assumes
few or no conflicts and fails fast if the exclusive write lock
cannot be obtained, in which case a write-write conflict ex-
ception is returned to the caller. Essentially, the design is
tilted in favor of no centralized locking schema for scalability
but assumes short-lived transactions with a small write set.

Given that all conflicts are resolved before the commit
phase, the commit sequence involves a single commit mes-
sage to all cohorts. To ensure atomic commits, the messag-
ing is deeply integrated with the group consensus protocol
built into the membership sub-system. The details of how
consensus is established is beyond the scope of this paper.
However, if any of the members fail to respond to the commit
message, the group membership system will determine if the
member is unreachable or is indeed dead and will remove the
offending member from the distributed system. When the
failed member recovers, it sheds its local state and recovers
a consistent copy from another replica.

6. APPROXIMATION FOR INTERACTIVE
AND STREAMING ANALYTICS

As mentioned in section 1, achieving interactive response
times is a challenging task even when the data is kept in
memory. In fact, any OLAP query that requires distributed
shuffling of the records can take tens of seconds to minutes.
Moreover, distributed clusters are often shared by hundreds

Figure 5: Approximate query processing in SnappyData

of users and applications concurrently running such queries.
Finally, bursty arrivals of high velocity streams can easily ex-
ceed the available resources, in which case queues will build
up and latencies increase without bound [15].

To ensure interactive response times under all these con-
ditions, SnappyData’s query engine is equipped with state-
of-the-art AQP (approximate query processing) techniques.
While traditional stream processors similarly resort to load
shedding, they only provide accuracy guarantees for sim-
ple classes of SQL queries [15, 21, 29, 34]. To the best of
our knowledge, SnappyData is the first to provide accuracy
guarantees for arbitrarily complex OLAP queries on data
streams. Figure 5 shows our AQP pipeline, which is ex-
plained next.

DDL for Approximation — SnappyData extends the DDL
to allow users to include their approximation preference in
their table or stream definitions. SnappyData uses this in-
formation to build appropriate forms of synopses (i.e., prob-
abilistic data structures). Currently, users can specify any
number of column sets to built a count-min sketch (CMS), a
uniform sample, or a stratified sample on.1 A CMS [27] al-
lows for efficient top-K queries (a.k.a. heavy hitters), while a
stratified sample [10, 18, 23] enables fast answers for queries
with selective WHERE conditions on the stratified columns.
In the example below, the user is specifying that queries will
commonly have zip_houseId and timestamp in WHERE
conditions, and thus need to be stratified on. In addition,
top-K queries on value for a zip_houseId will be common.

1 CREATE TABLE meter_readings (
2 property INT,
3 timestamp INT,
4 value DOUBLE,
5 zip_houseId VARCHAR(20),
6) USING column;
7

8 CREATE SAMPLED TABLE meter_readings_sampled_zip
9 OPTIONS (BASETABLE ’meter_readings’

10 QCS ’zip_houseId,timestamp’);
11

12 CREATE TOPK meter_readings_topk_value

1We plan to fully automate this process using the CliffGuard
framework (http://cliffguard.org) to handle situations where
past queries are not representative of future ones.

http://cliffguard.org

13 OPTIONS (BASETABLE ’meter_readings’
14 KEY ’zip_houseId’,
15 AGGREGATE ’value’) ;

Listing 5: Approximation DDL

Online Synopsis Maintenance and Aging — As streams
are ingested, all relevant synopses are updated incremen-
tally, using the Hokusai algorithm [27] for CMS and reser-
voir sampling for uniform and stratified samples. For syn-
opses built on a stream, time is automatically added as an-
other dimension to the set of user-specified columns. The
time dimension allows SnappyData to continuously age the
tail of the CMS matrix or sampled tuples into our com-
pressed column-store format, while maintaining the last win-
dow (specified by application) in our in-memory row-store.
Our current solution for join queries between large tables
and streams is to include the join key in at least one of the
stratified samples. We also plan to automatically include
join-synopses [8] for foreign-key relationships in the schema.

Query Evaluation — Our approximate query engine au-
tomatically detects top-K queries and routes them to our
CMS evaluation module. In the absence of an appropriate
CMS, or when the resulting error does not meet user’s ac-
curacy requirements, the query is matched with a stratified
sample whose column set best matches that if the query’s
WHERE clause. In the absence of a proper stratified sam-
ple, uniform samples are used as a last resort. When user’s
accuracy cannot be met with available synopses, appropri-
ate action is taken depending on the High-level Accuracy
Contract requested by the user (see below).

