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ABSTRACT
Running an online transaction processing (OLTP) system is one of
the most daunting tasks required of database administrators (DBAs).
As businesses rely on OLTP databases to support their mission-
critical and real-time applications, poor database performance di-
rectly impacts their revenue and user experience. As a result, DBAs
constantly monitor, diagnose, and rectify any performance decays.

Unfortunately, the manual process of debugging and diagnosing
OLTP performance problems is extremely tedious and non-trivial.
Rather than being caused by a single slow query, performance prob-
lems in OLTP databases are often due to a large number of concur-
rent and competing transactions adding up to compounded, non-
linear effects that are difficult to isolate. Sudden changes in request
volume, transactional patterns, network traffic, or data distribution
can cause previously abundant resources to become scarce, and the
performance to plummet.

This paper presents a practical tool for assisting DBAs in quickly
and reliably diagnosing performance problems in an OLTP database.
By analyzing hundreds of statistics and configurations collected
over the lifetime of the system, our algorithm quickly identifies
a small set of potential causes and presents them to the DBA. The
root-cause established by the DBA is reincorporated into our al-
gorithm as a new causal model to improve future diagnoses. Our
experiments show that this algorithm is substantially more accurate
than the state-of-the-art algorithm in finding correct explanations.
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1. INTRODUCTION
Many enterprise applications rely on executing transactions against

their database backend to store, query, and update data. As a re-
sult, databases running online transaction processing (OLTP) work-
loads are some of the most mission-critical software components
for enterprises. Any service interruptions or performance hiccups
in these databases often lead directly to revenue loss.
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Thus, a major responsibility of database administrators (DBAs)
in large organizations is to constantly monitor their OLTP workload
for any performance failures or slowdowns, and to take appropri-
ate actions promptly to restore performance. However, diagnosing
the root cause of a performance problem is generally tedious, as it
requires the DBA to consider many possibilities by manually in-
specting queries and various log files over time. These challenges
are exacerbated in OLTP workloads because performance problems
cannot be traced back to a few demanding queries or their poor ex-
ecution plans, as is often the case in analytical workloads. In fact,
most transactions take only a fraction of a millisecond to complete.
However, tens of thousands of concurrent transactions competing
for the same resources (e.g., CPU, disk I/O, memory) can create
highly non-linear and counter-intuitive effects on database perfor-
mance. Minor changes in an OLTP workload can push the system
into a new performance regime, quickly making previously abun-
dant resources scarce.

However, it can be quite challenging for most DBAs to explain
(or even investigate) such phenomena. Modern databases and op-
erating systems collect massive volumes of detailed statistics and
log files over time, creating an exponential number of subsets of
DBMS variables and statistics that may explain a performance de-
cay. For instance, MySQL maintains over 260 different statistics
and variables (see Section 2.1) and commercial DBMSs collect
thousands of granular statistics (e.g., Teradata [12]). Unfortunately,
existing databases fail to provide DBAs with effective tools for
analyzing performance problems using these rich datasets, aside
from basic visualization and monitoring mechanisms. As a con-
sequence, highly-skilled and highly-paid DBAs (a scarce resource
themselves) spend many hours diagnosing performance problems
through different conjectures and manually inspecting various queries
and log files, until the root cause is found [13].

To avoid this tedious, error-prone, and adhoc procedure, we pro-
pose a performance explanation framework called DBSherlock that
combines techniques from outlier detection and causality analy-
sis to assist DBAs in diagnosing performance problems more eas-
ily, more accurately, and in a more principled manner. Through
DBSherlock’s visual interface, the user (e.g., a DBA) specifies cer-
tain instances of past performance that s/he deems abnormal (and
optionally, normal). DBSherlock then automatically analyzes large
volumes of past statistics to find the most likely causes of the user-
perceived anomaly, presenting them to the user along with a confi-
dence value, either in the form of (i) concise predicates describing
the combination of system configurations or workload characteris-
tics causing the performance anomaly, or (ii) high-level diagnoses
based on the existing causal models in the system. The DBA can
then identify the actual cause within these few possibilities. Once
the actual cause is confirmed by the DBA, his/her feedback is inte-
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Figure 1: Identifying the root cause of a performance anomaly is
non-trivial, as different causes may lead to the same performance
pattern.

grated back into DBSherlock to improve its causal models and future
diagnoses.

As an example, consider Figure 1, which is a graph of aver-
age transaction latencies over time. In practice, finding the root
cause of this latency spike can be quite challenging. In fact, we
observe nearly the same performance plot in the following situa-
tions: (i) if the overall workload suddenly spikes, (ii) if the number
of poorly written queries spikes, or (iii) if a network hiccup oc-
curs. To establish the correct cause, the DBA has to plot several
other performance metrics during the same timespan as the latency
spike. This means choosing among hundreds of DBMS, OS, and
network telemetry, and even inspecting several queries manually.
However, DBSherlock can significantly narrow this search space by
generating appropriate explanatory predicates that help the DBA
distinguish between the different possible causes. In the particu-
lar example of Figure 1, DBSherlock’s statistical analysis will lead
to different predicates depending on the cause. When (i) has oc-
curred, DBSherlock generates a predicate showing an increase in
the number of lock waits and running DBMS threads compared
to normal. In the case of (ii), DBSherlock’s predicates indicate a
sudden rise of next-row-read-requests as well as the CPU usage of
the DBMS. Finally, (iii) leads to a predicate showing a lower than
usual number of network packets sent or received during a specific
time. In other words, DBSherlock’s predicates help explain the root
cause by bringing appropriate signals and metrics to the DBA’s at-
tention. (In Section 6, we show how DBSherlock can also provide
human-readable causes in addition to raw predicates.)

Note that designing a tool for performance diagnosis is a chal-
lenging task due to the exponential number of combinations of vari-
ables and statistics that may explain the cause of a performance
decay, making a naïve enumeration algorithm infeasible. Though
off-the-shelf algorithms for feature selection exist, they are primar-
ily designed to maximize a machine learning algorithm’s predic-
tive power rather than its explanatory and diagnostic power. Sim-
ilarly, decision trees (e.g., PerfXplain [34]) and robust statistics
(e.g., PerfAugur [41]) have been used for automatic performance
explanation of map-reduce jobs and cloud services, respectively.
However, such models are more likely to find secondary symp-
toms when the root cause of the anomaly is outside the database
and not directly captured by the collected statistics. (In Section 6,
we show that constructing and using causal models leads to sig-
nificantly more relevant explanations.) Finally, while sensitivity-
analysis-based techniques (e.g., Scorpion [46]) are highly effec-
tive in finding the individual tuples most responsible for extreme
aggregate values in scientific computations, they are not applica-
ble to performance diagnosis of OLTP workloads. This is because
databases often avoid prohibitive logging overheads by maintain-
ing aggregate statistics rather than detailed statistics for individual
transactions. For instance, instead of recording each transaction’s
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Figure 2: The workflow in DBSherlock.

wait time for locks, MySQL and Postgres only record the total wait
time for locks across all transactions. Thus, listing individual trans-
actions is impractical (and often unhelpful for diagnosis, due to the
complex interactions among concurrent transactions).

In this paper, we make the following contributions:

1. To the best of our knowledge, we propose the first algorithm
specifically designed to explain and diagnose performance
anomalies in highly-concurrent and complex OLTP work-
loads.

2. We adopt the notion of causality from the artificial intelli-
gence (AI) literature, and treat user feedback as causal mod-
els in our diagnostic tool. We formally define a notion of con-
fidence to combine predicate-based explanations and causal
model predictions in a principled manner.

3. We propose a new automatic anomaly detection algorithm
with a competitive accuracy to that of an expert. We also
introduce a framework to prune secondary symptoms using
basic forms of domain knowledge.

4. We evaluate DBSherlock against the state-of-the-art perfor-
mance explanation technique, across a wide range of perfor-
mance problems. DBSherlock’s predicates on average achieve
28% (and up to 55%) higher F1-measures1 than those gener-
ated by previous techniques.

Section 2 describes the high-level overview of DBSherlock. Sec-
tions 3 and 4 present our criterion and algorithm for generating
predicate-based explanations, respectively. Section 5 describes our
technique for incorporating domain knowledge and pruning sec-
ondary symptoms from our explanations. Section 6 explains how
our system incorporates user feedback (when available) in the form
of casual models in order to provide higher-level, descriptive ex-
planations. Section 7 explains how automatic anomaly detection
techniques can be combined with DBSherlock. Section 8 describes
our experimental results.

2. SYSTEM OVERVIEW
DBSherlock’s workflow for performance explanation and diagno-

sis consists of six steps, as shown in Figure 2.
1. Data Collection. DBSherlock collects various log files, config-

urations, and statistics from the DBMS and OS.

2. Preprocessing. The collected logs are summarized and aligned
by their timestamps at fixed time intervals (e.g., every second).

1F1-measure (a.k.a. balanced F-score) is a commonly used mea-
sure of a test’s accuracy. It considers both the precision p and the
recall r of the test, and is defined as: F1 = 2 · p·r

p+r
.



3. Visualization. Through DBSherlock’s graphical user interface,
our end user (e.g., a DBA) can generate scatter plots of various
performance statistics of the DBMS over time.

4. Anomaly Detection. If the end user deems any of the perfor-
mance metrics of the DBMS unexpected, abnormal, or suspicious
in any period of time, s/he can simply select that region of the plot
and ask DBSherlock for an explanation of the observed anomaly. Al-
ternatively, users can also rely on DBSherlock’s automatic anomaly
detection feature.

5. Anomaly Explanation. Given the user-perceived region of
anomaly, DBSherlock analyzes the collected statistics and configu-
rations over time and explains the anomaly using either descriptive
predicates or actual causes.

