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ABSTRACT
In today’s databases, previous query answers rarely benefit
answering future queries. For the first time, to the best of
our knowledge, we show how we can completely change this
paradigm in an approximate query processing (AQP) con-
text. We make the following observation: the answer to each
query reveals some degree of knowledge about the answer to
another query because their answers stem from the same un-
derlying distribution that has produced the entire dataset.
Exploiting and refining this underlying knowledge should al-
low us to answer queries more analytically, rather than by
reading enormous amounts of raw data. Also, processing
more queries should continuously enhance our knowledge of
the underlying distribution, leading to faster processing of
future queries.

We call this novel idea—learning from past query answers—
Database Learning. We exploit the principle of maximum
entropy to produce answers guaranteed to always be more
accurate than existing sampling-based approximations. Em-
powered by this idea, we build a query engine atop Spark
SQL, called Intelli. We conduct extensive experiments on
real-world query traces from a large customer of a major
database vendor. Our results demonstrate that database
learning supports 73.7% of these queries, speeding them up
by up to 10.43x compared to existing AQP systems. Data-
base learning therefore provides a revolutionary and generic
means of reusing work in a database: it allows a DBMS to
continuously learn and improve; the more queries issued in
the past, the faster and more accurate answers in the future.

1. INTRODUCTION
In today’s databases, the answer to a previous query is

rarely useful for speeding up new queries. Besides a few
limited benefits (see Previous Approaches below), the work
(both I/O and computation) performed for answering past
queries is often wasted afterwards. However, in an approxi-
mate query processing context (e.g., SnappyData [4], Presto [3],
Druid [2], BlinkDB [9]), one might be able to change this
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paradigm altogether and re-use much of the previous work
done by the database based on the following observation:

The answer to each query reveals some fuzzy knowl-
edge about the answers to other queries, even if
each query accesses a different subset of tuples
and columns.

This is because the answers to different queries stem from
the same underlying distribution which has produced the en-
tire dataset. In other words, each answer reveals a piece
of information about this underlying but unknown
distribution. Note that having a concise statistical model
of the underlying data can have significant performance ben-
efits. In the ideal case, if we had access to an incredibly
precise model of the underlying data, we would no longer
have to access the data itself. In other words, we could an-
swer queries more efficiently by analytically evaluating them
on our concise model, which would mean reading and ma-
nipulating a few kilobytes of model parameters rather than
terabytes of raw data. While we may never have a perfect
model in practice, even an imperfect model can be quite
useful. Instead of using the entire data, one can use a small
sample of it to quickly produce a sample-based approximate
answer, which can be then calibrated and combined with the
model to produce a more accurate approximate answer to
the query. The more precise our model, the less need
for actual data, the smaller our sample, and conse-
quently, the faster our response time. In particular,
if we could somehow continuously improve our model—say,
by learning a bit of information from every query and its
answer—we should be able to answer new queries using
increasingly smaller portions of data, i.e., become
smarter and faster as we process more queries.

We call the above goal Database Learning (DBL), as it is
reminiscent of the inferential goal of machine leaning (ML),
where past observations are used to improve future predic-
tions [14, 38]. Likewise, our goal in DBL is to enable a sim-
ilar principle by learning from past observations, but
in a query processing setting. Specifically, in DBL, we
plan to treat approximate answers to past queries as obser-
vations, and use them to update our posterior knowledge of
the underlying data, which in turn can be used to speed up
future queries.

In Figure 1, we visualize this idea using a toy example.
Here, DBL learns a model to explain the average sales for
different times of the year. Figure 1(a) shows this model
based on the answer to the first query. Since the model is
probabilistic, its 95% confidence interval is also shown (the



Jan 1 Mar 1 May 1

Ranges observed by past queries

(a)
S
a
le

s

True Data

Estimated data distribution with 95% confidence interval

Jan 1 Mar 1 May 1

(b)

S
a
le

s

Jan 1 Mar 1 May 1

(c)

S
a
le

s

Figure 1: An example of how database learning might contin-
uously refine its model as more queries are processed: (a) after
1 query, (b) after 2 queries, and (c) after 5 queries. A similar
learning process can be used for categorical data. Also, database
learning can be effective even when its model does not exactly
coincide with the ground-truth data.

shaded area around the best current estimate). As shown
in Figure 1(b-c), DBL further refines its model every time
a new query is answered. This approach allows a DBL-
enabled query engine to provide increasingly more accurate
estimates of average sales even for time ranges that have
never been accessed by previous queries—this is possible be-
cause DBL finds the most likely model of the entire area that
fits with the past query answers. This example is to illus-
trate the possibility of (i) significantly faster response times
by processing smaller samples of the data for the same an-
swer quality, or (ii) increasingly more accurate answers for
the sample size and response time.

Interestingly, a similar approach can be taken even if the
queries access different columns. Figure 2 shows an example
of how DBL’s estimation of a company’s average stock price
might improve as a result of querying the company’s sales.
This is because any non-zero correlation between a com-
pany’s average sales and stock price would mean that, the
likelihood of observing certain values for one should change
based on the values observed for the other.

Therefore, DBL can be a revolutionary leap in database
technology and approximate query processing: from today’s
DBMSs where previous work is rarely re-used to a new world
where a DBMS continuously learns and improves; the more
queries issued in the past, the faster and more accurate an-
swers in the future.

Challenges — To realize DBL’s vision, three key challenges
must be overcome in practice. First, there is a query gen-
erality challenge. DBL must be able to transform a wide
class of SQL queries into appropriate mathematical repre-
sentations so that they can be used by statistical methods
for improving new queries. Second, there is a data generality
challenge. To support arbitrary datasets, no distributional
assumptions must be made about the underlying data. In
other words, the only valid knowledge must come from past
queries and their respective answers. Finally, there is an ef-
ficiency challenge. We need to strike a balance between the
computational complexity of our inference and its ability to
reduce the error of query answers. In other words, DBL

Ranges observed by past queries

Time

S
a
le

s

Time

S
to

ck
p
ri

ce

True data

Estimated data distribution with 95% confidence interval

(a) Our estimation of the com-
pany’s average stock price over
time, prior to running any
queries.

Time

S
a
le

s

Time

S
to

ck
p
ri

ce
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might improve even if we query
sales over time.

Figure 2: In DBL, queries may still benefit one another even if
they access different columns of the data.

needs to be both effective and practical.

Previous Approaches — In today’s databases, the work
performed for answering past queries is rarely beneficial to
new queries, except for the following cases:

1. View selection and adaptive indexing: In pre-
dictable workloads, columns and expressions commonly
used by past queries provide hints on which indices [21,
24,34] or materialized views [10] to build.

