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ABSTRACT

We demonstrate VERDICTDB, the first platform-independent ap-
proximate query processing (AQP) system. Unlike existing AQP
systems that are tightly-integrated into a specific database, VER-
pIcTDB operates at the driver-level, acting as a middleware be-
tween users and off-the-shelf database systems. In other words,
VERDICTDB requires no modifications to the database internals; it
simply relies on rewriting incoming queries such that the standard
execution of the rewritten queries under relational semantics yields
approximate answers to the original queries. VERDICTDB exploits a
novel technique for error estimation called variational subsampling,
which is amenable to efficient computation via SQL.

In this demonstration, we showcase VERDICTDB's performance
benefits (up to two orders of magnitude) compared to the queries
that are issued directly to existing query engines. We also illustrate
that the approximate answers returned by VERDICTDB are nearly
identical to the exact answers. We use Apache Spark SQL and
Amazon Redshift as two examples of modern distributed query
platforms. We allow the audience to explore VERDICTDB using a
web-based interface (e.g., Hue or Apache Zeppelin) to issue queries
and visualize their answers. VERDICTDB is currently open-sourced
and available under Apache License (V2).

CCS CONCEPTS

 Information systems — Query optimization; Online ana-
lytical processing engines;

KEYWORDS

Approximate query processing, data analytics

ACM Reference Format:

Wen He, Yongjoo Park, Idris Hanafi, Barzan Mozafari, Jacob Yatvitskiy. 2018.
Demonstration of VERDICTDB, the Platform-Independent AQP System: http:
//verdictdb.org. In SIGMOD’18: 2018 International Conference on Management
of Data, June 10-15, 2018, Houston, TX, USA. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3183713.3193538

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-4703-7/18/06...$15.00
https://doi.org/10.1145/3183713.3193538

1 INTRODUCTION

Approximate query processing (AQP) allows users to obtain query
answers much faster at a negligible cost to accuracy [21]. Currently,
however, only a handful of query engines offer approximation fea-
tures. Universal approximate query processing [26] aims to offer
AQP capabilities regardless of the specific SQL platform by the user
(e.g., Hive, Spark SQL, Impala, Amazon Redshift, Presto, etc.). In this
demonstration, we present the first Universal AQP system, called
VERDICTDB, which can work with a wide variety of distributed
query engines. Before describing our demonstration scenarios, we
first describe our motivation and the challenges involved in achiev-
ing Universal AQP.

Motivation for Universal AQP. Existing AQP techniques require
substantial changes to the standard query evaluation logic imple-
mented in relational engines. For example, previous work has either
intimately integrated the error estimation logic into the scan opera-
tor [8, 14, 22] or has overridden the relational operators altogether
[23, 34]. Others, such as AQUA [7], have used query-rewriting tech-
niques but have relied on the underlying engine’s ability to enforce
PK-FK (primary-key, foreign-key) relationships—an assumption
that does not hold in modern SQL-on-Hadoop engines. Due to the
reluctance of database vendors in modifying their internal imple-
mentation, adoption of AQP solutions has been slow [17]. Only
recently, a few vendors have started to include limited forms of
approximation features in their products [2, 4, 13, 30, 31]. To widen
the reach of AQP technology and accelerate its adoption, VER-
pIcTDB aims to provide a Universal AQP solution: powerful and
efficient AQP capabilities without any modifications to existing
query engines.

To achieve this universality, VERDICTDB acts as a middleware; it
rewrites incoming queries, such that the standard execution of the
rewritten queries under relational semantics would yield approxi-
mate answers to the original queries. This requires the entire AQP
process to be encoded in SQL, which poses several challenges.

Challenges in Universal AQP. First, correct error estimation
must consider inter-tuple correlations introduced as a result of join-
ing multiple sample tables. Previous work has achieved this goal
by modifying the internal query evaluation of the database [14, 33],
using special join algorithms [15], or restricting joins to PK-FK
joins [7]. However, as a middleware, VERDICTDB can neither change
the query evaluation nor use non-standard join algorithms. On mod-
ern SQL-on-Hadoop systems, we cannot enforce FK constraints
either.