Pipelined Bootstrap Operator — To quantify our sam-
pling error, we use bootstrap which can support almost ar-
bitrary OLAP queries. We use Poissionized bootstrap [9],
which annotates each tuple with 100–200 integers indepen-
dently drawn from a Poisson(1) distribution. These inte-
gers succinctly represent the multiplicities of each tuple in
each of the bootstrap replica. A special operator, called
pipelined bootstrap operator, uses these multiplicities as tu-
ples are pipelined through the physical plan to produce an
empirical distribution of the approximate answers.

While all previous AQP engines have used bootstrap only
to estimate confidence intervals, assuming that bias is neg-
ligible or that users themselves provide unbiased estima-
tors [9, 25, 33, 43, 44], SnappyData uses bootstrap’s em-
pirical distribution to also estimate and correct the bias
introduced during the approximation. (See [20, 28] for a
description of bias correction using bootstrap.)

High-level Accuracy Contract (HAC) — In general, for
a SQL query with m aggregate columns in its SELECT clause,
each output row has m+ 1 error terms: one to capture the
row’s probability of existence, and m terms for the errors of
its aggregate columns.

Consequently, AQP solutions have historically faced two
adoption barriers in practice: (i) appending error estimates
to the query output might break the internal logic of existing
BI (business intelligence) tools, and (ii) a typical database
user will simply find a large number of errors associated with
each row overwhelming.

To the best of our knowledge, SnappyData is the first
to address these challenges through the use of a High-level
Accuracy Contract (HAC) [28]. A HAC is a single number φ,

where 0 ≤ φ ≤ 1, chosen by the end user. Given a particular
φ, SnappyData guarantees that any results returned to users
or BI tools will be at least φ×100% accurate, in the following
sense. Every output tuple whose probability of existence is
below φ is omitted. However, aggregate values that do not
meet the requested HAC will be dealt with by using one of
the following policies (chosen by the user):

P1: Do nothing. All aggregate values are returned (possibly
with a warning).

P2: Use special symbols. Aggregate values that do not meet
the required HAC are replaced with special values (NULL
or pre-defined values).

P3: Drop the row. The entire row is omitted if any of its
aggregate columns do not meet the required HAC.

P4: Fail. The entire output relation is omitted, and a SQL
exception is thrown, if any of the aggregate columns in
any of the rows do not meet the required HAC.

This approach will allow users to control the system’s be-
havior, without having to include the error columns in the
output, and thus, without breaking the BI tools. Here, do
nothing is the most lenient policy and fail is the strictest
one. In the latter, the user can decide whether to re-run
the query with a more lenient policy, or simply resort to
exact query evaluation. The drop the row policy can affect
the internal logic of the BI tools if it relies on the output’s
cardinality.

On the other hand, advanced users can explicitly request
detailed error statistics through designated functions, shown
in Listing 6.

1 SELECT callTowerId, avg(droppedPackets) AS fault
2 FROM CallDetailRecords
3 WHERE fault > 0.08
4 AND existence probability() > 0.95
5 AND relative error(satisfaction, 0.95)<0.1
6 GROUP BY callTowerId

Listing 6: While HAC shields the user from detailed
statistics, they can still be requested explicitly

The HAC approach allows practitioners and end users
to express their required level of accuracy in an intuitive
fashion—as a single percentage—and without being over-
whelmed with numerous statistics. It also provides a range
of intuitive policies to cater to different levels of accuracy
concerns, while still offering advanced users the ability to
access and use detailed error statistics.

7. OTHER OPTIMIZATIONS
In this section, we present a few notable optimizations

offered by SnappyData.

7.1 Locality-Aware Partition Design
One major challenge in horizontally partitioned distributed

databases is to restrict the number of nodes involved in or-
der to minimize (i) shuffling during query execution and (ii)
expensive distributed locks across nodes to ensure transac-
tional consistency [22, 42]. Besides the network costs, shuf-
fling can also cause CPU bottlenecks by incurring excessive
copying (between kernel and user space) and serialization

costs [31]. To reduce the need for shuffling and distributed
locks, we promote two fundamental ideas in our data model:

1. Co-partitioning with shared keys — A fairly com-
mon technique in data placement is to take into account the
application’s common access patterns. We pursue a similar
strategy in SnappyData: since joins require a shared key, we
co-partition related tables on the join key. The query engine
can then optimize its query execution by pruning unneces-
sary partitions and localizing joins.