2. Caching: The recently accessed tuples might still be
in memory when future queries access the same tuples.

Both techniques, while beneficial, can only reuse previ-
ous work to a limited extent. Caching input tuples reduces
I/O if data size exceeds memory, but does not reuse query-
specific computations. Caching (intermediate) final results
can reuse computation only if future (sub-)queries are identi-
cal to those in the past. While index selection techniques use
the knowledge of which columns are commonly filtered on,
an index per se does not allow for reusing computation from
one query to the next. Adaptive indexing schemes (e.g.,
database cracking [24]) use each query to incrementally re-
fine an index, to amortize the cost across queries. However,
there is still an exponential number of possible column-sets
that can be indexed. Also, they do not reuse query-specific
computations either. Finally, materialized views1 are only
beneficial when there is a strict structural compatibility—
such as query containment or equality—between past and
new queries [22].

While orthogonal to these existing techniques, DBL is fun-
damentally different:

1. Unlike indices and materialized views, DBL incurs lit-
tle storage overhead as it only retains the past n aggre-
gate queries and their answers.2 Consequently, indices
and materialized views grow in size as the data grows,
while DBL remains oblivious to the data size.

2. Materialized views, indexing, and caching are exact
methods and thus are only effective when new queries

1DBL can be easily misunderstood with view selection. Not
only do they take fundamentally different approaches (statistical ver-
sus exact), they also differ in generality and other aspects, as ex-
plained next.
2Even if a query outputs too many tuples, DBL retains only a fixed
number of them (see Section 2.4)



touch previously accessed columns or tuples. DBL is
strictly more general as it can benefit new queries even
if they require tuples that were not touched by past
queries. This is due to DBL’s probabilistic model,
which provides extrapolation power spanning the en-
tire data (see Figure 1).

Our Approach — Note that our vision of database learn-
ing (DBL) might be achieved in different ways, depending
on the design decisions made in terms of query generality,
data generality, and efficiency. In this paper, besides the
introduction of the concept of DBL, we also provide a spe-
cific solution for achieving DBL, which we call Intelli to
distinguish it from DBL as a general vision.

From a high-level, Intelli overcomes the challenges asso-
ciated with query generality, data generality, and efficiency,
as follows. First, complex SQL queries are decomposed into
simpler snippets. The answer to each snippet is then mod-
eled as a probabilistic random variable, corresponding to an
integration over relevant tuples drawn from an unknown un-
derlying distribution. Second, to achieve data generality, we
employ a non-parametric probabilistic model, whereby an-
swers to different snippets are related via a joint probability
distribution function (pdf). We derive this joint pdf by ex-
ploiting a powerful statistical principle, namely the principle
of maximum entropy [41], which yields the most likely pdf
given our limited statistical knowledge (i.e., past queries and
their approximate answers). Third, to ensure the computa-
tional efficiency of our system, we restrict ourselves to only
the first and second-order statistics of the query answers
(i.e., mean, variance, and covariance) when applying the
principle of maximum entropy. We show that this instantia-
tion of DBL leads to significant speedup of query processing.

Contributions — In this paper, we make the following
contributions:

1. We introduce the novel concept of database learning
(DBL), which goes beyond all previous techniques in
reusing previous work in a DBMS. By learning from
past query answers, DBL allows DBMS to continu-
ously become smarter and faster at answering new
queries.

2. We provide a concrete instantiation of DBL, called In-
telli, using the principle of maximum entropy and a
kernel-based statistical modeling technique. Intelli’s
strategies cover 63.6% of TPC-H queries and 73.7% of
a real-world query trace from a leading vendor of an-
alytical DBMS. We formally show that Intelli’s an-
swers are never worse than existing AQP techniques.

3. We integrate Intelli atop an open-source query en-
gine and conduct extensive experiments using both
benchmark and real-world traces, showing upto 10.43x
speedup and 98% error reduction compared to existing
AQP engines that do not use Intelli.

The rest of this paper is organized as follows. Section 2
overviews Intelli’s workflow, supported query types, and
query processing. Sections 3-6 describe the internals of In-
telli in detail. Section 7 reports our empirical results. Sec-
tion 8 summarizes related work, and Section 9 concludes the
paper with future work.
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Figure 3: Workflow in Intelli. At query time, the Inference
module improves a query answer obtained by an underlying AQP
(i.e., raw answer) using a Query Synopsis and a Model. Each time
a query is processed, the raw query answer, (raw ans, raw err),
is added to the query synopsis. The Learning module uses this
updated query synopsis to refine the current model accordingly.

2. SYSTEM OVERVIEW
In this section, we overview the system we have built based

on database learning (DBL), called Intelli. Section 2.1
explains Intelli’s architecture and overall workflow. Sec-
tion 2.2 describes supported SQL query types. Sections 2.3
and 2.4 overview Intelli’s computation and query represen-
tation, respectively. Lastly, Section 2.5 discusses Intelli’s
current limitations.

2.1 Architecture
Intelli consists of a query synopsis, a model, and three

processing modules (an off-the-shelf approximate query pro-
cessing engine, an Inference module, and a Learning
module). Figure 3 illustrates the connection between these
different componenets.

The query synopsis contains a summary of past queries3

and their approximate answers computed by an underlying
off-the-shelf AQP (approximate query processing) engine.
The query synopsis is initially empty when Intelli is first
launched. Once the i-th query is processed, if it is a sup-
ported query (defined in Section 2.2), Intelli adds a triplet
(qi, θi, βi) to the query synopsis, where qi is the i-th query,
θi is an (approximate) answer to qi, and βi is the estimated
error for θi. The θi and βi are obtained from the underly-
ing AQP engine.4 We call the queries stored in the query
synopsis past queries.

The second key component is a model representing In-
telli’s statistical understanding of the underlying data. The
model is trained on the query synopsis, and is updated each
time a query is added to the synopsis.

At query time, for an incoming query (which we call a
new query), Intelli invokes the AQP engine to compute a
pair of an approximate answer θi and an estimated error βi
for the new query, called the raw answer and the raw error,
respectively. Then, Intelli combines this raw answer and
the previously trained model to infer an improved answer
and an updated error estimate, called the improved error.
We prove that the improved error is never larger than the
raw error (Theorem 1). Non-aggregate expressions are left

3DBL is focused on analytical (i.e., aggregate) queries only. Thus, we
use ‘analytical queries’ and ‘queries’ interchangeably in this paper.
4For simplicity, and without loss of generality, we assume that θi and
βi are computed using a sampling-based approximate query engine,
e.g., BlinkDB [9], ODM [35], ABS [44], DBO [18], or SnappyData [4].



Term Definition
Intelli our actual system based on database

learning.

true answer the exact answer.

raw answer the answer computed by the AQP
engine.

raw error the estimated error by the AQP
engine.

improved answer the answer updated by Intelli.

improved error the estimated error by Intelli.

past query a supported query processed in the
past.

new query an incoming query whose answer is to
be computed.