Second, the generality of Universal AQP should not come at a
great cost to computational efficiency. It must remain sufficiently


http://verdictdb.org
http://verdictdb.org
http://verdictdb.org
https://doi.org/10.1145/3183713.3193538
https://doi.org/10.1145/3183713.3193538

user/app VERDICTDB database

'
create sample i '

B
'
v create table
2 1
£ h
% : update metadata
' | upi >
0. done Tone
< <
L
; , :
H original query N !
'
0 1
H plan samples |
: ;
: , ;
g f rewrite query
= H :
S C C
0 i il
' approximate )
rewritten quer
h answer & query o
0 error estimate raw answer
T ——— <
0 - '
'

Figure 1: VERDICTDB’s offline and online workflow: sample
preparation (in gray) and query processing (in green).

efficient compared to exact query processing to justify the use of
approximation in the first place. Analytical error estimation strate-
gies that modify query evaluation [10, 14, 22] are not applicable. In
contrast, resampling-based approaches [8, 28] can be implemented
without modifying the DBMS; however, they are computationally
prohibitive when expressed in SQL.

VERDICTDB’s Approach. Although resampling-based error esti-
mation techniques [8, 28] support a wide class of queries, the cost
of constructing resamples often becomes a major performance bot-
tleneck. VERDICTDB relies on a novel alternative called variational
subsampling [26], which yields provably-equivalent asymptotic
properties as traditional subsampling [29]. The key idea in varia-
tional subsampling is that, instead of running the same aggregate
query on multiple subsamples, we can achieve the same result
through a single execution of a carefully rewritten query on the
sample table itself. Our rewritten SQL query treats different re-
samples separately by relying on a resample-id assigned to each
tuple.

Next, we provide a brief overview of VERDICTDB and refer the in-
terested reader to [26] for further details on variational subsampling
and VERDICTDB’s architecture.

2 VERDICTDB OVERVIEW

In this section, we discuss VERDICTDB’s deployment scenario, its
workflow, and the types of queries it supports.

2.1 Deployment

Users can use any interface for issuing their SQL queries and any
off-the-shelf query engine that can return exact answers to SQL
queries.! VERDICTDB is deployed as a middleware between the user
(or query interface) and the query engine. Specifically, VErRDIcTDB
operates at the driver-level and accepts JDBC/ODBC connections.
VERDICTDB communicates with the query engine in SQL using
its standard interface, i.e., JDBC for Hive, Impala, Redshift, and

! The query engine must support rand(), a hash function (e.g., md5, crc32), create
table ... as select ..., and window functions (e.g., count(*) over ()).

Table 1: Types of queries supported by VERDICTDB.

aggregates count, count-distinct, sum, avg, quantile,
user-defined aggregate (UDA) functions

derived tables or base tables joined via equi-joins;
the derived table can be a select statement with
or without aggregate functions.

expr comp expr (e.g., price > 100),

expr comp subquery (e.g., price > (select
...)), logical AND and OR, etc.

group by, order by, limit, having

table sources

selections
(filtering)

other clauses

spark.DataFrame for Spark SQL. VERDICTDB accesses the query
engine using the same credentials as the user (e.g., ID/password, a
Kerberos ticket). Thus, VERDICTDB can only access the data that
the user is authorized to access.

2.2 Workflow

The workflow in VERDICTDB consists of two stages: sample prepa-
ration and query processing, depicted in Figure 1 as gray and
green boxes, respectively. During the sample preparation stage,
VERDICTDB builds multiple sample tables for various base tables.
By default, VErRDICTDB collects certain statistics about each base
table to determine if and what types of samples to build for that
base table. VERDICTDB currently supports simple random samples,
stratified samples, and hash-based samples. However, the user can
also manually specify which types of samples to build for each table.
The created sample tables—including their metadata—are stored
in the query engine itself. The user can also define a High-level
Accuracy Contract (HAC) [21] to specify his/her error tolerance.

When the user issues a query, VERDICTDB intercepts it and de-
cides whether it can be approximated and sped up without violating
the HAC. If not, it simply reroutes the unmodified query to the
query engine and returns the exact answers back to the user. Other-
wise, VERDICTDB determines a combination of sample tables that
can minimize the approximation error. It then sends a rewritten
query to the query engine that uses those sample tables instead of
the original (base) tables. Once VERDICTDB obtains the raw answer
from the query engine, it applies necessary adjustments to the an-
swer and returns an approximate modified answer along with error
estimates to the user [26].