6. Anomaly Diagnosis and User Feedback. Using DBSherlock’s
explanations as diagnostic clues, the DBA attempts to identify the
root cause of the observed performance problem. Once s/he has
diagnosed the actual cause, s/he provides evaluative feedback to
DBSherlock. This feedback is then incorporated in DBSherlock as a
causal model and used for improving future explanations.

Next, we discuss these steps in more detail: steps 1–2 in Section
2.1, steps 3–4 in Section 2.2, and steps 5–6 in Section 2.3. Then,
we list the current limitations of DBSherlock in Section 2.4.

2.1 Data Collection and Preprocessing
We have implemented DBSherlock as a module for DBSeer [1].

DBSeer is an open-source suite of database administration tools for
monitoring and predicting database performance [37, 38, 47]. We
have integrated our DBSherlock into DBSeer for two reasons. First,
adding performance diagnosis and explanation features will greatly
benefit DBSeer’s current users in gaining deeper insight into their
workloads. Second, DBSherlock can simply rely on DBSeer’s API
for collecting and visualizing various performance statistics from
MySQL and Linux (the systems used in our experiments). Here,
we briefly describe the data collection and preprocessing steps per-
formed by DBSeer and used by DBSherlock, i.e., components (1) and
(2) in Figure 2.

DBSeer collects various types of performance data by passively
observing the DBMS and OS in situ (i.e., as they are running in
operation), via their standard logging features. Specifically, DBSeer
collects the following data at one-second intervals [37]:
(i) Resource consumption statistics from the OS (in our case, Linux’s
/proc data), e.g., per-core CPU usage, number of disk I/Os, num-
ber of network packets, number of page faults, number of allo-
cated/free pages, and number of context switches.

(ii) Workload statistics from the DBMS (in our case, MySQL’s global
status variables), e.g., number of logical reads, number of SELECT,
UPDATE, DELETE, and INSERT commands executed, number of
flushed and dirty pages, and the total lock wait-time.2

(iii) Timestamped query logs, containing start-time, duration, and
the SQL statements executed by the system, as well as the query
plans used for each query.

(iv) Configuration parameters from the OS and the DBMS, e.g., en-
vironment variables, kernel parameters, database server configura-
tions, network settings, and (relevant) driver versions.

DBSeer further processes this data. First, it computes aggregate
statistics about transactions executed during each time interval (e.g.,

2To avoid performance overheads, DBSeer does not collect expen-
sive statistics that are not maintained by default, e.g., fine-grained
locking information.

Figure 3: DBSherlock’s user interface.

their average and quantile latencies, total transaction counts, etc.).3

These transaction aggregates are then aligned with the OS and DBMS
statistics and configurations according to their timestamps, using
the following format:

(Timestamp, Attr1, . . . , Attrk)

where Timestamp marks the starting time of the 1-second interval
during which these data were collected, and {Attr1, . . . , Attrk}
are the attributes, comprised of the transaction aggregates and other
categorical and numerical metrics collected from the database and
operating system. DBSherlock uses these timestamped data for its
performance explanation and diagnosis purposes.

2.2 User Interface
DBSherlock comes with a graphical user interface, where users

can plot a graph of various performance metrics over their time
window of interest. This is shown as component (3) in Figure 2.
For example, users might plot the average or 99% latency of trans-
actions, number of disk I/Os, or CPU usage over the past hour, day
or week. Figure 3 is an example of a scatter plot of the average la-
tency of transactions over time. After inspecting this plot, the user
can select some region(s) of the the graph where s/he finds some
database metrics abnormal, suspicious, counter-intuitive, or simply
worthy of an explanation. Regardless of the user’s particular rea-
son, we simply call the selected region(s) an anomaly (or call them
abnormal regions). Optionally, the user can also select other ar-
eas of the graph that s/he thinks are normal (otherwise, the rest of
the graph is implicitly treated as normal). After specifying the re-
gions, the user asks DBSherlock to find likely causes or descriptive
characteristics that best explain the observed anomaly.

When users cannot manually specify or detect the anomaly,
DBSherlock relies on automatic anomaly detection (see Section 7).

2.3 System Output
Given a user-perceived anomaly, DBSherlock provides explana-

tions in one of the following forms:
(i) predicates over different attributes of the input data; or

(ii) likely causes (and their corresponding confidence) based on ex-
isting causal models.

First, DBSherlock generates a number of predicates that identify
anomalous values of some of the attributes that best explain the
anomaly (Sections 3 and 4). For human readability, DBSherlock re-
turns a conjunct of simple predicates to the user.4 For example,
3Since the number of transactions per second varies, we do not use
individual query plans as attributes. Rather, we use their aggregate
statistics, e.g., average cost estimates, number of index lookups.
4More complex predicates (e.g., with disjunction or negation) can
easily overwhelm an average user, defeating DBSherlock’s goal of
being an effective tool for practitioners.



DBSherlock may explain an anomaly caused by a network slow-
down by generating the following predicates:

network_send < 10KB ∧ network_recv < 10KB
∧ client_wait_times > 100ms ∧ cpu_usage < 5

showing that there are active clients waiting without much CPU ac-
tivity. (In Section 6, we show that with causal models, DBSherlock
can provide even more descriptive diagnoses.) Once the user identi-
fies the actual problem (network congestion, in this example) using
these predicates as diagnostic hints, s/he can provide feedback to
DBSherlock by accepting these predicates and labeling them with
the actual cause found. This ‘cause’ and its corresponding predi-
cates comprise a causal model, which will be utilized by DBSherlock

for future diagnoses.
When there are any causal models in the system (i.e., from ac-

cepted and labeled predicates during previous sessions), DBSherlock
calculates the confidence of every existing causal model for the
given anomaly. This confidence measures a causal model’s fitness
for the given situation. DBSherlock then presents all existing causes
in their decreasing order of confidence (as long as greater than a
minimum threshold). When none of the causal models yield a suf-
ficiently large confidence, DBSherlock does not show any causes
and only shows the generated predicates to the user.

Note that DBSherlock’s output in either case is only a possible ex-
planation/cause of the anomaly, and it is ultimately the end user’s
responsibility to diagnose the actual root cause. The objective of
DBSherlock is to provide the user with informative clues to facili-
tate fast and accurate diagnosis. In the rest of this paper, we use the
terms possible explanation and explanation interchangeably, but al-
ways make a clear distinction between possible and actual causes
as they are quite different from a causality perspective.

2.4 Current Limitations
The current implementation of DBSherlock has two limitations:

(i) DBSherlock finds an explanation for an anomaly if the anomaly
affects at least one of the statistics available to the system.

(ii) Invariant characteristics of the system (e.g., fixed parameters or
hardware specifications of the database server) are not considered
a valid explanation of an anomaly.

It is straightforward to see the reason behind (i): if the anomaly
does not manifest itself in any of the gathered statistics, DBSherlock
has no means of distinguishing between abnormal and normal re-
gions. Similarly for (ii), since the invariants of the system remain
unchanged across the abnormal and normal regions, they cannot be
used to distinguish the two. However, such invariants may have
ultimately contributed to the anomaly in question. For instance,
with a small buffer pool, dirty pages are flushed to disk frequently.
Thus, when the number of concurrent transactions spikes, the pages
may be flushed even more frequently. The increase in disk IOs may
then affect transaction latencies. In such a case, DBSherlock reports
the workload spike as the explanation for the increased latencies.
While one might argue that small memory was the root cause of
the problem, DBSherlock does not treat the memory size as a cause,
as it is unchanged before and after the anomaly. Here, the workload
spike can distinguish the two regions (see Section 3) and is hence
returned as a cause to the user (i.e., with the justification that the
memory was sufficient for the normal workload).

However, DBSherlock’s reported cause can still be quite helpful
even in the cases above. For example, even when presented with
workload spike as an explanation of the performance slowdown,
an experienced DBA may still rectify the problem by modifying
system invariants (e.g., provisioning a larger memory or faster disk)
or throttling the additional load.

3. PREDICATE GENERATION CRITERION
Given an abnormal region A, a normal region N , and input data

T , we aim to generate a conjunct of predicates, where each predi-
cate Pred is in one of the following forms: Attri < x, Attri > x,
or x < Attri < y when Attri is numeric, and Attri∈{x1, . . . ,
xc} when Attri is categorical. Intuitively, we desire a predicate
that segregates the input tuples in A well from those in N . We for-
mally define this quality as the separation power of a predicate.

Separation power of a predicate. Let TN and TA be the input
tuples in the normal and abnormal regions, respectively. Also, let
Pred(T ) be the input tuples satisfying predicate Pred. Then the
separation power (SP) of a predicate Pred is defined as:

SP(Pred) =
|Pred(TA)|
|TA|

− |Pred(TN )|
|TN |

(1)

In other words, a predicate’s separation power is the ratio of the
tuples in the abnormal region satisfying the predicate, subtracted
by the ratio of the tuples in the normal region satisfying the pred-
icate. A predicate with higher separation power is more capable
of distinguishing (i.e., separating) the input tuples in the abnormal
region from those in the normal one. Thus, DBSherlock’s goal is to
filter out individual attributes with low separation power.5

Identifying predicates with high separation power is challeng-
ing. First, one cannot find a predicate of high separation power by
simply comparing the values of an attribute in the raw dataset.This
is because real-world datasets and OS logs are noisy and attribute
values often fluctuate regardless of the anomaly. Second, due to
human error, users may not specify the boundaries of the abnormal
regions with perfect precision. The user may also overlook smaller
areas of anomaly, misleading DBSherlock to treat them as normal
regions. These sources of error compound the problem of noisy
datasets. Third, one cannot easily conclude that predicates with
high separation power are the actual cause of an anomaly. They
may simply be correlated with, or be symptoms themselves of the
anomaly, and hence, lead to incorrect diagnoses. The following
section describes our algorithm for efficiently finding predicates of
highest separation power, while accounting for the first two sources
of error. We deal with the third type of error in Section 5.