Table 1: Terminology.

unmodified by Intelli. Table 1 summarizes the terminology
used in this paper.

2.2 Supported Queries
Intelli supports aggregate queries that are flat (i.e., no

derived tables or sub-queries) with the following conditions:

1. Aggregates. Any number of SUM, COUNT, or AVG ag-
gregates can appear in the select clause. The argu-
ments to these aggregates can also be a derived at-
tribute.

2. Joins. Foreign-key joins between a fact table and any
number of dimension tables are supported. For sim-
plicity, our discussion in this paper is based on a de-
normalized table.

3. Selections. Intelli currently supports equality and
inequality comparisons for categorical and numerical
attributes (including the in operator). Currently, In-
telli does not support any disjunctions or textual fil-
ters (e.g., like ’%Apple%’) in the where clause.

4. Grouping. groupby clauses are supported for both
stored and derived attributes. The query may also
include a having clause.5

Nested Query Support — Although Intelli does not
directly support nested queries; many queries can be flat-
tened using joins [1] or by creating intermediate views for
sub-queries [22]. In fact, this is the process used by Hive for
supporting the nested queries in TPC-H benchmark [26].
We are currently working to automatically process nested
queries and to expand the class of supported queries (see
Section 9).

Unsupported Queries — Upon its arrival, each query
is inspected by Intelli’s query type checker to determine
whether it can be supported, and if not, Intelli bypasses
the Inference module and simply returns the raw answer.
The overhead of the query type checker is negligible com-
pared to the runtime of the AQP engine; thus, Intelli
does not incur any noticeable runtime overhead even when
a query is not supported.
5Note that the underlying AQP engine may affect the cardinality of
the result set depending on the having clause (i.e., subser/superset
error [30]). Intelli simply operates on the result set returned by the
AQP engine.

Only supported queries are stored in Intelli’s query syn-
opsis and used to improve the accuracy of answers to future
supported queries; that is, the class of queries that can be
improved is equivalent to the class of queries that can be
used to improve other queries.

2.3 Inference Overview
In this section, we provide the high-level intuition behind

our approach. Consider a relation whose tuples are drawn
from some unknown underlying distribution. We represent
the possible values of these tuples as well as different ag-
gregations of any subset of them using random variables.
Intelli’s Inference module is entirely based on this ran-
dom variable interpretation of tuples and query answers.

For instance, let θ1 and θ2 represent the possible query
answers to two queries, q1 and q2, and suppose we want to
estimate the true answer θ̄3 to q3 using the actual values of
θ1 and θ2, denoted by θ1 and θ2.6 Let θ̄3 be the random
variable representing the possible values for θ̄3. Then, our
goal becomes finding the most likely value for θ̄3.

To solve this problem, Intelli first expresses the rela-
tionship among the three random variables (θ1, θ2, and
θ̄3) using a joint probability distribution function (pdf), say
f(θ1, θ2, θ̄3). Intuitively, this joint pdf encodes the chance
that an AQP engine outputs that particular combination of
values as query answers to these three queries. Determining
this joint pdf is a challenging task given that we cannot di-
rectly inspect the unknown underlying distribution that has
generated the tuples in the relation. Intelli therefore over-
comes this challenge by applying the principle of maximum
entropy given certain statistics derived from past queries
and their answers.

Conceptually, once this joint pdf is determined, the most
likely outcome of θ̄3 can be estimated by computing a con-
ditional pdf, i.e., f(θ̄3 | θ1 = θ1,θ2 = θ2), and then finding
a θ̄3 for which the conditional pdf takes its maximum value.
Intelli returns this value as an improved answer. The infer-
ence processed will be presented in more detail in Section 3.

2.4 Internal Representation
Query Synopsis — When a query (along with its raw an-
swer and raw error) are inserted into the query synopsis,
it is broken into multiple individual records. We call each
of those records a snippet. Conceptually, each snippet cor-
responds to a supported SQL query with a single aggre-
gate function and no other projected columns in its select

clause, and with no groupby clause; thus, the answer to each
snippet is a single real number. A SQL query with multiple
aggregate functions or a groupby clause is converted to a set
of multiple snippets as follows:

1. If the query’s select clause contains Nagg aggregate
functions, Intelli creates Nagg snippets, identical to
the original query but each with only one of its aggre-
gate functions. Non-aggregate columns are removed
from the projection list.

2. If the query has a groupby clause, Ngrp snippets are
created, where Ngrp is the number of groups generated
by the query.7 However, instead of the groupby clause,

6In this paper, we use the bold font x for a random variable and the
regular font x for a specific value taken by that random variable.
7Since queries are added after their execution, Ngrp is known.



a new predicate is added to the where clause of each
snippet, with equality filters corresponding to one of
the Nr combinations of column values.

A potential challenge of the above approach is that the num-
ber of generated snippets, Nagg × Ngrp, can be extremely
large, e.g., if a groupby clause includes a primary key. To
ensure that the number of snippets added per each snippet is
bounded, Intelli only generates snippets for the first Nmax

groups in the answer set. We find that Nmax = 1000 works
quite well in practice.

Moreover, for each aggregate function g, the query synop-
sis a maximum of Cg snippets by following a least recently
used snippet replacement policy (by default, Cg=100 ). This
improves the efficiency of the inference process, while main-
taining an accurate model based on the recently processed
query answers.

Since Intelli’s inference and learning processes work with
snippets, for ease of presentation we use query to mean snip-
pet in the rest of this paper.

Aggregate Computation — Intelli uses two aggregate
functions to perform its internal computations: AVG(Ak)
and FREQ(*). The first one is an average function over a
given attribute, and the second one is the fraction of tu-
ples in a relation that satisfy a query’s selection predicates.
As stated earlier, the attribute Ak can be either a stored
attribute (e.g., revenue) or a derived one (e.g., revenue *

discount). At runtime, Intelli combines these two types
of aggregates to compute its supported aggregate functions
as follows:
• AVG(Ak) = AVG(Ak)
• COUNT(*) = FREQ(*) × (table cardinality)
• SUM(Ak) = AVG(Ak) × COUNT(*)

2.5 Limitations
Intelli relies on an off-the-shelf underlying AQP engine

for obtaining raw answers and errors. Consequently, In-
telli is bound by the limitations of the AQP engine. For
example, sampling-based engines are not apt at supporting
arbitrary joins or MIN/MAX aggregates. Similarly, Intelli’s
error guarantees are contingent upon the validity of the AQP
engine’s error estimates. (However, off-the-shelf error diag-
nostic techniques can be used [8].)