2. Locality through replication — Star schemas are
quite prevalent, wherein a few ever-growing fact tables are
related to several dimension tables. Since dimension tables
are relatively small and change less often, schema designers
can explicitly request that these tables be replicated. While
most distributed data systems support co-partitioning, repli-
cating data sets to all partitions to optimize joins is far less
common. In SnappyData, when nodes join/leave, we ensure
the replicas are maintained consistently in the presence of
many in-flight updates in the distributed system.

7.2 Unified Memory Manager
SnappyData leverages Spark SQL for its columnar stor-

age. When data is stored in column tables, it is managed
as blocks or rows. Below, we describe how we integrate the
memory manager of Spark with that of GemFire.

The memory manager in Spark divides the heap for use by
different components with a cap on the total heap that can
be safely allocated (90% by default). Each component (e.g.,
object cache, shuffle, unroll) is configured to use a separate
fraction of the heap. If the available heap for a component is
exhausted, then new allocations overflow to disk or fail. The
accounting for the memory usage is done by a BlockManager.

GemFire attempts to provide the user with fine grained
control over the memory used for tables. These controls are
split into two categories.

At the process level, when the total heap usage exceeds a
certain percentage, tables that are configured to evict will
either overflow items to disk or eliminate them altogether
(when the data in memory is used as a cache). At the table
level, when the table exceeds a pre-configured entry count or
memory size, entries are evicted to disk or destroyed. The
eviction uses an LRU algorithm, ensuring that the most stale
items are removed leaving more operationally used items in
memory. One important difference from Spark’s approach
is that the heap monitoring is done by observing the actual
heap usage as provided by the JDK’s management interface
for memory pools. Thus, all memory allocations in the JVM
are accounted for in the decision making process. However,
only tables and the runtime components mentioned above
can evict data. A maximum cap on heap usage is also con-
figured (90% by default) beyond which memory requests fail
until adequate available memory has been restored in the
process through the eviction process. In essence, by contin-
uously monitoring the heap, GemFire aggressively prevents
an Out-of-memory condition from occurring.

In the unified model, we apply the same thresholds for
all spark managed memory also. i.e. Spark block manager
starts to evict or overflow to disk when the eviction threshold
is breached. And, similarly, spark block allocations will fail
if the critical threshold is breached. This change does not
change how Spark’s need to allocate different fractions for
different components.

Both GemFire and Spark also support offheap storage
that currently needs to be configured separately. The data
store in Spark can use offheap using Tachyon integration [5]
[3] while runtime can use memory allocated outside of heap
using JVM’s private sun.misc.Unsafe API. Tables in Gem-
Fire can be configured to use offheap that uses the same
unsafe API.

8. EXPERIMENTS
The main advantage offered by SnappyData is the reduced

TCO by offering an integrated solution to replace the dis-
parate environments used for streaming, OLTP and OLAP
workloads. Since the long-term value of reduced operational
costs and ease-of-use cannot be easily quantified, in this sec-
tion we answer an alternative question: does SnappyData’s
hybrid solution come at the cost of a lower performance
compared to highly specialized systems for OLAP, OLTP
and stream processing?

To answer this question, we compared (i) SnappyData’s
OLAP performance against Spark SQL 1.5 using TPC-H
benchmark, (ii) its OLTP performance against MemSQL us-
ing YCSB benchmark, and (iii) its approximate and stream-
ing performance against exact stream processing using Twit-
ter’s live feed. Surprisingly, not only was SnappyData com-
parable to these highly specialized systems, in many cases
it was considerably superior too.

Unless specified otherwise, in our experiments we used 7
machines with 32 cores and 64 GB RAM running Red Hat
Enterprise Linux Server release 6.5.

8.1 OLAP Workload: TPC-H
TPC-H is a popular OLAP benchmark with 22 query

types. SnappyData’s DDL was used to create tables which
were hash partitioned and colocated. Spark SQL API was
used to create tables and load the data using Spark’s caching
API. We experimented with 1GB, 10GB and 100 GB datasets
(a.k.a. 1x, 10x, and 100x scales, respectively). However, a
known bug in Spark SQL 1.5 prevented it from running on
the 100 GB dataset. The bug has been fixed in 1.6, but the
official release was still in the works when we ran these tests.

We had to rewrite some of the queries so that they could
be executed in Spark SQL. Given that Spark SQL is still
evolving, we expect that it will soon improve to handle com-
plex nested queries without the need for modifying them.
For fairness, we used the modified queries for both Spark
SQL and SnappyData. We cached tables for both products,
ran each query 3 times, and recorded the average of the last
two runs. In addition, while SnappyData supports the use
of indexes (which would be beneficial for several queries),
we opted not to create any indexes.