4. ALGORITHM
Our algorithm takes the aligned tuples as input (described in Sec-

tion 2.1), which are separated between the abnormal and the normal
regions (other tuples are ignored by DBSherlock).

Figure 4 illustrates a high-level overview of our predicate gen-
eration algorithm. The majority of our attributes are numeric (i.e.,
statistics), which are significantly noisier than our categorical at-
tributes. As a result, our algorithm uses two additional steps for
numeric attributes (Steps 3 and 4). (In our discussion, we highlight
the differences for categorical attributes when applicable.) The first
step is to discretize the domain of each attribute into a number
of partitions (Step 1). Based on the user-specified abnormal and
normal regions, DBSherlock labels each partition of an attribute as
Abnormal, Normal, or Empty (Step 2 in Figure 4). Next, for nu-
meric attributes, DBSherlock filters out some of the Abnormal and
Normal partitions, which are mingled at this point, to find a predi-
cate with high separation power (Step 3 in Figure 4). If the previous
step is successful, the algorithm then fills the gap between the two
separated sets of partitions and generates the candidate predicate
accordingly (Steps 4 and 5 in Figure 4). The formal pseudo code of
5This strategy is similar to single-variable classifiers in machine
learning literature, whereby variables’ individual predictive power
is used for feature selection [27].
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these steps is presented in Algorithm 1. In the rest of this section,
we explain each of these steps in detail.

4.1 Creating a Partition Space
DBSherlock starts by creating a discretized domain for each at-

tribute, called a partition space.
For each numeric attribute Attri, we create R equi-width parti-

tions P= {P1,. . . ,PR} that range from Min(Attri) to Max(Attri).
The width of each partition is

Max(Attri)− Min(Attri)

R

We denote the lower and upper bounds of partition Pj as lb(Pj)
and ub(Pj), respectively. Pj contains any value val of Attri where
lb(Pj) ≤ val < ub(Pj).

For example, if the values of an attribute range from 0 to 100 and
we discretize them into buckets of size 20, their partition space will
be {[0,20), [20,40), [40,60), [60,80), [80,100)}. We use equi-width
partitions to preserve and map the distribution of input tuples in the
abnormal and normal regions into the partition space, as shown in
Figure 4. A secondary goal of our discretization step is to reduce
the influence of having more tuples with normal values than with
abnormal values. Thus, our discretization enables us to focus on
the distribution of an attribute’s value across the two regions.

Here, the number of partitions, R, is an important parameter,
which decides the trade-off between our algorithm’s computation
time (see Section 4.6) and the ability of the individual partitions to
distinguish normal from abnormal tuples. By default, DBSherlock
uses 1,000 partitions (R=1,000) for numeric attributes, which is
large enough to separate abnormal and normal tuples, yet small
enough to optimize computation time. (We study the effect of dif-
ferent values of R on our predicate accuracy and run time in Ap-
pendix D.)

Algorithm 1: Predicate Generation.
Inputs: T : input tuples (with k attributes)

A: abnormal region
N : normal region
R: number of partitions
θ: normalized difference threshold
δ: anomaly distance multiplier

Output: π: list of predicates with high separation power

π← ∅ // start with no predicate
foreach Attri ∈ {Attr1, . . . , Attrk} do

if Attri is numeric then
P ← create a partition space for Attri with R
partitions
PL← label P based on tuples T and regions A, N
PL,Filtered← filter PL

P ∗← fill the gap in PL,Filtered based on δ
Norm(Attri)← Normalization of Attri into [0, 1]
values
µA← Average of Norm(Attri) for tuples in A
µN ← Average of Norm(Attri) for tuples in N
d← |µA − µN |
if P ∗ contains a single block of consecutive abnormal
partitions and d > θ
then

Pred← extract a candidate predicate from P ∗

π← π ∪ Pred // add Pred into the list
end

else if Attri is categorical then
P ← create a partition space for Attri with
|Unique(Attri)| partitions
PL← label P based on tuples T and regions A, N

if PL has at least one abnormal partition
then

Pred← extract a candidate predicate from PL

π← π ∪ Pred // add Pred into the list
end

end
end
return π

For each categorical attribute Attri, we create |Unique(Attri)|
number of partitions. Here, |Unique(Attri)| is the number of
unique values found in our dataset for Attri, i.e., one partition per
each value of the attribute. We use Cj to denote the (categorical)
value represented by partition Pj . Unlike numeric attributes, the
order of partitions for categorical attributes is unimportant.

4.2 Partition Labeling
Once the partition space is created, the next step is to mark each

partition with one of three labels: {Empty, Normal, Abnormal}.
For a numeric attribute Attri, an input tuple belongs to partition
Pj , if the tuple’s value for Attri lies within Pj’s boundaries. If
every tuple belonging to Pj lies in the abnormal region specified
by the user, Pj is labeled as Abnormal. Conversely, if every tuple
belonging to Pj lies in the normal region, Pj is labeled as Normal.
Otherwise, the partition label is left Empty. (See Figure 4.)

For a categorical attribute, an input tuple belongs to a partition
Pj , if the tuple’s value for Attri equals the category value of the
partition, i.e., Attri = Cj . Since our categorical attributes are less
noisy, we use a simpler labeling strategy. Let Pj(A) and Pj(N) be
the number of tuples belonging to Pj in the abnormal and normal
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regions, respectively. Pj is labeled as Abnormal if Pj(A)> Pj(N).
Similarly, Pj is labeled as Normal if Pj(A) < Pj(N). Otherwise,
the partition label is left with an Empty label. For categorical at-
tributes, our algorithm extracts a candidate predicate from the par-
tition space right after the labeling step (see Section 4.5), skipping
the next two steps.

4.3 Partition Filtering
After labeling, we filter some of the Normal and Abnormal par-

titions by replacing their labels with an Empty one. The filtering
step is only applied to our numeric attributes, which are quite noisy.
During this step, a partition Pj’s label is replaced with Empty, if its
original label is different from either of its two non-Empty adja-
cent partitions (i.e., the closest non-Empty partitions on the left and
right side of Pj in the partition space). Figure 5 demonstrates vari-
ous cases where a partition Pj is filtered out. Note that the only case
where Pj remains unchanged is when both of its non-Empty adja-
cent partitions have the same label as Pj itself (shown as Scenario
1 in Figure 5). If we only have a single Normal or Abnormal parti-
tion to begin with, we deem it significant and do not filter it. Once
all non-Empty partitions are processed, their labels are changed to
Empty simultaneously. We do not perform this procedure incre-
mentally to prevent a situation where partitions continuously filter
each other out. If filtering is performed incrementally, the two par-
titions at each end of the partition space will also get filtered in
Scenarios 2 and 3 in Figure 5.

Our filtering strategy aims to separate the Normal and Abnormal
partitions that are originally mixed across the partition space (e.g.,
due to the noise in the data or user errors). If there is a predicate
on attribute Attri that has high separation power, the Normal and
Abnormal partitions are very likely to form well-separated clusters
after the filtering step. This step mitigates some of the negative
effects of noisy data or user’s error, which could otherwise exclude
a predicate with high separation power from the output. This idea
is visually shown in Figure 4.

4.4 Filling the Gaps
This step is only applied to numeric attributes. After the filter-

ing step, there will be larger blocks of consecutive Abnormal and
Normal partitions, separated by Empty partitions. These Empty

partitions were either initially Empty or were filtered out during the
filtering step. Our algorithm fills these gaps before the predicate
generation by labeling these Empty partitions as either Normal or
Abnormal as follows.

We compare the distance of each Empty partition Pj to its two
adjacent non-Empty partitions. If both adjacent partitions have the
same label or if Pj has only one adjacent non-Empty partition (i.e.,
j=1 or j=R), Pj will receive the same label as its adjacent non-
Empty partition(s) at the end of this step. If Pj’s two adjacent non-
Empty partitions have different labels, we calculate Pj’s distance to
each partition and assign it the label of the closer partition.

There is a special case where only Abnormal partitions remain
after the filtering step. In this case, if we naïvely fill the gaps, every
partition will become Abnormal and the algorithm will not find
any predicates for the attribute. To handle this special case, we

calculate the average value of the attribute over the input tuples in
the normal region and label the partition that contains this average
value as Normal regardless of its previous label. Then we fill the
gaps according to the previously described procedure. (Without
any Normal partitions, we will not be able to determine the direc-
tion of the predicate in the next step of the algorithm, i.e., whether
Attri < v or Attri > v .)

To control the behavior of our algorithm, we also introduce a pa-
rameter δ, called the anomaly distance multiplier. When the Empty
partition Pj is processed by the above procedure, we multiply its
distance to its adjacent Abnormal partition by δ. Thus, δ>1 will
cause more Empty partitions to be labeled as Normal while δ<1
results in more Empty partitions being labeled as Abnormal. In
other words, with parameter δ, we can tune our predicates: δ<1 for
more general predicates (i.e., more likely to flag tuples as abnor-
mal) and δ>1 for more specific ones (i.e., less likely to flag tuples
as abnormal). By default, DBSherlock uses δ = 10. (We study the
effect of different values of δ on our predicates in Appendix D.)