2.3 Supported Queries

As previously mentioned, when VERDICTDB cannot speed up the
query without violating HAC requirements, it simply passes down
the unmodified query to the query engine. Queries that can be
efficiently approximated by VERDICTDB include non-extreme ag-
gregate queries (i.e., count, sum, avg, percentile). The extreme
aggregates (i.e., min and max) are not currently supported.
VERDICTDB supports equijoins, comparison subqueries (e.g.,
where sales < (select avg(sales) ...)), and other selec-
tion predicates (e.g., IN list, LIKE regex, <, >).To support
comparison subqueries, VERDICTDB converts them into a join. Ta-
ble 1 summarizes the types of queries supported by VERDICTDB.



val sparkDF = spark.sql("" FINISHED [>
select t1.department, order_hour_of_day, cast(c as float) / total as ratio
from
(select order_hour_of_day, department, count(*) as c
from instacart10@g.order_products op
inner join instacart100g.orders o on op.order_id = o.order_id
inner join instacart100g.products p on op.product_id = p.product_id
inner join instacart100g.departments d on p.department_id = d.department_id
group by order_hour_of_day, d.department) t1
inner join
(select department, count(*) as total
from instacart100g.order_products op
inner join instacart100g.orders o on op.order_id = o.order_id
inner join instacart100g.products p on op.product_id = p.product_id
inner join instacart100g.departments d on p.department_id = d.department_id
group by department) t2
on t1.departnent = t2.department
order by department, order_hour_of_day
"y

println("%table\n")
printin(sparkDF . columns .mkString("\t"))
sparkDF . collect(). foreach(x => println(x.mkString("\t"))

sparkDF: org.apache. spark.sql.DataFrame = [department: string, order_hour_of_day: int ... 1 more field]

e w || |2+ settingsv

@alconol babies @ bakery beverages  @breafast  © bulk @ canned goods

dairy eggs @ deli dry goods pasta @ frozen household @ intemational - meat seafood
@missing other pantry personal care @ pets produce  @snacks

Exact Answer; 1 hour 9 mins =
(directly from Spark SQL)

Val verdictDF - verdict.sql("" NISHED D>
select tl.department, order_hour_of day, cast(c as float) / total as ratio
from
(select order_hour_of_day, department, count(*) as ¢
from instacart10@g.order_products op
inner join instacart100g.orders o on op.order_id = o.order_id
inner join instacart100g.products p on op.product_id = p.product_id
inner join instacart100g.departments d on p.department_id = d.department_id
group by order_hour_of_day, d.department) t1
inner join
(select department, count(*) as total
from instacart100g.order_products op
inner join instacart100g.orders o on op.order_id = o.order_id
inner join instacart100g.products p on op.product_id = p.product_id
inner join instacart100g.departments d on p.department_id = d.department_id
group by department) t2
on t1.department = t2.department
order by departnent, order_hour_of_day
"

println("¥table\n")
printin(verdictDF . colums.mkString("\t"))

verdictDF.collect(). foreach(x = println(x.mkString("\t")))

VerdictDF: org.apache. spark.sql.Dataset[org.apache.spark.sql.Row] = [department: string, order_hour_of day: int
.. 1 more field]

B W @ ke lE & - sefings~
@alcohol babies @ bakery beverages  @breaklast ) bulk @ canned goods
dairy eggs @ deli dry goods pasta @ frozen housenold @ intemational ** meat seafood
@missing other @ pantry personal care @ pets produce @ snacks

Approximate Answer; 50 secs =
(from Spark SQL through VerdictDB)

Figure 2: The query on the left is issued directly against Spark SQL while the one on the right is issued against Spark SQL
through VERDICTDB. The results are nearly identical while the latter is faster.

3 DEMONSTRATION SCENARIO

We demonstrate VERDICTDB using an interactive web interface
(Section 3.1). We use two large-scale datasets (Section 3.2), to show-
case three aspects of VERDICTDB: platform-independence, speedup,
and correctness (Sections 3.3 to 3.5).

3.1 Query Interface

Our demonstration will use Apache Zeppelin [1] for issuing queries
and visualizing the answers returned by the underlying engine with
and without VERDICTDB. An example screen is shown in Figure 2.
Each page in Apache Zeppelin will contain multiple notebooks. In
each notebook, the user will issue a single SQL statement. By jux-
taposing two notebooks issuing the same query with and without
VERDICTDB, the user will be able to easily compare the latencies
and the query answers.

In other words, our demo will have pairs of pre-created note-
books. The notebooks on the left side of the page will be connected
to off-the-shelf SQL engines (e.g., Spark SQL, Amazon Redshift)
while the notebooks on the right side will be connected through
VERDICTDB to those same engines. This will allow the audience
to visually compare the approximate and the exact answers, while
noticing their latency difference.