The results are shown in Figure 6. In summary, our ex-
periments indicated that queries executed faster in Snap-
pyData, particularly for those with one or more joins. On
average, queries ran 73% and 52% faster on SnappyData,
for the 1GB and 10GB datasets, respectively.

The reason behind SnappyData’s superiority is that it
models tables as partitioned or replicated (see section 4), and
uses a number of optimizations for colocating them accord-
ingly. We modeled the partitioned tables to be colocated
and modeled all dimension tables to be replicated. For joins
on colocated tables, SnappyData alters the query plan to
avoid shuffling altogether because related items are already
on the same node. In contrast, Spark SQL chooses an ex-

(a) (b) (c)

Figure 6: Response time comparisons between SnappyData and Spark SQL for (a) TPC-H queries on 1GB, (b) TPC-H
queries on 10GB, and (c) Q2, Q8 and Q18 on 10GB

pensive shuffling plan. In general, SnappyData can optimize
joins between the following table types.

Column Replicated Partitioned

Column
√ √ ×

Replicated
√ √ √

Partitioned × √ √

Table 1: Table types with join optimization in SnappyData

8.2 OLTP Workload: YCSB
We used Yahoo’s Cloud Serving Benchmark (YCSB [19])

for emulating an OLTP workload, and compared Snappy-
Data against MemSQL, as a state-of-the-art in-memory OLT-
P/OLAP commercial database.

For this experiment, we used YCSB’s A, B, C and F
workloads. In YCSB, each workload represents a particular
mix of reads/writes, data sizes, and request distributions,
and can be used to evaluate systems at different points in
the performance space (see Table 2). We used 100 million
records with the default redundancy for both SnappyData
and MemSQL. Thus, the total data volume was 100 GB for
both systems.

As shown in figure 7a, on average, SnappyData delivered
51% higher throughput across all A, B, C, and F workloads.
SnappyData also achieved remarkably lower latencies (43%)
compared to MemSQL across all workloads (see figure 7b).

8.3 AQP and Stream Analytics: Twitter
To study the effectiveness of our AQP in enabling interac-

tive analytics over large volumes of streaming data, we com-
pared two alternatives: (i) running the continuous query on
the entire stream to provide exact answers, and (ii) running
the query on a 2% stratified sample (i.e., AQP) to provide
an approximate answer.

We used Twitter’s live feed to capture 130+ million tweets
using Spark’s DataSource API, placed in Kafka queues and
ingested into SnappyData. We ran a continuous query to re-
port the top 10 hashtags at regular intervals, and recorded
the execution time difference between the exact and approx-
imate query.

The results are shown in figure 7c for different window
sizes. For the smallest window size (0.5 min), SnappyData
delivered a highly accurate approximate answer 3x faster.
This performance gap rapidly grew with the window size,
reaching 20x for a 12-minute window. As shown in figure 7c,
for this window size the execution time of exact query was
19 seconds, which is hardly an interactive speed, while our
stratified sampling strategy maintained a consistent perfor-
mance.

For all window sizes, the order of hashtags were mostly
consistent with the exact results. Even the actual counts,

Workload Operations

Update heavy(A) Read 50% Update 50%
Read heavy(B) Read 95% Update 5%
Read only(C) Read 100%

Readmodifywrite(F) Read 50% Read-Modify-Write 50%
Table 2: Workload Operations Table

showed 90-95% accuracy in our tests, which could be further
improved by using a larger sampling rate.

9. RELATED WORK
Stream processing — There are numerous commercial so-
lutions for stream and complex event processing, such as
Samza [1], Storm [38], Aurora/Tibco Streambase, Google’s
MillWheel [12], Confluent, sqlstream [4], and Spark Stream-
ing [41]. (For academic solutions see [30, 36] and the refer-
ences within.) While these systems support real-time moni-
toring and continuous queries and can handle bursty arrivals
of data, they are generally not designed for scalable analyt-
ics the way that traditional OLAP databases are. While
academic prototypes [13, 17] provide load shedding to cope
with bursty arrivals, they only provide accuracy guarantees
for simple aggregate queries [15, 21, 29] whereas SnappyData
can provide streaming AQP for complex analytic queries.

There most related papers are DataCell [26], AIM [16],
and Druid [40]. While there are many similarities in our
goals and approach, AIM’s design is focused on a telco-
specific solution while we target a general-purpose opera-
tional DB with full transaction support. Similarly, DataCell
provides no OLTP support and Druid does not offer SQL.