4.5 Extracting Predicates from Partitions
This step is applied to both numeric and categorical attributes

using slightly different procedures. For numeric attributes, the pre-
vious filtering step allows us to find attributes that have a predi-
cate with high separation power, but there is still a possibility that
some of these attributes are not related to the actual cause of the
anomaly. To mitigate this problem, we perform the following pro-
cedure. First, we normalize each numeric attribute Attri by sub-
tracting its minimum value from its original values vali and divid-
ing them by the attribute’s range:

Norm(vali) =
vali − Min(Attri)

Max(Attri)− Min(Attri)
(2)

This results in the values of an attribute to range in [0, 1]. Let µA

and µN be the average values of Norm(Attri) for tuples in the ab-
normal and normal regions, respectively. DBSherlock extracts a can-
didate predicate from Attri’s partition space only if |µA−µN |>θ,
where θ is a parameter called the normalized difference thresh-
old. The user can tune this threshold to adjust the selectivity of
DBSherlock in finding predicates (we study the effect of this param-
eter in Appendix D).

After performing these normalization and thresholding proce-
dures, we can extract candidate predicates from the partition space,
as follows. As noted in section 3, we only seek predicates of the
form Attri < x, Attri > x, and x < Attri < y. In the par-
tition space, these types of predicates correspond to a single block
of consecutive Abnormal partitions. Therefore, we extract a can-
didate predicate Pred for an attribute Attri if and only if there is a
single block of consecutive Abnormal partitions.

For categorical attributes, our procedure for extracting a candi-
date predicate is much simpler. DBSherlock traverses the partition
space of such attributes and extracts each category value Cj if its
partition Pj is labeled as Abnormal. A predicate for a categori-
cal attribute is of the form Attri ∈ {c1, . . . , cl}, where l is the
number of partitions labeled as Abnormal and ci’s are their corre-
sponding category values.

4.6 Time Complexity
For each attribute, our predicate generation algorithm scans the

input tuples to label each partition. Then, it iterates over these parti-
tions twice in the subsequent steps (i.e., ‘Filtering’ and ‘Filling the
gap’ in Figure 4). Thus, the time complexity of DBSherlock’s predi-
cate generation algorithm isO(k(X+R)), whereR is the number of



partitions,6 X is the number of input tuples, and k is the number of
attributes. In Appendix D, we study the effectiveness and run-time
of our algorithm for different values of these parameters.

5. INCORPORATING DOMAIN
KNOWLEDGE

Our algorithm extracts predicates that have a high diagnostic
power (see Section 8). However, some of these predicates may
be secondary symptoms of the root cause, which if removed, can
make the diagnosis even easier. This is because the fact that Predi
implies an anomaly, we cannot conclude that it also causes it. In
fact, there could be another predicate, say Predj , causing both
Predi and the anomaly.

Thus, to further improve the accuracy of our predicates and prune
secondary symptoms, DBSherlock allows for incorporating domain
knowledge of attributes’ semantics into the system. However, note
that this mechanism is an optional feature, and as we show in our
experiments, DBSherlock produces highly accurate explanations even
without any domain knowledge (see Section 8.3). Also, DBSherlock
is bootstrapped with domain knowledge only once for each specific
version of OS or DBMS. In other words, DBAs do not need to mod-
ify this, as the semantics of DBMS and OS variables do not depend
on the workload, e.g., OS CPU Usage always has the same meaning
regardless of the specific workload.

Every piece of domain knowledge is encoded as a rule: Attri→
Attrj . Each rule must satisfy the following conditions:

i. If predicates Predi and Predj (corresponding to attributes
Attri and Attrj , respectively) are both extracted, Predj is
likely to be a secondary symptom of Predi.

ii. Attri→ Attrj and Attrj → Attri cannot coexist.

For instance, if Attri is the ‘DBMS CPU Usage’ and Attrj is the
‘OS CPU Usage’, then Attri→ Attrj is a valid rule since DBMS
CPU usage effects OS CPU usage, but not vice versa.

However, given a rule Attri → Attrj , and the corresponding
predicates Predi and Predj , whether Predj will be filtered out will
require further analysis, since the domain knowledge may not be a
perfect reflection of the reality either. For instance, the rule ‘DBMS
CPU Usage’→ ‘OS CPU Usage’ may occasionally break. For ex-
ample, there might be other attributes, such as ‘Number of Pro-
cesses’ or ‘Number of Threads’ that are not utilized by the DBMS,
but may affect ‘OS CPU Usage’.

As a solution, DBSherlock tests the independence between Attri
and Attrj based on their continuous (or categorical) values. For
continuous attributes, we discretize the two attributes Attri and
Attrj with γ equi-width bins for each attribute. We then construct
a two-dimensional joint histogram from the input data, estimating
the joint probability distribution of the two attributes. For categor-
ical attributes, a joint histogram is constructed from the input data.
For testing independence, we use the joint probability distribution
of the two attributes to calculate their mutual information.

We denote the mutual information of two attributes Attri and
Attrj by MI(Attri, Attrj), defined as:

MI(Attri, Attrj) = H(Attri) +H(Attrj)−H(Attri, Attrj)

whereH(Attri) is the entropy of the attribute Attri andH(Attri,
Attrj) is the joint entropy of the two attributes [18]. An indepen-
dence factor κ(Attri, Attrj) of the two attributes is then calcu-
lated as follows:

κ(Attri, Attrj) =
MI(Attri, Attrj)

2

H(Attri)H(Attrj)
6A similar analysis applies if the number of partitions differ.

The value of κ will be 0, if the two attributes are independent and
approaches 1 with higher dependence. We perform the indepen-
dence test by comparing the value of κ with a threshold κt (by
default, we use κt = 0.15), and the two attributes pass the test if
κ < κt. If the two attributes do not pass the independence test, we
conclude that the rule Attri → Attrj is indeed valid, and Predj
is merely a secondary symptom of Predi and filter out Predj . If
the two attributes pass the independence test, we conclude that the
rule Attri → Attrj does not apply, and leave both predicates in
the output.

For MySQL on Linux, the following four rules are sufficient to
encode such relationships:

1. DBMS CPU Usage→ OS CPU Usage

2. OS Allocated Pages→ OS Free Pages

3. OS Used Swap Space→ OS Free Swap Space

4. OS CPU Usage→ OS CPU Idle

The first rule encodes the subset relationship. The last three rules
encode the fact that one attribute is always a constant value minus
the other attribute, and is thus uninteresting. In Section 8.6, we
show that even without these rules, DBSherlock’s accuracy drops
by only 2–3%. We evaluate the effectiveness of this approach in
pruning secondary symptoms in Appendix F.

6. INCORPORATING CAUSAL MODELS
Previous work on performance explanation [34] has only focused

on generating explanations in the form of predicates. DBSherlock

improves on this functionality by generating substantially more ac-
curate predicates (20-55% higher F1-measure; see Section 8.4).
However, a primary objective of DBSherlock is to go beyond raw
predicates, and offer explanations that are more human-readable
and descriptive. For example, the cause of a performance hiccup
could be a network congestion due to a malfunctioning network
router. Initially, the user will rely on DBSherlock’s generated pred-
icates as diagnostic clues to identify the actual cause of the per-
formance problem more easily. However, once the root cause is
diagnosed, s/he can notify DBSherlock as to what the actual cause
was. DBSherlock then relates the generated predicates to the actual
cause and saves them in the form of a causal model. This model
will be consulted in future diagnoses to provide a human-readable
explanation (i.e., ‘malfunctioning router’) for similar situations.

To utilize the user feedback, DBSherlock uses a simplified version
of the causal model proposed in the seminal work of Halpern and
Pearl [28]. Our causal model consists of two parts: cause variable
and effect predicates. The cause variable is a binary, exogenous
variable7 labeled by the end user. When the cause variable is set to
true, it activates all of its effect predicates. For example, Figure 6 is
a causal model with ‘Log Rotation’ as the cause variable and three
effect predicates. According to this model, if there is an event of
‘Log Rotation’ (i.e. cause variable is true) then these three effect
predicates will also be true.

The following example describes how such causal models are
constructed and used in DBSherlock. Consider a scenario where the
user selects an abnormal region for which DBSherlock returns the
following predicates:

CpuWait> 50% ∧ Latency> 100ms ∧ DiskWrite> 5MB/s

7An exogenous variable is a variable whose values are determined
by factors outside the model [28].
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Figure 6: An example of a causal model in DBSherlock.

Also, suppose that the user is able to diagnose the actual cause of
the problem with the help of these predicates; assume that by in-
specting the recent system logs she establishes that the cause was
the rotation of the redo log file.8 Once this feedback is received
from the user, DBSherlock can link this cause with these predicates
as shown in Figure 6. After that, for every diagnosis inquiry in the
future, DBSherlock calculates the confidence of this causal model
and ‘Log Rotation’ is reported as a possible cause if its confidence
is higher than a threshold λ. By default, DBSherlock displays only
those causes whose confidence is higher than λ=20%. However,
the user can modify λ as a knob (i.e., using a sliding bar) to inter-
actively view fewer or more causes.

Over time, additional causal models might be added in the sys-
tem as a result of inspecting new performance problems. When
multiple causal models are available in the system, DBSherlock con-
sults all of them (i.e., computes their confidence) and returns those
models whose confidence is higher than λ to the user, presented in
their decreasing order of confidence. When none of the causes of-
fered by the existing models are deemed helpful by the user, she
always has the option of asking DBSherlock to simply show the
original predicates instead. Also, when none of the causal models
achieve a confidence higher than λ (e.g., when the given anomaly
has not been previously observed in the system), DBSherlock only
displays the generated predicates. Again, once the cause is diag-
nosed and shared with the system, DBSherlock creates a new causal
model to be used in the future. (See Figure 2 in Section 2.)

We evaluate the accuracy of the generated explanations in Sec-
tion 8. Next, we explain how DBSherlock computes the confidence
of each causal model (Section 6.1), and how it merges multiple
models to improve their explanatory power (Section 6.2).