3.2 Datasets

We will use a real-life dataset, insta [3], as well as a well-known
benchmark, TPC-H [5]. The insta dataset is a 100X scaled version
of a publicly available sales records of an online grocery store, called
Instacart. We also use the standard TPC-H with a scale factor of
500 (i.e., 500 GB). Recall that VERDICTDB’s workflow consists of
sample preparation and query processing. Considering the limited
time of the demonstration, we will prepare 1% samples of the large
fact tables in advance. During the live demonstration, the audience
will simply issue queries without any preparation.

3.3 Platform-Independence

To showcase VERDICTDB’s platform-independence—one of VER-
pIcTDB’s salient features—we will use multiple query engines, in-
cluding Spark SQL, Amazon Redshift, and Apache Hive. We will
have video recordings of our demonstration using other SQL en-
gines on our website, which also host our open-source release [6].
Figure 2 shows a screenshot example of our demonstration using
Spark SQL.

3.4 Speedup

A key benefit of AQP in general, and VERDICTDB in particular, is to
significantly speedup the query processing. We will demonstrate the
speedup benefits of VERDICTDB using the elapsed times displayed
by Apache Zeppelin. For each query engine, comparing the elapsed
times with and without VERDICTDB will allow the audience to
appreciate the massive speedups brought by VErRDICTDB.

For example, Figure 2 is a query that analyzes how the order fre-
quencies of different types of products change throughout the day
in an online grocery store. Here, Spark SQL took 1.15 hours while
SparkSQL-plus-VERDICTDB took only 50 seconds. In other words,
VERDICTDB sped up Spark SQL by 82.8% faster, while incurring
only 0.6% error.

Given that the queries directly issued against these query en-
gines can take excessively long, we will run them in advance and
keep their results and latencies on the display. During the live
demonstration, we will guide the audience to avoid querying the
underlying engines directly and instead interact with the notebooks
that send queries through VErRDICTDB.

3.5 Correctness

We demonstrate that VERDICTDB’s approximate answers are highly
accurate for many types of complex analytical queries. Figure 2
shows an example. In each notebook, we will visualize both the



exact as well as the approximate answer, allowing the audience
to visually observe that VERDICTDB’s answers are in most cases
indistinguishable from the exact ones returned by the underlying
query engine. In the example of Figure 2, the audience can see the
same correlation between order frequencies and the time of day.

In addition to comparing the overall trend of the visualized re-
sults, the audience will also see the actual error bounds computed by
VERDICTDB. VERDICTDB returns error bounds using an additional
column; clicking a special icon will display both the estimated and
the exact errors numerically.

4 RELATED WORK

AQP has been a subject of great interest over the past decades.
For example, STRAT [11] uses a single stratified sample, while
BlinkDB [9] creates multiple stratified samples based on different
column sets. Quickr [14] uses on-the-fly sampling strategies to sup-
port complex and adhoc queries. Online Aggregation techniques
continuously refine their answers during query execution [24, 32].
However, these systems require modifications of the database’s in-
ternals, and are therefore tied to a specific query engine. Likewise,
Aqua relies on CLT-based closed-forms, which requires indepen-
dent random variables. Therefore, it can only support PK-FK joins
[7]. Also, due to its use of closed-forms, Aqua cannot support UDAs.
VERDICTDB uses middleware and query rewriting approaches to
achieve its universality and platform-independence. In the past, we
have used query rewriting to enforce security policies transpar-
ently from the users [12]. Likewise, we have used a middleware
approach to speed up visualization workloads [25] and to speed
up future query processing by reusing past query answers [27]. In
VERDICTDB, we use a middleware architecture to achieve platform-
independence for AQP.

5 CONCLUSION AND FUTURE WORK

Our demonstration focuses on the user experience and how they
can benefit from using VERDICTDB on top of their favorite query
engine without having to modify the engine or their application.
By using several popular query engines (e.g., Spark SQL, Amazon
Redshift, and Hive), we showcase VERDICTDB’s great generality
across different platforms, as well as its statistical correctness and
efficiency. The core features of VERDICTDB are currently open-
sourced under Apache License, Version 2, allowing both researchers
and practitioners to freely test and deploy VERDICTDB in their own
environment. Additional videos and documentations can be found
on our website [6].

Currently, we are actively working on adding a physical de-
signer to automatically decide which samples to build for more
complex and adhoc workloads that change over time [20], integrat-
ing Database Learning to enable faster query processing [16, 27],
and adapting our machine learning-based latency prediction tech-
niques [18, 19] to estimate the runtime of a query on a given sample.
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