Transaction support — Both transactional DBMSs and
modern key-value stores (e.g., HBase, Cassandra, MongoDB)
are highly scalable for point reads and writes, they are not
apt at OLAP-style analytics. A few commercial hybrid in-
memory engines, such as MemSQL and SAP Hana, opti-
mize for both OLTP and OLAP workloads. MemSQL lacks
streaming support, and Hana’s Smart Data Streaming is an
add-on that can interface with Hana’s engine, but is not
sufficiently integrated to capitalize on Hana’s OLAP-style
optimizations.

Interactive SQL analytics — Both MPP (massively par-
allel processing) databases and modern SQL-on-Hadoop en-
gines (e.g., Hive [37], Impala [24], and Spark SQL [14]) pro-
vide scalable OLAP analytics through various optimizations
for table scans, group by-aggregations, joins.

AQP — Several AQP systems have used stratified sam-
ples [10, 11, 18, 23] and bootstrap-based error estimation [9,
25, 33, 44] for interactive analytics. However, to the best of
our knowledge, SnappyData is the first to (i) use bootstrap
for automatic bias correction, and (ii) provide high-level ac-
curacy contracts to end users.

(a) (b) (c)

Figure 7: (a) Throughput comparison between SnappyData and MemSQL on YCSB, (b) latency comparison between
SnappyData and MemSQL on YCSB, and (c) execution time difference for exact vs. approximate stream analytics on Twitter

10. CONCLUSION
In this paper, we proposed a unified platform for real

time operational analytics, SnappyData, to support OLTP,
OLAP, and stream analytics in a single integrated solution.
We presented the approach that we have taken to deeply
integrate Apache Spark (a computational engine for high
throughput analytics) with GemFire (a scale out in mem-
ory transactional store). SnappyData extends Spark SQL
and Spark Streaming API with mutability semantics, and
offers various optimizations to enable collocated processing
of streams and stored datasets. We also made the case for
integrating approximate query processing into this platform
as a critical differentiator for supporting real time opera-
tional analytics over big stored and streaming data.

Finally, we evaluated the performance of our integrated
solution using popular benchmarks. We believe that our
platform significantly lowers the TCO for operational real-
time analytics by combining products that would otherwise
have to be managed, deployed, and monitored separately.

Bibliography
[1] Apache Samza. http://samza.apache.org/.
[2] IBM InfoSphere BigInsights. http://tinyurl.com/ouphdss.
[3] Spark RDD Persistence. http://tinyurl.com/pw8dq3q.
[4] sqlstream. http://www.sqlstream.com/.
[5] Tachyon Project. http://tachyon-project.org.
[6] TIBCO StreamBase. http://www.streambase.com/.
[7] D. Abadi et al. The Design and Implementation of Modern

Column-Oriented Database Systems. 2013.
[8] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy.

Join synopses for approximate query answering. In SIG-
MOD, 1999.

[9] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar, M. Jor-
dan, S. Madden, B. Mozafari, and I. Stoica. Knowing when
you’re wrong: Building fast and reliable approximate query
processing systems. In SIGMOD, 2014.

[10] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden,
and I. Stoica. BlinkDB: queries with bounded errors and
bounded response times on very large data. In EuroSys,
2013.

[11] S. Agarwal, A. Panda, B. Mozafari, A. P. Iyer, S. Madden,
and I. Stoica. Blink and it’s done: Interactive queries on
very large data. PVLDB, 2012.

[12] T. Akidau et al. MillWheel: fault-tolerant stream processing
at internet scale. PVLDB, 2013.

[13] A. Arasu et al. Stream: the stanford stream data manager.
In SIGMOD, 2003.

[14] M. Armbrust et al. Spark SQL: Relational data processing
in Spark. In SIGMOD, 2015.

[15] B. Babcock, M. Datar, and R. Motwani. Load Shedding for
Aggregation Queries over Data Streams. In ICDE, 2004.

[16] L. Braun et al. Analytics in motion: High performance event-
processing and real-time analytics in the same database. In
SIGMOD, 2015.

[17] S. Chandrasekaran et al. TelegraphCQ: continuous dataflow
processing. In SIGMOD, 2003.

[18] S. Chaudhuri, G. Das, and V. Narasayya. Optimized strat-
ified sampling for approximate query processing. TODS,
2007.

[19] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with ycsb. In
SoCC, 2010.