6.1 Confidence of a Causal Model
In DBSherlock we define the confidence of a causal model as the

average separation power of its effect predicates in the partition
space. Note that, unlike equation (1), here we use the partition
space instead of the input tuples to reduce the effect of the noise in
real-world data (see Section 4.1). Formally:

Confidence of a causal model. Let {Pred1, . . . , Predn} be the
effect predicates of a given causal model M, where Predi is de-
fined over Attri. Also, let Pi,N and Pi,A be the partitions labeled
as Normal and Abnormal in the partition space of Attri, respec-
tively. We define the confidence CM of the causal modelM as:

CM =

∑n
i=1

|Predi(Pi,A)|
|Pi,A|

− |Predi(Pi,N )|
|Pi,N |

n
(3)

where Pred(P ) is the set of partitions in P that satisfy predicate
Pred.

The idea behind this definition is to estimate the likelihood of a
cause variable being true given the normal and abnormal partitions,
8In MySQL, log rotations can cause performance hiccups when the
adaptive flushing option is disabled.

based on the assumption that if the model’s cause variable is true,
then its effect predicates are also likely to exhibit high separation
power in their partition spaces.

6.2 Merging Causal Models
Among the effect predicates of a causal model, some predicates

may have less or no relevance to the actual cause, e.g., some predi-
cates could simply be a side-effect of the actual cause. Also, since
the effect predicates of a single causal model reflect the specific val-
ues observed in a particular instance of an anomaly, they may not
be applicable to other instances of the same cause. In DBSherlock,
multiple causal models might be created for the same cause while
analyzing different anomalies over time. DBSherlock can improve
such causal models by merging them into a single one.

Merging causal models eliminates some of the unnecessary and
less relevant effect predicates, while enabling relevant effect pred-
icates to apply to different anomaly instances caused by the same
cause. We merge two causal models by:
1. keeping only those effect predicates that are on attributes com-
mon to both models; and

2. merging two predicates on the same attribute into a single pred-
icate that includes the boundaries (or categories) of both.

Suppose that we have two causal models with the same cause:
M1 with the effect predicates {A > 10, B > 100, C > 20, E
∈ {‘xx’, ‘yy’, ‘zz’}}, andM2 with the effect predicates {A
> 15, C > 15, D < 250, E ∈ {‘xx’, ‘zz’}}. To merge
M1 andM2, we only keep {A > 10, C > 20, E ∈ {‘xx’,
‘yy’, ‘zz’}} fromM1 and {A > 15, C > 15, E ∈ {‘xx’,
‘zz’}} fromM2 since attributes A, C and E are common to both
models.

Next, we compare the two predicates on the same attribute and
merge them such that the merged predicate includes both. Here,
merging {A > 10} and {A > 15} leads to {A > 10} and merging
{C > 20} and {C > 15} leads to {C > 15}. Likewise, merging
{E ∈ {‘xx’, ‘yy’, ‘zz’}} and {E ∈ {‘xx’, ‘zz’}} leads to
{E ∈ {‘xx’, ‘zz’}}. Thus, in this example, the effect predicates
of the merged causal model will be {A > 10, C > 15, E
∈ {‘xx’, ‘yy’, ‘zz’}}. Note that numeric predicates with
different directions (e.g., {A > 10} and {A < 30}) are considered
inconsistent. Such predicates are not merged and will be discarded.

We study the effect of merging causal models in Section 8.5,
where we show that the merged causal models are on average 30%
more accurate than the original models.

7. AUTOMATIC ANOMALY DETECTION
Sometimes, an anomaly may not be visually obvious to a human

user inspecting a performance plot. In such situations, users may
mistakenly specify a normal region as abnormal and vice versa.
To aid with these cases, DBSherlock also provides an option for
automatic anomaly detection. Thus, users can either (i) rely on
DBSherlock to find and suggest anomalies to them, or (ii) continue
to manually find anomalies but compare them with those found by
DBSherlock for reassurance.

There is much work on outlier detection in different contexts [15,
19, 33, 40, 41, 42, 43, 44, 45, 46, 48]. In DBSherlock, we introduce
an algorithm for the automatic detection of the anomaly regions.
Our algorithm utilizes the DBSCAN clustering algorithm [25] and
works as follows.

First, we normalize each attribute Attri, which is equivalent to
the normalization step in our predicate generation algorithm (Equa-
tion (2) in Section 4.5). We then choose relevant attributes to detect
possible anomalies, which are characterized by a subsequence in



the time series with an abrupt change in the values. For attributes
that we cannot identify such a behavior, we exclude them from our
analysis as they are likely to have an insignificant separation power.
We quantify this behavior and call it a potential power of an at-
tribute, denoted as PP (Attri).

To calculate PP (Attri), we first define a sliding window w(τ)
as a subsequence of size τ in the time series. We also denote the
median of Attri as Median(Attri) and denote the median of the
values within a sliding window w(τ) as Median(Attri, w). Then
PP (Attri) is calculated as follows:

PP (Attri) = max
w∈W

|Median(Attri)− Median(Attri, w)|
(4)

where W represents the set of all possible sliding windows of size
τ . Equation (4) uses a median filter to calculate the maximum ab-
solute difference between the overall median and the median of
values in each window. We only include attributes with a poten-
tial power greater than a threshold PPt ∈ [0, 1]. (DBSherlock uses
τ = 20 and PPt = 0.3 as default values.)

We use DBSCAN to build clusters with the selected attributes
from the previous step. DBSCAN takes two parameters, ε and
minPts. For our algorithm, we fix minPts to 3 and use the k-
dist function to build a list Lk of the distances of the k-th nearest
neighbors, as suggested in [25], to determine ε. We have empiri-
cally found ε = max(Lk)/4 to perform well in DBSherlock.

Given the clusters formed by DBSCAN, our algorithm returns
the points in all clusters whose sizes are less than 20% of the to-
tal number of data items. This is under the assumption that the
abnormal region is relatively smaller than the normal region. In
Appendix E, we evaluate DBSherlock’s accuracy when using auto-
matic anomaly detection against a manually selected anomaly and
another anomaly detection algorithm, PerfAugur [41].

8. EVALUATION
In this section, we empirically evaluate the effectiveness of

DBSherlock. The goals of our experiments are to show that:

(i) Our causal models produce accurate explanations (Section 8.3).

(ii) Even without causal models, the raw predicates generated by
DBSherlock are more accurate than those generated by the state-of-
the-art explanation framework (Section 8.4).

(iii) Our idea of merging causal models improves the quality of our
explanations significantly (Sections 8.5).

(iv) Incorporating domain knowledge allows DBSherlock to achieve
higher accuracy (Section 8.6).

(v) DBSherlock is able to explain compound situations where mul-
tiple anomalies arise simultaneously (Section 8.7).

(vi) Using our predicates, users can diagnose the actual cause of
performance anomalies much more accurately (Section 8.8).

We have included additional experiments in the Appendix for in-
terested readers.

8.1 Experiment Setup
To collect log data with different types of anomalies, we ran dif-

ferent mixtures of the TPC-C benchmark [5] on Microsoft Azure
[2] virtual machine instances. In all our experiments, we have used
two Microsoft Azure A3-tier instances, each with 4 CPU cores of
2.1Ghz (AMD Opteron 4171H) and 7GB of RAM running Ubuntu
14.04. We employed one of the two A3 instances to run MySQL
5.6.20 and the other to simulate clients (using OLTPBenchmark
framework [3, 21]). For stress-based experiments, we also used a

tool called stress-ng [4] which can artificially stress the system by
taking up excessive CPU, I/O and network resources when needed.
Each individual experiment (called a dataset in this paper) con-
sisted of two minutes of normal activity plus one or more abnormal
situations (of varying length). We ran our experiments using both
TPC-C and TPC-E. Due to space constraints and the similarity of
the results, here we only report our TPC-C results and defer TPC-
E results to Appendix A. The default setting used in our TPC-C
workload was a scale factor of 500 (i.e., 50GB) with 128 terminals.
We also experimented with different scale factors (from 16 to 500)
and number of terminals (from 16 to 128). The results were con-
sistent across these different settings, and thus we only report our
results using the default setting described above. In each dataset,
we intentionally created various abnormal situations on the server,
as described next.

8.2 Test Cases
To test our algorithm, we created 10 different classes of anoma-

lies to represent some of the important types of real-world prob-
lems that can deteriorate the performance of a database. During
the two-minute run of the normal workload in each dataset, we
invoked the actual cause of an anomaly with different start times
and durations. For each type of anomaly, we collected 11 differ-
ent datasets by varying the duration when possible (e.g., stressing
system resources) or its start time (i.e., the time when the cause of
an anomaly is triggered) when the actual duration was impossible
to control (e.g., running mysqldump). The duration or start time of
the anomalies ranged from 30 to 80 seconds with the increment of
5 seconds, yielding 11 datasets (i.e., 30, 35, · · · , 80) for each type
of anomaly (a total of 110 datasets). For each dataset, we manually
selected a region of anomaly via visual inspection; the region left
unselected automatically became the normal region.

Table 1 lists the types and descriptions of the different classes of
anomalies that we tested within our experiments. These anomalies
are designed to reflect a wide range of realistic scenarios that can
negatively impact the performance of a transactional database.

8.3 Accuracy of Single Causal Models
Our goal in this section is to evaluate the effectiveness of our

causal models in producing correct explanations. It is quite com-
mon that an anomaly from a certain cause is only observable a few
times over the lifetime of a database operation. This makes log
samples of such anomalies quite scarce in many cases (e.g., disk
failure) and thus necessitates that our framework identifies the cor-
rect cause even when our causal model is created from a single
dataset. Thus, in each test case we only used a single dataset to
construct a causal model with θ=0.2 (which is the normalized dif-
ference threshold, see Section 4.5). This is the default value of θ in
DBSherlock chosen to aggressively filter out attributes with insignif-
icant behavior in the anomaly region. We applied the constructed
causal model on all the remaining 109 datasets to obtain its confi-
dence in each test case. We repeated this process until every dataset
was chosen to construct a causal model.