Second, similar to most asymptotic analyses, the conver-
gence rate Intelli’s inference (i.e., number of required ob-
servations) depends on the smoothness of the aggregated
values’ pdf (probability distribution function). In most cases,
one expects that tuples with similar values for many of their
attributes be also somewhat correlated in their aggregate
values. Informally, smoothness is the extent of this correla-
tion [36], e.g., MIN/MAX aggregates often lack this property.
The smoother the pdf, the fewer queries are needed for in-
ferring the underlying data characteristics. However, even
for non-smooth pdfs, we prove that Intelli never worsens
the original raw answers (Theorem 1). We also empirically
study Intelli’s effectiveness for different data and query
distributions in Section 7.6.

3. INFERENCE
In this section, we describe our inference process for com-

puting an improved answer (and improved error) for a new
query. First, we formally state the problem in Section 3.1.
To solve this problem, we apply the principle of maximum

Sym. Meaning
qi i-th (supported) query to database learning

n+ 1 index number for a new query

θi random variable for possible raw answers to qi

θi (actual) raw answer to qi; the outcome of θi

βi raw error (standard deviation) associated with θi

θ̄i random variable for possible true answers to qi

θ̄i (actual) true answer to qi; the outcome of θ̄i

Table 2: Mathematical Notations.

entropy to capture the relationship between query answers
using a joint probability distribution (Section 3.2). Then,
we exploit the answers to past queries to conditionalize this
probability distribution and infer improved answers to new
queries (Section 3.3).

3.1 Problem Statement
Let r be a relation8 drawn from some unknown under-

lying distribution. Let r’s attributes be A1, . . . , Am, where
A1, . . . , Al are the dimension attributes and Al+1, . . . , Am
are the measure attributes. Dimension attributes cannot
appear inside aggregate functions while measure attributes
can. Dimension attributes can be numerical or categorical,
but measure attributes are numerical. Measure attributes
can also be derived attributes. Let g be an aggregate func-
tion on Ak (e.g., AVG(Ak)), where Ak is one of the measure
attributes, and t be a vector of the values (a1, . . . , al) for
A1, . . . , Ak.

Given a query qi on r, an approximate query processing
(AQP) engine returns an approximate answer θi along with
an estimated error βi. Since the AQP engine is aggregating
a subset of tuples in r, we can encode the possible answers
to qi as a random variable θi, and its actual answer to qi
as θi (i.e., a value assigned to θi). We use θ̄i to denote the
true answer to qi, which would be obtained if we processed
the entire dataset. Thus, we can formally define the error
βi using the following equation:

β2
i = E[(θi − θ̄i)2]

The AQP engine can trade its answer accuracy for faster
response times, i.e., the larger βi, the faster it is to obtain
θi.

Suppose Intelli’s query synopsis contains n records, namely
Qn={(q1, θ1, β1), . . . , (qn, θn, βn)}. Let qn+1 be the new query.
First, the AQP engine computes a raw answer and its raw
error for qn+1, as (θn+1, βn+1). Then, DBL computes an im-

proved answer θ̂n+1 and its improved error β̂n+1 using Qn
and (θn+1, βn+1).

With this notation, our problem is stated as follows. Given
Qn and (θn+1, βn+1), compute a (θ̂n+1, β̂n+1) such that

β̂n+1�βn+1.

3.2 Relationship among Query Answers
To compute β̂n+1 using Qn, we first capture the rela-

tionship among possible query answers. Specifically, the
relationship is expressed by a joint probability distribution
function (pdf) f(θ1, . . . , θn+1, θ̄n+1) associated with random
variables (θ1, . . . ,θn+1, θ̄n+1).

8r can be a join or Cartesian product of multiple tables.



To estimate this joint pdf, Intelli relies on the principle
of maximum entropy (ME) [41], a simple but powerful sta-
tistical tool for determining a pdf of random variables given
a certain amount of statistical information available. The
ME principle states that, subject to some testable informa-
tion on random variables associated with a pdf in question,
the pdf that best represents the current knowledge is the
one maximizes the following expression, called entropy :

h(f) = −
∫
f(~θ) · log f(~θ) d~θ (1)

where ~θ = (θ1, . . . , θn+1, θ̄n+1).
Note that, according to the principle of ME, different

amounts of statistical information on our random variables
result in different pdfs. In fact, there are two conflicting
considerations when applying this principle. On one hand,
the resulting pdf can be computed more efficiently if the
provided statistics are simple or few, i.e., simple statistics
reduce the computational complexity. On the other hand,
the resulting pdf can describe the relationship among the
random variables more accurately if richer statistics are pro-
vided, i.e., the richer the statistics, the better our improved
answers. Therefore, we need to choose an appropriate de-
gree of statistical information to strike a balance between
the computational efficiency of pdf evaluation and its accu-
racy in describing the relationship among query answers.

To strike this balance, Intelli’s Inference module relies
only on the first and the second order statistics of the ran-
dom variables, i.e., mean, variances, and covariances. With
this choice of statistics, a well-known result in information
theory [41] guarantees that the resulting pdf will be a mul-
tivariate normal distribution with the corresponding mean,
variance, and covariance values.

Lemma 1. Let ~θ = (θ1, . . . ,θn+1, θ̄n+1) be a vector of n+2
random variables with mean values ~µ = (µ1, . . . , µn+1, µ̄n+1)
and a (n+2)×(n+2) covariance matrix Σ specifying their
variances and pairwise covariances. The only pdf f over
these random variables that maximizes h(f) while satisfy-
ing the provided means, variances, and covariances is the
following function:

f(~θ) =
1√

(2π)n+2|Σ|
exp

(
−1

2
(~θ − ~µ)TΣ−1(~θ − ~µ)

)
(2)

Later, in Section 3.4, we discuss why obtaining ~µ and Σ
is itself a challenge. However, even if we somehow obtain ~µ
and Σ, the next question is how to use pdf (2) to obtain an
improved answer to a new query.