[20] B. Efron and R. Tibshirani. An introduction to the bootstrap,
volume 57. CRC press, 1993.

[21] B. Gedik, K.-L. Wu, P. S. Yu, and L. Liu. MobiQual: QoS-
aware Load Shedding in Mobile CQ Systems. In ICDE, 2008.

[22] P. Helland. Life beyond distributed transactions: an apos-
tate’s opinion. In CIDR, 2007.

[23] S. Joshi and C. Jermaine. Robust Stratified Sampling Plans
for Low Selectivity Queries. In ICDE, 2008.

[24] M. Kornacker et al. Impala: A modern, open-source sql
engine for hadoop. In CIDR, 2015.

[25] N. Laptev et al. Early Accurate Results for Advanced Ana-
lytics on MapReduce. PVLDB, 2012.

[26] E. Liarou et al. Monetdb/datacell: online analytics in a
streaming column-store. PVLDB, 2012.

[27] S. Matusevych, A. Smola, and A. Ahmed. Hokusai-sketching
streams in real time. arXiv preprint arXiv:1210.4891, 2012.

[28] B. Mozafari and N. Niu. A handbook for building an ap-
proximate query engine. IEEE Data Engineering Bulletin,
2015.

[29] B. Mozafari and C. Zaniolo. Optimal load shedding with
aggregates and mining queries. In ICDE, 2010.

[30] B. Mozafari, K. Zeng, and C. Zaniolo. High-performance
complex event processing over xml streams. In SIGMOD,
2012.

[31] K. Ousterhout et al. Making sense of performance in data
analytics frameworks. In NSDI, 2015.

[32] Y. Park, M. Cafarella, and B. Mozafari. Visualization-aware
sampling for very large databases. CoRR, 2015.

[33] A. Pol and C. Jermaine. Relational confidence bounds are
easy with the bootstrap. In SIGMOD, 2005.

[34] N. Tatbul et al. Load shedding in a data stream manager.
In VLDB, 2003.

[35] M. Telecom. GPS trackers trial may help people with de-
mentia. http://tinyurl.com/zphr6au.

[36] H. Thakkar, N. Laptev, H. Mousavi, B. Mozafari, V. Russo,
and C. Zaniolo. SMM: A data stream management system
for knowledge discovery. In ICDE, 2011.

[37] A. Thusoo et al. Hive: a warehousing solution over a map-
reduce framework. PVLDB, 2009.

[38] A. Toshniwal et al. Storm@twitter. In SIGMOD, 2014.
[39] R. Xin and J. Rosen. Project Tungsten: Bringing Spark

closer to bare metal. http://tinyurl.com/mzw7hew.
[40] F. Yang et al. Druid: a real-time analytical data store. In

SIGMOD, 2014.
[41] M. Zaharia et al. Discretized streams: Fault-tolerant stream-

ing computation at scale. In SOSP, 2013.
[42] E. Zamanian, C. Binnig, and A. Salama. Locality-aware

partitioning in parallel database systems. In SIGMOD, 2015.
[43] K. Zeng, S. Gao, J. Gu, B. Mozafari, and C. Zaniolo. Abs: a

system for scalable approximate queries with accuracy guar-
antees. In SIGMOD, 2014.

[44] K. Zeng, S. Gao, B. Mozafari, and C. Zaniolo. The ana-
lytical bootstrap: a new method for fast error estimation in
approximate query processing. In SIGMOD, 2014.

http://samza.apache.org/
http://tinyurl.com/ouphdss
http://tinyurl.com/pw8dq3q
http://www.sqlstream.com/
http://tachyon-project.org
http://www.streambase.com/
http://tinyurl.com/zphr6au
http://tinyurl.com/mzw7hew

	Introduction
	Target Workload
	Use Case Scenarios
	Design Assumptions

	System overview
	System Architecture
	Data Ingestion Pipeline

	Data Model
	Row and Column Oriented Tables
	Unified API
	SQL-based Stream Processing

	Hybrid Cluster Manager
	SnappyData Cluster Architecture
	High Concurrency in SnappyData
	State Sharing in SnappyData
	High Availability in SnappyData
	P2P Dynamic Group Membership Service
	Achieving High Availability (HA)

	Transactional Consistency in SnappyData

	Approximation for Interactive and Streaming Analytics
	Other Optimizations
	Locality-Aware Partition Design
	Unified Memory Manager

	Experiments
	OLAP Workload: TPC-H
	OLTP Workload: YCSB
	AQP and Stream Analytics: Twitter

	Related Work
	Conclusion