With our algorithm, the correct causal models achieve the high-
est confidence in all 10 test cases (i.e., the correct cause was shown
as the most likely cause to the user). The margin (i.e., positive dif-
ference) of confidence between the correct model and the highest
among incorrect models is on average 13.5%. In other words, not
only does the correct model achieve the highest confidence (and is
shown to the user as the most likely cause), but its confidence is also
well separated from the highest-ranked incorrect model. (In Sec-
tion 8.5, we show that our model merging technique improves this
margin even further.) Figure 7 shows the margin of confidence of



Type of anomaly Description
Poorly Written Query Execute a poorly written JOIN query, which would run efficiently if written properly.
Poor Physical Design Create an unnecessary index on tables where mostly INSERT statements are executed.
Workload Spike Greatly increase the rate of transactions and the number of clients simulated by OLTPBenchmark (128

additional terminals with transaction rate of 50,000).
I/O Saturation Invoke stress-ng, which spawns multiple processes that spin on write()/unlink()/sync() system calls.
Database Backup Run mysqldump on the TPC-C database instance to dump the table to the client machine over the network.
Table Restore Dump the pre-dumped history table back into the database instance.
CPU Saturation Invoke stress-ng, which spawns multiple processes calling poll() system calls to stress CPU resources.
Flush Log/Table Flush all tables and logs by invoking mysqladmin commands (‘flush-logs’ and ‘refresh’).
Network Congestion Simulate network congestion by adding an artificial 300-milliseconds delay to every traffic over the network

via Linux’s tc (Traffic Control) command.
Lock Contention Change the transaction mix to execute NewOrder transactions only on a single warehouse and district.

Table 1: Ten types of performance anomalies used in our experiments.
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Figure 7: The margin of confidence and the average F1-measure of
the correct causal model for different anomalies.

the correct causal model, which compares the average confidence
of the correct causal model to the highest confidence among all
other (incorrect) models for different types of anomalies.

Here, anomalies caused by ‘Table Restore’ and ‘Flush Log/Table’
proved most illusive, as they yielded the lowest confidence among
the causal models. This was because the two anomalies shared the
common characteristic that the DBMS performed too many disk
I/Os. However, even in this case, DBSherlock could correctly dis-
tinguish the correct cause from the incorrect ones.

Overall, this challenging experiment is an extremely encourag-
ing result showing that DBSherlock is capable of generating the cor-
rect explanation even with a single dataset as a training sample and
in the presence of 9 other competing models.

8.4 DBSherlock Predicates versus PerfXplain
We compared the accuracy of our predicates with predicates gen-

erated by the state-of-the-art performance explanation framework,
PerfXplain [34]. Since PerfXplain is designed to work with MapRe-
duce logs, we had to re-implement PerfXplain’s algorithm to fit into
our context. Originally, PerfXplain operates on pairs of MapRe-
duce jobs. Instead, we modified it to use pairs of our input tuples.
We used the following query for PerfXplain:
EXPECTED avg_latency_difference = insignificant

OBSERVED avg_latency_difference = significant

where two average latencies are deemed significant if their differ-
ence is at least 50% of the smaller value. We chose the same pa-
rameters for PerfXplain as suggested in [34] (i.e., we used 2,000
samples and a weight value of 0.8 for its scoring rules). We also
varied the number of predicates from 1 to 10 and chose 2, which
yielded the best results for PerfXplain. With 11 datasets for each
case, we used 10 datasets to generate predicates and the accuracy

of generated predicates was tested on the remaining dataset. Fig-
ure 9 demonstrates the average precision, recall and F1-measure in
comparison. Our predicates achieved better accuracy than PerfX-
plain in nearly all cases (except for recall on one test case). Most
notably, DBSherlock improves on PerfXplain’s F1-measure by upto
55% (28% on average). This shows that performance explanation
and diagnosis for OLTP workloads requires drastically different
techniques than those developed for OLAP and map-reduce work-
loads.

8.5 Effectiveness of Merged Causal Models
When multiple causal models are available (from diagnosing dif-

ferent datasets), DBSherlock tries to merge them as much as possible
in order to further improve the relevance and accuracy of the gen-
erated explanations. To evaluate the effectiveness of our merging
strategy, we conducted a series of experiments, each using multiple
datasets as training samples. We randomly assigned about 50% of
the datasets from each type of anomaly (i.e., 5 out of 11 datasets)
to construct and merge causal models for each type. Merged causal
models were then used to calculate the confidence on the remain-
ing 6 datasets. The process was repeated 50 times, resulting in 300
instances of explanations for each test case. We used a lower value
of θ, namely θ = 0.05, for our merged causal models (in contrast
to 0.20 used for our single causal models). With a lower value of
θ, we can maximize the effect of merging causal models by having
more predicates for each causal model at the start.

The results of these experiments are summarized in Figure 8a,
showing that merging significantly increases the average margin of
confidence against the second-highest confidence in all test cases.

To compare the accuracy of each explanation, we counted the
number of cases where the correct cause was included in the top-k
possible causes shown to a user. As shown in Figure 8b, DBSherlock
presented the correct cause as the top explanation in almost every
instance. In other words, k=1 would always be sufficient for achiev-
ing an accuracy greater than 98%. If we allow DBSherlock to list
the top-2 possible explanations, then it identifies the correct cause
in 99% of the cases.

We also studied the effectiveness of merging causal models with
respect to the number of datasets used in constructing each causal
model. As shown in Figure 8c, the accuracy of the merged causal
models increases with more datasets. The accuracy quickly reaches
95% with only two datasets if only the top cause is returned, and
it reaches 99% if the top two causes are returned. This experiment
highlights that DBSherlock only requires a few manual diagnoses of
an anomaly to construct highly accurate causal models.

In summary, the merging of causal models greatly improves the
accuracy and quality of our explanations, generating predicates that
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Figure 8: (a) The margin of confidence for single versus merged causal models, (b) the ratio of correct explanations for merged causal models
(if the top-k possible causes are shown to the user), and (c) the effect of the number of datasets (i.e., number of manual diagnoses required)
on the accuracy of the casual model.
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Figure 9: Average precision, recall and F1-measure of predicates generated by DBSherlock and PerfXplain.

are more relevant to the cause. Only a few datasets of the same
anomaly are needed to construct a merged causal model that achieves
an accuracy greater than 95%.

8.6 Effect of Incorporating Domain Knowledge
To study the effect of incorporating domain knowledge, we in-

corporated the four rules introduced in Section 5 into DBSherlock,
and constructed single causal models with and without these rules,
similar to the setup of Section 8.3.

Accuracy if
shown top-1
cause

Accuracy if
shown top-2
causes

With Domain Knowledge 85.3% 94.8%
Without Domain Knowl-
edge

82.7% 93.2%

Table 2: Ratio of correct causes with & without domain knowledge.

Table 2 reports the accuracy of single causal models with and
without domain knowledge. Domain knowledge removed predi-
cates that were a secondary symptom, and thus less relevant for
the correct diagnosis of a given anomaly, improving the accuracy
of causal models by 2.6% if shown the top-1 cause and 1.6% if
shown the top-2 causes. On the other hand, this experiment shows
that, in practice, DBSherlock works surprisingly well even without
any domain knowledge. (To fully evaluate the effect of domain
knowledge in removing secondary symptoms, we report additional
experiments in Appendix F using synthetic data.)

8.7 Explaining Compound Situations
It is not uncommon in a transactional database that multiple prob-

lems occur simultaneously. These compound situations add a new

level of difficulty to diagnostic systems. We ran an experiment to
address the framework’s capability in such compound situations.
We created six cases, where two or three anomalies happen at the
same time during the two-minute run of our normal workload. For
this experiment, causal models were constructed for each individ-
ual test case by merging causal models from every dataset. Expla-
nations were then generated for the compound test cases.
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Figure 10: Ratio of the correct causes and their average F1-measure
for compound situations (when top-3 causes are shown to the user).

Figure 10 demonstrates the ratio and the average F1-measure
of correct causes (when three possible causes were offered to the
user). On average, our explanation contained more than two-thirds
of the correct causes, except for ‘Workload Spike + Network Con-
gestion’. For this dataset, DBSherlock missed the ‘Workload Spike’
and only returned ‘Network Congestion’ as the correct cause. This
was because ‘Network Congestion’ had reduced the impact of ‘Work-
load Spike’ on the system (by slowing down the rate of incoming



# of Avg. # of correct
Background participants answers (out of 10)
Baseline (No Predicates) N/A 2.5
Preliminary DB Knowledge 20 7.5
DB Usage Experience 15 7.8
DB Research or DBA 13 7.8
Experience

Table 3: The summary of the user study.

queries), and hence made it difficult for DBSherlock to identify their
simultaneous occurrence.

8.8 User Study
We also performed a user study to evaluate the ability of our

generated predicates in helping users diagnose the actual cause of
performance problems. We asked various people who had some
experience with databases to participate in a web-based question-
naire. We categorized the participants into three levels of compe-
tency based on their experience: Preliminary DB Knowledge (e.g.,
SQL knowledge or undergraduate course on databases), DB Usage
Experience, and DB Research or DBA Experience. We used a few
trivial questions to filter out spammers from genuine participants,
leaving us with a total of 20 participants in our study. The ques-
tionnaire consisted of 10 multiple-choice questions. Each question
had one correct cause and three randomly chosen incorrect causes.
In each question, we presented a graph of average latency to our
participants, with a pre-specified anomaly region and DBSherlock’s
generated predicates explaining the anomaly.