3.3 Improved Answer
In the previous section, we formalized the relationship

among query answers, namely (θ1, . . . ,θn+1, θ̄n+1), as a joint
pdf. In this section, we exploit this joint pdf to infer an im-
proved answer to qn+1. In other words, we need to find
the most likely value for θ̄n+1 (the random variable repre-
senting qn+1’s true answer), given the observed values for
θ1, . . . ,θn+1. Mathematically, Intelli’s improved answer
θ̂n+1 to qn+1 can be expressed as:

θ̂n+1 = Arg Max
θ̄n+1

f(θ̄n+1 | θ1 = θ1, . . . ,θn+1 = θn+1) (3)

Fortunately, a well-known result shows that conditionaliz-
ing the pdf (2) results in another normal distribution, which

Algorithm 1: The Inference process

input : µ, Σ−1
s , (qn, θn, βn)

output: (θ̂n+1, β̂n+1), µ′, Σ′s
−1

// Query Time Processing

1 θ̂n+1, β̂n+1 ← Equation10 (µ, Σ−1
s , θn, βn)

2 display an improved answer (θ̂n+1, β̂n+1)

// Post Processing: Update mean and cov matrix
// Explained more in Section 4

3 µ′ ← mean of (θi, . . . ,θn+1)

4 Σ′s
−1 ← inverse of the covariance matrix of (θi, . . . ,θn+1)

allows us to solve optimization (3) analytically [13]:

θ̂n+1 = µn+1 + kTΣ−1
sub(

~θsub − µn+1), (4)

where:

• k is a vector of length n + 1 whose i-th element is
(i, n+ 2)-th entry of Σ;

• Σsub is a (n + 1) × (n + 1) submatrix of Σ consisting
of Σ’s first n+ 1 rows and columns;

• ~θsub=(θ1, . . . , θn+1)T ; and

• κ̄2 is the (n+ 2, n+ 2)-th entry of Σ.

Likewise, the improved error β̂n+1 can be similarly obtained:

β̂2
n+1 = E[(θ̄n+1 − θ̂n+1)2] = κ̄2 − kTΣ−1

subk (5)

Note that, since the conditional pdf is a normal distribu-
tion, the confidence interval—the range that contains the
true answer with a requested probability (e.g., 95%)—is
computed in a straightforward manner.

In the next section, we discuss several key challenges in-
volved in using these equations.

3.4 Key Challenges
As mentioned in Section 3.2, obtaining a joint pdf using

(2) requires the knowledge of means, variances, and covari-
ances of the random variables (θ1, . . . ,θn+1, θ̄n+1). How-
ever, acquiring these statistics is a non-trivial task. First,
we have only observed one value for each of the random val-
ues θ1, . . . ,θn+1, namely θ1, . . . , θn+1. Estimating variances
and covariances of random variables from a single value is
nearly impossible. Moreover, we do not have any observa-
tion for the last random variable, i.e., θ̄n+1. In Section 4.1,
we present a solution to estimate these statistics by decom-
posing them into inter-tuple correlations in the underlying
data. Then, in Section 4.2 we show how these individual
correlations can be estimated indirectly and efficiently.

The second challenge is that estimating the improved an-
swer θ̂n+1 and error β̂n+1 using equations (4) and (5) will
require matrix inversion of Σsub, which in general has an
O(n3) time complexity. Since θ̂n+1 and β̂n+1 need to be
computed at query time, such a computation is infeasible
in practice. We address this challenge in Section 5 by pro-
viding alternative mathematical expressions that are more
amenable to efficient computation.

4. APPROXIMATE INFERENCE
As described in Section 3, that Intelli expresses the re-

lationship among query answers as a joint pdf over a set of



random variables (θ1, . . . ,θn+1, θ̄n+1). In this process, we
need to estimate the means, variances, and covariances of
these random variables.

When performing inference with probabilistic distribu-
tions over random variables, the means of the random vari-
ables do not have a significant impact on the final results.
This is because they only represent a priori knowledge of the
data, and are hence updated in the process of conditioning
the pdf [36].

Thus, in the rest of this section we focus on estimating
the variances and covariances of these random variables. In
Section 4.1, we propose a decomposition of the (co)variances
of the random variables into inter-tuple covariance terms.
Then, in Section 4.2, we explain how inter-tuple covariances
can be estimated analytically using parameterized covari-
ance functions. In Section 4.3, we discuss the problem of
determining optimal parameters for these covariance func-
tions. Lastly, in Section 4.4, we present a safeguard against
potential overfitting.

4.1 Covariance Decomposition
To compute the variances and covariances of our random

variables (each representing possible answers to a query),
we define and use inter-tuple covariances. This is based
on the observation that the answer to a supported query
can be mathematically represented as an integration over
the attribute values of those tuples that satisfy the query’s
selection predicates.

Let g be an aggregate function on attribute Ak, ak be a
random variable representing the possible values of attribute
Ak, t = (a1, . . . , al) be a vector of length l comprised of
values for r’s dimension attributes A1, . . . , Al, and ω(t) be
the fraction of tuples in r that have the same values for their
dimension attributes as t.

We use νg(t) to denote the expected value of aggregate
function g given the values of dimension attributes. Thus,
we have:

νg(t) =

{
E[ak | t] if g is AVG(Ak)

ω(t) if g is FREQ(*)

Therefore, νg(t) is a random variable dependent on t (since
relation r is drawn from an underlying distribution).

Let Fi denote the set of tuples satisfying the selection
predicates of qi. Then, the random variable θ̄i representing
possible true answers to qi can be expressed in terms of
νg(t):

θ̄i =


1

Zi

∫
Fi

νg(t)ω(t) dt if g is AVG(Ak)∫
Fi

νg(t) dt if g is FREQ(*)

(6)

where Zi is a normalization term defined as Zi =
∫
Fi
ω(t) dt.

Based on equation (6), the covariance between random
variables θi and θj can be expressed as follows. (This quan-

tity corresponds to the variance of θi if i = j.)

E [(θi − µi)(θj − µj)] = E
[
(θ̄i + εi − µi)(θ̄j + εj − µj)

]

=



1

ZiZj

∫
Fi

∫
Fj

cov(νg(t), νg(t
′))ω(t)ω(t′) dt′dt

+ δ(i, j) · βi if g is AVG(Ak)∫
Fi

∫
Fj

cov(νg(t), νg(t
′)) dt′dt + δ(i, j) · βi

if g is FREQ(*)

(7)

where δ is the Kronecker delta function [36], and εi is a
random variable with variance βi representing the deviation
of the raw answer from qi’s true answer.

To use equation (7), we must be able to compute the
cov(νg(t), νg(t

′)) terms, which we call inter-tuple covari-
ances. However, computing these inter-tuple covariances is
challenging as we only have a single observation for each
random variable νg(t). Moreover, even if we had a way
to compute the inter-tuple covariance for arbitrary t and t′,
computing it for all possible pairs of tuples will be too costly
and impractical. In the next section, we present an efficient
alternative for estimating these inter-tuple covariances.