Table 3 shows the summary of the user study. Here, the first row
represents the random baseline, i.e., where no predicates are pre-
sented to the user. Participants with preliminary database knowl-
edge were able to identify the correct cause in 75% of the cases.
Participants with practical database usage or above identified the
correct cause in 78% of the cases. This promising result shows
that the predicates generated by DBSherlock can help the end user
correctly diagnose anomalies in practice.

9. RELATED WORK
Our work incorporates recent research in the fields of causality,

performance diagnosis, and outlier detection.
Causality. Our work draws on the notion of causality proposed

by Halpern and Pearl [28, 29]. We apply a simplified version of
their causal model to introduce the notion of causality in our expla-
nations. In the database literature, the notion of causality is brought
together with data provenance [14, 17]. Meliou et al. [36] adapt the
notion of causality to explain the cause of answers and non-answers
in the output of database queries. In the context of probabilistic
databases, Kanagal et al. [32] define the notion of an input tuple’s
influence on a query result. Scorpion [46] explains outliers in ag-
gregate results of a query by unifying the concepts of causality and
influence. Our notions of normal and anomaly are similar to Scor-
pion’s hold-out and outlier sets, respectively.

Performance diagnosis. There have been many applications of
performance diagnosis in databases [22], such as tuning query per-
formance [8, 30], diagnosing databases that run on storage area net-
works [11], or parameter tuning [23]. Benoit [9] and Dias et al. [20]
propose tools for automatic diagnosis of performance problems in
commercial databases. However, [9] requires DBAs to provide a
set of manual rules and [20] relies on detailed internal performance
measurements from the DBMS (e.g., time spent in various mod-
ules of Oracle to process a query). More importantly, these tools
lack explanatory features to answer ‘why’ a performance problem
has occurred. In contrast, DBSherlock produces accurate explana-

tions even without manual rules and using only aggregate statis-
tics. Also, previous work has not accounted for the interaction of
the DBMS with the machine that it is running on. DBSherlock gives
an explanation based on every statistic it can gather both inside and
outside the DBMS.

In the context of MapReduce, there is work on automatic tun-
ing of MapReduce programs [7, 31]. Here, the most relevant work
is PerfXplain [34], which generates predicate-based explanations.
PerfXplain helps debug MapReduce jobs, answering questions such
as ‘Why Job A is faster than Job B?’. DBSherlock is designed for
OLTP workloads, its predicates are more accurate than those of
PerfXplain (see Section 8.4), and can incorporate causal models.

There has been much work on automated performance diagnosis
in other areas. Gmach et al. [26] use a fuzzy controller to remedy
exceptional situations in an enterprise application. Their controller,
however, requires the rules to be hard-coded and pre-defined by ex-
perts. In contrast, DBSherlock allows for causal models to be added,
merged, and refined as new anomalies occur in the future. Further,
while DBSherlock allows for incorporating domain knowledge, it
can provide accurate explanations even without domain knowledge
(see Section 8.6). Mahimkar et al. [35] propose a tool for trou-
bleshooting IPTV networks, but assume that large correlation and
regression coefficients among pairs of attributes imply causality.
DBSherlock does not make this assumption.

Outlier detection. DBSherlock uses a simple but effective outlier
detection strategy to autonomously monitor database performance
(Section 7). Allowing users to choose from additional outlier de-
tection algorithms (e.g., [15, 19, 33, 40, 41, 42, 43, 44, 45, 46, 48])
will make an interesting future work.

10. CONCLUSION
Performance diagnosis of database workloads is one of the most

challenging tasks DBAs face on a daily basis. Besides basic vi-
sualization and logging mechanisms, current databases provide lit-
tle help in automating this adhoc, tedious, and error-prone task.
In this paper, we presented DBSherlock, a framework that explains
performance anomalies in the context of a complex OLTP environ-
ment. A user can select a region in a performance graph, which
s/he thinks is abnormal, and ask DBSherlock to provide a diagnos-
tic explanation for the observed anomaly. DBSherlock explains the
anomaly in the form of predicates and possible causes produced
by causal models. These explanations aid our users in diagnos-
ing the correct cause of the performance problems more easily and
more accurately. We also demonstrated that the confidence of our
causal models can be increased via merging multiple causal mod-
els sharing the same cause. Our extensive experiments show that
our algorithm is highly effective in identifying the correct explana-
tions and is more accurate than the state-of-the art algorithm. As
a much needed tool for coping with the increasing complexity of
today’s DBMS, DBSherlock is released as an open-source module
in our workload management toolkit [1].

An important future work is to enable automatic actions for recti-
fying simple forms of performance anomaly (e.g., throttling certain
tenants or triggering a migration), once they are detected and diag-
nosed with high confidence. We also plan to extend DBSherlock to
go beyond creating causal models upon successful diagnoses, by
documenting and storing the actions taken by the DBA to use as a
suggestion for future occurrences of the same anomaly. Finally,
DBSherlock’s ideas might also be applicable to analytical work-
loads, e.g., in explaining performance problems caused by work-
load drifts [39].

Acknowledgements. This work is in part funded by National Sci-
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APPENDIX
Our appendix provides supplementary experiments for interested
readers. Appendix A demonstrates the performance of DBSherlock
on a different workload (i.e., TPC-E). Appendix B shows the ef-
fectiveness of merged causal models and discusses the possible
issue of over-fitting. Appendix C demonstrates the robustness of
DBSherlock against input errors. Appendix D describes the effect
of tuning parameters on our predicate generation algorithm. Ap-
pendix E evaluates DBSherlock’s performance, when using auto-
matic anomaly detection. Appendix F demonstrates the effec-
tiveness of domain knowledge in pruning secondary symptoms.

A. ACCURACY FOR OTHER WORKLOADS
To confirm whether DBSherlock’s capability of producing accu-

rate explanations extends to other workloads besides TPC-C, we
conducted additional experiments using the TPC-E benchmark [6].
Here, we used TPC-E with 3,000 customers, resulting in a 50GB
data size. We generated the datasets and constructed merged causal
models using a similar setup as in Section 8.5 (i.e., 5 datasets to
construct merged causal models and 300 instances of explanations).

Type of Workload Accuracy if
shown top-1
cause

Accuracy if
shown top-2
causes

TPC-C 98.0% 99.7%
TPC-E 92.5% 99.6%

Table 4: DBSherlock’s accuracy for TPC-C and TPC-E workloads.



Table 4 compares the percentage of correct answers when the
top-1 or top-2 causes are returned to the user for both TPC-C and
TPC-E. When only the top-1 cause was shown to the user, the ac-
curacy for the TPC-E workload slightly dropped to 92.5% on av-
erage. This was mainly due to DBSherlock’s lower accuracy for
‘Poor Physical Design’ with TPC-E, as the effects of ‘Poor Physi-
cal Design’ and ‘Lock Contention’ on the system were not as sig-
nificant as they were with TPC-C. The was due to the fact that
TPC-E is much more read-intensive than TPC-C [16]. Nonetheless,
DBSherlock still achieved an impressive accuracy of 99% on aver-
age with the TPC-E workload when the top-2 causes were shown
to the user.

B. OVER-FITTING AND MERGED CAUSAL
MODELS

To verify if adding more datasets could further improve our merged
models, we also ran a leave-one-out cross validation experiment.
With 11 datasets for each case, we constructed causal models from
10 datasets and merged them. The final causal model then calcu-
lated confidence on the remaining dataset of each test case. Over-
all, the average confidence of the correct model increased slightly
as shown in Figure 11a, but at the same time, the average margin of
confidence decreased in some test cases as shown in Figure 11b.

The decrease in the average margin of confidence in some test
cases suggests that merging more models than necessary can be
ineffective. In other words, our proposed technique for merging
causal models continues to widen the scope of relevant predicates
while filtering irrelevant ones out. Once every irrelevant predi-
cate has been filtered out, merging more models is not as effective.
This is similar to the over-fitting phenomenon in machine learn-
ing. Nonetheless, DBSherlock still succeeded in returning the cor-
rect cause among its top two explanations in every instance (except
for ‘Network Congestion’), as demonstrated in Figure 11c.

C. RARE ANOMALIES AND ROBUSTNESS
AGAINST INPUT ERRORS

As explained in Section 2.2, the user selects the abnormal re-
gions manually after visual inspection of the performance plots.
(We have used the same method in our experiments—Section 8.2.)
However, users may not specify the regions with perfect precision.
To understand how robust DBSherlock is to input errors caused by
human mistakes, we conducted the following experiment. Using
the same setup as Appendix B, we extended the boundaries of the
original anomaly region by 10% in one experiment and shortened
them by 10% in another. We also ran a third experiment where we
randomly chose only two seconds of the original abnormal region
as our input anomaly. The goal of this test case was to evaluate
DBSherlock’s effectiveness in diagnosing anomalies that are rare or
only last a few seconds. For each dataset, we repeated each experi-
ment 10 times and averaged the result.

Width of Abnormal Region Accuracy if
shown top-1
cause

Accuracy if
shown top-2
causes

Original 94.6% 99.1%
10% Longer 95.5% 100%
10% Shorter 95.5% 97.3%
Two Seconds 74.6% 86.4%

Table 5: DBSherlock’s robustness against rare and imperfect inputs.

Table 5 reports the percentage of correct answers when the top-1
or 2 causes are returned to the user. The accuracy did not change
significantly when the span of the abnormal region was shorter or
longer than the original one by 10%. More surprisingly, DBSherlock
achieved reasonable accuracy even when the abnormal region was
only two seconds long (e.g., the top-2 causes contained the correct
explanation in 85% of the cases). These experiments show that
DBSherlock remains effective even when the abnormal regions are
not perfectly aligned with the actual anomaly or only last a very
short period.