4.2 Efficient Computation of Covariances
To efficiently estimate the inter-tuple covariances, and

thereby equation (7), we propose using analytical covariance
functions, a well-known technique in statistical literature for
approximating covariances [13]. In particular, Intelli uses
squared exponential covariance functions, which are proven
to be universal [29], i.e., capable of approximating any tar-
get function arbitrary closely as the number of observations
(here, query answers) increases. The squared exponential
covariance function ρg(t, t

′) is defined as:

cov(νg(t), νg(t
′)) ≈ ρg(t, t′) = σ2

g ·
l∏
i=1

exp

(
−∆(ai, a

′
i)

2

l2g,i

)
(8)

where

∆(ai, a
′
i) =

{
|ai − a′i| if Ai is numerical

1− δ(ai, a′i) if Ai is categorical

Here, δ(ak, a
′
k) is the Kronecker delta function [36] and lg,i

for i=1 . . .m and σ2
g are tuning parameters to be learned

from the underlying data.
Intuitively, when t and t′ are similar, i.e., ∆(ai, a

′
i) is small

for most Ai, then ρg(t, t
′) returns a larger value (closer to

σ2
g), indicating that the expected values of g for t and t′ are

highly correlated. Next, we describe how Intelli automati-
cally infers the most likely values of these tuning parameters.

4.3 Optimal Covariance Functions
To learn the tuning parameters of ρg(t, t

′), Intelli infers
parameter values that are most likely to have generated the
(observed) raw answers to past queries. Formally, Intelli
solves an optimization problem to find values for parameters
lg,1, . . . , lg,m, σ

2
g that maximize the log-likelihood function:

log f(~θpast) =

− 1

2
(~θpast − µ)TΣ−1(~θpast − µ)− 1

2
log |Σ| − n

2
log 2π
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Figure 4: An example of how (a) an insufficient number of past
queries can lead to overfitting (i.e., overly optimistic confidence
intervals), and (b) how additional queries improve the model’s
accuracy. Intelli relies on equation (9) to avoid overfitting.

where f(~θpast) is the joint pdf from Lemma 1, ~θpast = (θ1, . . . , θn),
Σ is the n× n covariance matrix whose (i, j)-th entry is the
(co)variance between θi and θj computed using (8).

One caveat of using the above technique for choosing pa-
rameter values is the risk of overfitting, when the number
of past observations (i.e., past query answers) is insufficient.
We address this challenge next.

4.4 Overfitting Safeguard
Insufficient number of past queries may lead to parame-

ter values that do not accurately reflect the characteristics
of underlying data, causing Intelli to underestimate its
improved errors, as demonstrated in Figure 4. Thus, to de-
tect and prevent overfitting, Intelli relies on the following
mechanism before returning the final answer θ̌n+1 to the
user:

θ̌n+1 =

{
θ̂n+1 if θn+1 − βn+1 ≤ θ̂n+1 ≤ θn+1 + βn+1

θn+1 otherwise
(9)

where θ̂n+1 is the improved answer. In other words, Intelli
ignores its improved answer if it deviates too much from the
raw answer.

Lemma 2. The mechanism on equation (9) gaurantees that:

E[(θ̌n+1 − θ̄n+1)2] ≤ 2β2
n+1

where θ̌n+1 is the random variable representing Intelli’s
final answer and θ̄n+1 is the true answer.

Proof. First, when the raw answer θn+1 is returned instead
of the improved answer, the expression in lemma holds triv-
ially since E[(θn+1 − θ̄n+1)2] = β2

n+1 ≤ 2β2
n+1.

Second, when the improved answer θ̂n+1 is returned,

E[(θ̂n+1 − θ̄n+1)2]

≤ E[(θn+1 − θ̄n+1 ± βn+1)2]

= E[(θn+1 − θ̄n+1)2] + E[β2
n+1]± 2βn+1E[θn+1 − θ̄n+1]

= 2β2
n+1

5. FORMAL GUARANTEES
The following theorem shows that Intelli’s improved an-

swer is never worse than the raw answer.

Theorem 1. Let (θn+1, βn+1) be the raw answer and er-
ror returned by the AQP engine to a new query qn+1, and

(θ̂n+1, β̂n+1). Then, at run-time, Intelli can compute the

improved answer and error (θ̂n+1, β̂n+1) using the joint pdf
of Lemma 1 in O(n2) time complexity, while guaranteeing
the following:

βn+1 ≥ β̂n+1

where the equality holds for βn+1=0, i.e., when the AQP en-
gine processes the entire data and produces an exact answer.

Proof. Since βn+1 and β̂n+1 are both non-negative, it suf-
fices to show that β2

n+1 > β̂2
n+1.

Let Σ be the covariance matrix of the vector ~θ=(θ1, . . . ,
θn+1, θ̄n+1), ks be a column vector of length n whose i-
th element is the (i, n + 1)-th entry of Σ, Σs be an n × n
submatrix of Σ that consists of Σ’s first n rows/columns, κ̄2

be a scalar value at the (n+ 2, n+ 2)-th entry of Σ, and ~θs
be a column vector (θ1, . . . , θn)T .

We can express k and Σsub of equation (4) in block forms
as follows:

k =

(
ks
κ̄2

)
, Σsub =

(
Σs ks
kTs κ̄2 + β2

n+1

)
, ~θsub =

(
~θs
θn+1

)
Using the matrix inversion in block form [25], Σ−1

sub can
also be expressed as:

Σ−1
sub =

(
Σ−1
s + 1

γ2
Σ−1
s ksk

T
s Σ−1

s − 1
γ2

Σ−1
s ks

− 1
γ2
kTs Σ−1

s
1
γ2

)

where γ2 = κ̄2 − kTs Σ−1
s ks.

Plugging the above block inverse form into equation (4)
and (5) reduces, after some simplification, to the following
expressions:

γ2 = κ̄2 − kTs Σ−1
s ks

θ̂n+1 = µn+1 +
β2
n+1 · kTs Σ−1

s (~θs − µn+1) + γ2 · (θn+1 − µn+1)

γ2 + β2
n+1

β̂2
n+1 = γ2 · β2

n+1/(γ
2 + β2

n+1) (10)

Note that expression (10) involves a matrix inversion Σ−1
s ,

but since Σs only contains the (co)variances of pairs of past
query answers, Intelli can pre-compute Σs.

To derive the relationship between β̂2
n+1 and β2

n+1, we

subtract β̂2
n+1 from β2

n+1:

β2
n+1 −

γ2 · β2
n+1

γ2 + β2
= β2

n+1

(
1− γ2

γ2 + β2
n+1

)
This expression is equal to 0 if βn+1 = 0, and is otherwise
larger than 0. Thus, the theorem holds.

6. DATA UPDATES
Intelli supports tuple insertions.9 A näıve strategy would

be to re-execute all past queries every time new tuples are
added to the database to obtain their updated answers. This
solution is obviously impractical.

Instead, here we show how Intelli can still make use
of answers to previous queries even when new tuples have
been added since computing those answers. The basic idea

9Other forms of data updates (e.g., deletion) are not supported, as
Intelli is currently implemented atop SparkSQL which (similar to
other HDFS-based engines) is an append-only database.



is to simply lower our confidence in the raw answers of past
queries.