D. DIFFERENT PARAMETERS/STEPS IN
DBSHERLOCK

We conducted various experiments to study the effect of the in-
dividual steps and configurable parameters of our predicate gener-
ation algorithm on its accuracy.

To evaluate the different steps of our algorithm (from Section 4),
we compared it against its simpler variants by omitting some of
the steps each time. Since steps 1, 2 and 5 (i.e., Creating a Par-
tition Space, Partition Labeling and Extracting Predicates) form
the skeleton of our algorithm and cannot be excluded easily, we
omitted the other two steps (i.e., Partition Filtering and Filling the
Gaps). Table 6 reports the average margin of confidence and accu-
racy of each variant. Skipping either of the Partition Filtering or
Filling the Gaps steps lowers the accuracy of our algorithm signif-
icantly (down to 0–10%). Without both, our algorithm fails to find
any relevant predicates for explaining the given anomaly. This ex-
periment underlines the significant contribution of these two steps
towards our algorithm’s overall accuracy.

Algorithms Overall avg.
margin of
confidence

Accuracy if
shown top-1
cause

Original (all 5 steps) 37.4 94.6%
Without Filling the Gaps 9.3 10.1%
Without Partition Filtering 0.7 0%
Without Filling the Gaps &
Partition Filtering

0 0%

Table 6: Contributions of the different steps of our predicate gener-
ation algorithm to the overall accuracy.

Our predicate generation algorithm has three configurable pa-
rameters: the number of partitions (R), the anomaly distance multi-
plier (δ) and the normalized difference threshold (θ). We conducted
experiments to study the effect of these parameters on the generated
explanations. We ran our algorithm on every dataset with different
values of each parameter and averaged its confidence, computation
time, and number of generated predicates. For each experiment,
we used 10 datasets to construct merged causal models and calcu-
lated their confidence on the remaining dataset. We used the default
values of {R, δ, θ} = {250, 10, 0.2}.

We varied R using the following values {125, 250, 500, 1000,
2000}. As shown in Figure 12a, R >1000 increased the computa-
tion time significantly, without much improvement in confidence.
We also varied δ using the following values {0.1, 0.5, 1, 5, 10}. As
shown in Figure 12b, and as expected, δ >1 favored more specific
predicates and led to higher confidence.

Lastly, we varied the value of θ using the following values {0.01,
0.05, 0.1, 0.2, 0.4}. As shown in Figure 12c, increasing the value
of θ reduced the number of generated predicates but increased their
confidence slightly. However, the confidence dropped significantly
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Figure 11: Evaluation of a merged causal model with 10 datasets in terms of (a) confidence, compared to a merged causal model with 5
datasets, (b) margin of confidence, compared to a merged causal model with 5 datasets, and (c) accuracy if top-k causes are returned.
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Figure 12: The effect of (a) the number of partitions on our algorithm’s average confidence and computation time, (b) the anomaly distance
multiplier on its confidence, and (c) the normalized difference threshold on its average confidence and number of generated predicates.

with θ = 0.4. This is because a large value of θ filters out most
predicates, leaving only a few predicates that are too specific to
their training dataset and do not generalize to others.
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Figure 13: The effect of the parameter κt to average F1-measure.

We also performed a sensitivity analysis with the parameter κt

that we use to filter secondary symptoms with the domain knowl-
edge. We compared the average F1-measures with different values
of κt using the same experiment setup as described in Appendix
F. As demonstrated in Figure 13, the value of 0.15 for κt gave the
highest average F1-measure.

E. DBSHERLOCK’S ACCURACY WITH AU-
TOMATIC ANOMALY DETECTION

We conducted an experiment to test DBSherlock’s accuracy when
automatic anomaly detection is used and also compared against an-
other anomaly detection algorithm, PerfAugur. For PerfAugur, we

supplied the overall average latency as its performance indicator
variable and used their naïve algorithm with the original scoring
function to compute the abnormal region.

For this experiment, we have generated datasets with the longer
duration (i.e., 10 minutes) of the normal workload to ensure that
the normal region is larger than the abnormal region, necessary for
automatic detection algorithm to distinguish between both. Then,
causal models were constructed for each individual test case by
merging the causal models from 10 datasets. Abnormal regions
were manually specified with our ‘ground-truth’ knowledge of each
test case, to simulate a perfect user diagnosing the problem. The
anomaly detection algorithm described in Section 7 and PerfAu-
gur then identified abnormal regions for the remaining dataset of
each test case. This leave-one-out cross validation set-up is de-
signed to test the effectiveness of DBSherlock using merged causal
models, but in the absence of any user input. DBSherlock used the
automatically detected region of anomaly as its input and generated
explanations for each test case.

Detection Algorithms Accuracy if
shown top-1
cause

Accuracy if
shown top-2
causes

Manual Anomaly Detection 94.6% 99.1%
Automatic Anomaly Detec-
tion

90% 95.5%

PerfAugur 77.3% 88.2%

Table 7: Ratio of the correct causes for different strategies.

As shown in Table 7, DBSherlock identified about 95% of the
correct causes on average with our algorithm, when top-2 possi-



Actual
Positive Negative

Domain Knowledge Test Pruned 91.6% 0.9%
Not Pruned 8.4% 99.1%

Table 8: Confusion matrix for finding secondary symptoms using
incorporated domain knowledge.

ble causes were shown to a user. Our anomaly detection algorithm
also performed substantially better than PerfAugur’s detection al-
gorithm. This promising result demonstrates that DBSherlock can
be used in an automated setting once it has enough user feedback
for well-constructed causal models. An interesting future work is
to integrate a domain-specific and a more sophisticated anomaly
detection algorithm in DBSherlock.

F. TESTING DOMAIN KNOWLEDGE WITH
SYNTHETIC DATASET

To test DBSherlock’s ability to remove secondary symptoms, we
conducted a separate experiment using a synthetic dataset. Using
a real dataset for this experiment is non-trivial since the ‘ground-
truth’ casual model is unknown to us. With a synthetic dataset,
however, we can define the ‘ground-truth’ causality between vari-
ables and hence, correctly evaluate our framework’s ability to prune
secondary symptoms. We created the synthetic dataset using a
randomly generated linear causal graph. A linear causal graph
is a directed acyclic graph, where the causal relationship of vari-
ables in the graph is defined by a linear structural equation model
(SEM) [10, 24]. Using this graph, we randomly generated the do-
main knowledge to classify which predicates to prune (called ‘Ac-
tual Positive’) or keep (called ‘Actual Negative’) before running
the experiment.

Now, we give a detailed description of our experimental setup.
Our experiment consisted of multiple runs, where we randomly
generated synthetic datasets. This bootstrap testing model enables
us to empirically evaluate DBSherlock’s ability to incorporate do-
main knowledge in various scenarios. For each run, we generate a
linear causal graph G = {V1, V2, · · · , Vk}, where k is the number
of variables in the system. We used k = 7. Each node Vi in G rep-
resents a variable and corresponds to an attribute Attri in our input
data. Note that we treat the node Vk specially as an effect variable,
which is the node with no outgoing edges and at least one incom-
ing edge. From the effect variable Vk, we also define root cause
variables, denoted as C. Root cause variables are the root nodes
of the effect variable Vk (i.e., the ancestors of Vk with no incom-
ing edges). They are the variables causing anomalies. For these
variables, we randomly draw their values from N (10, 10) except
10% of their values are drawn from N (100, 10), which are con-
tiguous and aligned among the root cause variables, representing
an abnormal region of the data.

A variable Vi that is not a root cause variable is defined by a
linear structural equation of the form:

Vi =
∑
j

cjiVj + εi (5)

where cji is a cause coefficient, which represents the effect of Vj

on Vi and εi is an error term for the variable Vi. cji takes a non-zero
integer value randomly drawn in [-10, 10]. εi is drawn from the
standard normal distribution (i.e., N (0, 1)). Starting from the root
cause variables and applying linear structural equations in order, we

generate a synthetic dataset for DBSherlock in the format described
in Section 2.1 (i.e., (Timestamp, Attr1, . . . , Attrk)). The
synthetic dataset we used for the experiment had 600 tuples, rep-
resenting data collected for 10 minutes with 1-second intervals. 60
consecutive tuples are selected as an abnormal region (i.e., their
root cause variables have the distribution of N (100, 10)), repre-
senting the anomaly that lasts for a minute.

Now given the root cause variables C, we construct the domain
knowledge D by randomly generating rules for the attributes cor-
responding to the root cause variables, each attribute becoming the
cause variable of a rule. Random attributes then become effect at-
tributes to create multiple rules obeying the two conditions of the
rule in Section 5. We consult C, D and G to classify which pred-
icates should be pruned (‘Actual Positive‘) or not (‘Actual Nega-
tive’) before running the experiment. A predicate should be pruned
only if its attribute is an effect attribute in D and there exists a path
to it from its cause variable in G. They are secondary symptoms
that we should remove using our domain knowledge. Conversely,
a predicate should not be pruned only if its attribute is an effect at-
tribute in D and there exists no path to it from its cause variable in
G.

We studied the impact of incorporating domain knowledge on
10,000 randomly generated linear causal graphs (i.e., 10,000 runs).
We evaluated the performance of our technique from Section 5 us-
ing the confusion matrix shown in Table 8. Our technique for prun-
ing secondary symptoms achieves a 91.6% precision and a 99.1%
recall. This experiment demonstrates the effectiveness of our tech-
nique in correctly pruning secondary symptoms, as well as its ro-
bustness against incorrect domain knowledge (thanks to checking
the independence between attributes in the data itself).