Assume that qi (whose aggregate function is on Ak) is
computed on an old relation r, and a set of new tuples r′

has since been added to r to form an updated relation ru.
Let θ̄′i be a random variable representing the possible values
for qi’s true answer on r′, and θ̄ui be a random variable
representing the possible values for the qi’s true answer on
ru.

We represent the possible difference between Ak’s values
in r and those in r′ by a random variable sk with mean αk
and variance η2

k. Thus:

θ̄′i = θ̄i + sk

The values of αk and η2
k are estimated using small samples

of r and r′. Intelli uses the following lemma to update the
raw answer and raw error for qi.

Lemma 3.

E[θ̄ui − θi] = αk ·
|r′|

|r|+ |r′|

E[(θ̄ui − θi − αk ·
|r′|

|r|+ |r′| )
2] = β2

i +

(
|r′|

|r|+ |r′| · ηk
)2

where |r| and |r′| are the number of tuples in r and r′,
respectively.

Proof. First, let us compute the expected value of θ̄ui − θi.

E
[
θ̄ui − θi

]
= E

[
|r|θ̄i + |r′|(θ̄i + sk)

|r|+ |r′|

]
− θ̄i =

αk|r′|
|r|+ |r′|

Second, we compute the variance.

E

[(
θ̄ui − θi −

αk|r′|
|r|+ |r′|

)2
]

= E

[(
θ̄i|r′|
|r|+ |r′| +

(θ̄i + sk)|r|
|r|+ |r′| − θi −

αk|r′|
|r|+ |r′|

)2
]

= E

[(
θ̄i − θi +

(sk − αk)|r′|
|r|+ |r′|

)]
= E[(θ̄i − θi)2] +

(
|r′|

|r|+ |r′|

)2

E[(sk − αk)2]

= β2
i +

(
|r′|

|r|+ |r′| · ηk
)2

Once the raw answers and the raw errors of past queries
are updated using this lemma, the remaining inference pro-
cess remains the same.

7. EXPERIMENTS
Our experiments aim to (1) quantify the percentage of

real-world queries that benefit from Intelli and their av-
erage speedup (Sections 7.2 and 7.3), (2) vet the reliability
of Intelli’s error estimates (Section 7.4), (3) measure In-
telli’s computational overhead and memory footprint (Sec-
tion 7.5), (4) study the impact of different workloads and
data distributions on Intelli’s effectiveness (Section 7.6),

Dataset # Analyzed # Supported Percentage
Customer1 3,342 2,463 73.7%
TPC-H 21 14 63.6%

Table 3: Generality of Intelli. Intelli supports a large fraction
of real-world and benchmark queries.

and (5) evaluate Intelli’s ability in coping with changing
datasets (Section 7.7).

In summary, our results indicate the following:

• Intelli supports a large fraction (73.7%) of aggre-
gate queries in a real-world workload, bringing sig-
nificant speedups (upto 10.43x) compared to existing
(sampling-based) AQP solutions.

• Given the same processing time, Intelli reduces the
baseline’s approximation error on average by 56–95%.

• Intelli’s run-time overhead is <10 miliseconds (0.12–
0.52%) and its memory footprint is negligible.

• Intelli’s approach is robust against different work-
loads and data distributions.

7.1 Experiment Setup
Datasets and Query Workloads — For our experiments,
we used the three datasets described below:

1. Customer1: This is a real-world query trace from one
of the largest customers (anonymized) of a leading ven-
dor of analytic DBMS. This dataset contains 310 tables
and 15.5K timestamped queries issued between March
2011 and April 2012, 3.3K of which queries are analyt-
ical queries supported by SparkSQL. We did not have
the customer’s original dataset but had access to their
data distribution, which we used to generate a 536GB
dataset.

2. TPC-H: This is a well-known analytical benchmark with
22 query types, 21 of which contain at least one aggre-
gate function (including 2 queries with min or max).
We used a scale factor of 100, i.e., the total data size
was 100GB. We generated a total of 500 queries us-
ing TPC-H’s workload generator using default settings.
using TPC-H’s query generator.

3. Synthetic: For more controlled experiments, we also
generated large-scale synthetic datasets with different
distributions (see Section 7.6 for details).

Implementation — For comparative analysis, we imple-
mented two systems on top of SparkSQL [11], a relational
engine shipped with Spark (ver 1.5.1):

1. NoLearn: This system runs queries on samples of the
original tables to obtain fast but approximate query
answers and their associated statistical errors. This
is the same approach taken by existing AQP engines,
such as [4, 5, 9, 15,35,37,44].

2. Intelli: This system invokes NoLearn to obtain raw
answers/errors but modifies them to produce improved
answers/errors using our proposed inference process.
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Figure 5: Speedup of Intelli over NoLearn for a target error
of 2%.
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Figure 6: Average error reduction of queries by Intelli (com-
pared to NoLearn) for the same time budget.

Experimental Environment — We used a Spark clus-
ter (for both NoLearn and Intelli) using 5 Amazon EC2
m4.2xlarge instances, each with 2.4 GHz Intel Xeon E5 pro-
cessors (8 cores) and 32GB of memory. Our cluster also in-
cluded SSD-backed HDFS [39] for Spark’s data loading. For
experiments with cached datasets, we distributed Spark’s
RDDs evenly across the nodes using SparkSQL DataFrame
repartition function.

7.2 Generality of Intelli
To quantify the generality of our approach, we analyzed

the real-world SQL queries in Customer1. From the original
15.5K queries, SparkSQL was only able to process 3.3K of
the aggregate queries. Among those 3.3K queries, Intelli
supported 2.4K queries, i.e., 73.9% of the analytical queries
could benefit from Intelli. In addition, we analyzed the
21 TPC-H queries and found 14 queries supported by In-
telli. Others could not be supported due to textual filters
or disjunctions in the where clause. These statistics are sum-
marized in Table 3. This analysis proves that Intelli can
support a large class of analytical queries in practice. Next,
we quantify how much these supported queries benefit from
Intelli.

7.3 Query Speedup
In this section, we study Intelli’s query speedup over

NoLearn: how faster can queries achieve the same level of
accuracy under Intelli compared to NoLearn? For this
experiment, we used each of Customer1 and TPC-H datasets
in two different settings. In one setting, all samples were
cached in the memories of the cluster, while in the second,
SparkSQL had to read the data from SSD-backed HDFS.

We allowed both systems to process half of the queries
(since Customer1 queries were timestamped, we used the
first half). While processing those queries, NoLearn sim-
ply returned the query answers but Intelli also learned its
model parameters. Then, for the second half of the queries,
we recorded both systems’ query response times (i.e., laten-
cies), approximate query answers, and statistical errors.

Figure 5 shows the average latencies of the two systems for
different datasets and caching scenarios, for a target error
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Figure 7: The trade-off between statistical error and latency for
NoLearn and Intelli.

of 2%. For Customer1 queries on non-cached data, Intelli
delivered a 10.43x speedup on average (i.e., more than 90%
reduction in query response time) for the same target er-
ror. This is because Intelli could deliver highly-accurate
answers using significantly smaller sample sizes by leverag-
ing the inferred knowledge from past query answers. In all
cases, Intelli achieved at least 2x speedup over NoLearn.

Figure 6 shows the average error reduction of Intelli
compared to NoLearn, for a fixed time budget (i.e., target
latency). In this experiment, the target latencies were 1.5
sec for cached Customer1, 3.5 sec for non-cached Customer1,
and 0.5 sec for both cached and non-cached TPC-H. (Other
target latencies will be reported in Figure 7.) As shown
in Figure 6, for the same time budget, Intelli reduced
NoLearn’s error by at least 55.92% and up to 95.33%.

Figure 7 presents a detailed study of the trade-off between
average query latencies and average statistical errors in both
systems. In all experiments, the latency-error graphs exhibit
consistent patterns: (1) Intelli produced smaller statistical
errors even when target latencies were very small, and (2)
Intelli showed faster query response times for the same tar-
get statistical errors. Due to the asymptotic nature of sta-
tistical errors, achieving extremely accurate answers (e.g.,
less than 0.5%) requires relatively large sample sizes (and
processing times) even for Intelli. Also, the reason that
Intelli’s speedups were slightly lower for cached settings
was that the default overhead of SparkSQL was relatively
large compared to its overall data processing time due to
the sample size. In other words, even if Intelli reduced
the query processing time to zero, it would not be possi-
ble to achieve more than 3–5x speedups due to SparkSQL’s
overhead of running an empty query. However, Intelli still
achieved 2.63x speedup even for fully-cached datasets.

7.4 Reliability of Statistical Error Guarantees
To confirm the validity of Intelli’s probabilistic error

guarantees, we configured Intelli to run each query with
different statistical error bounds at 95% confidence and mea-
sured the actual error in each case (see Section 3.3 for de-
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Figure 8: Correctness of Intelli’s statistical error guarantees.

tails). Figure 8 shows the 5% percentile, mean, and 95%
percentile of the actual errors across different queries. The
results demonstrate that Intelli’s statistical error guaran-
tees were almost never violated, thanks to its overfitting
safeguard mechanism.

7.5 Memory and Computational Overhead
In this section, we study Intelli’s additional memory

footprint (due to query synopsis) and its runtime overhead
(due to inference). The total size of the generated snippets
was on average 150KB per query for Customer1, and 8 KB
per query for TPC-H. This is because Intelli only stores the
first Nmax=1000 tuples from each query’s answer and does
not keep any of the input tuples.

To measure Intelli’s runtime overhead, we recorded the
time spent for its regular query processing (the same com-
ponent as NoLearn) and the additional time spent for the
inference and updating the final answer. As summarized
in Table 4, the runtime overhead of Intelli was negligible
compared to the overall query processing time. This is be-
cause multiplying a vector by a Cg × Cg matrix does not
take much time compared to regular query planning, pro-
cessing, and network commutations among the distributed
nodes. (Note that Cg=100 by default; see Section 2.4.)

7.6 Impact of Different Data Distributions and
Workload Characteristics

In previous sections, we reported experiments on two datasets
(Customer1 and TPC-H). In this section, we generated vari-
ous synthetic data and queries to fully understand how In-
telli’s effectiveness changes for different data distributions,
query patterns, and number of past queries.

First, we studied the impact of having queries with a more
diverse set of columns in their selection predicates. Thus,
we produced a table of 50 columns and 5M rows, and gen-
erated four different query workloads with varying number
of frequently accessed columns. The columns used for the
selection predicates were chosen according to a power-law
distribution. Specifically, a fixed number of columns (called
frequently access columns) had the same probability of be-
ing accessed, but the access probability of the remaining
columns decayed according to the power-law distribution.
For instance, if the number of frequently access columns
was 10, the first ten columns appeared with equal probabil-
ity in each query, but the probability of appearance reduced
by half for every remaining column. Figure 9(a) shows that
as the number of frequently accessed columns increased, In-
telli’s relative error reduction over NoLearn gradually de-
creased (the number of past queries were fixed to 100). This
is expected as Intelli constructs its internal model based
on the columns appearing in the past. In other words, to
cope with the more diversity, more past queries are needed

Latency Cached No-Cache
NoLearn 2.083 sec 52.50 sec
Intelli 2.093 sec 52.51 sec
Overhead 0.010 sec (0.48%) 0.010 sec (0.02%)

Table 4: The runtime overhead of Intelli.

to understand the complex underlying distribution generat-
ing the data. Note that, according to the analytic queries
in the Customer1 dataset, most of the queries included less
than 5 distinct selection predicates. However, by processing
more queries, Intelli continues to learn more about the un-
derlying distribution, producing larger error reductions even
when the workload is extremely diverse.

Second, to study Intelli’s potential sensitivity to we gen-
erated three tables with three different probability distribu-
tions: uniform, Gaussian, and a log-normal (skewed) distri-
bution. Figure 9(b) shows Intelli’s error reductions when
queries were run against each table. Intelli delivered a
consistent performance regardless of the underlying distri-
bution. This is due to the power and generality of the max-
imum entropy principle taken by Intelli.

Third, we varied the number of past queries observed by
Intelli before running our test queries. Figure 9(c) demon-
strates that the error reduction keeps increasing until seeing
300 queries and then leveled off. This is due to the asymp-
totic nature of statistical errors, enabling Intelli to deliver
reasonable performance without having to observe too many
queries.

Lastly, we studied the negative impact of increasing the
number of past queries on Intelli’s overhead. Since In-
telli’s inference consists of a small matrix multiplication
we did not observe a noticeable increase as the number of
queries in the query synopsis increased (Figure 9(d)).

7.7 Supporting Data Appends
In this section, we study the impact of new data (i.e., tuple

insertions) on Intelli’s effectiveness. Similar to the previ-
ous section, we generated an initial synthetic table with 5M
tuples and appended additional tuples to generate different
versions of the table. The newly inserted tuples were gener-
ated such that their attribute values gradually diverged from
the attribute values of the original table. We distinguish
between these different versions by the ratio of their newly
inserted tuples, e.g., a 5% appended table means that 250K
(5% of 5M) tuples were added. We then ran the queries and
recorded the average statistical errors of IntelliAdjust
and IntelliNoAdjust (our approach with and without the
technique introduced in Section 6). We also measured the
statistical error of NoLearn and the actual error.

As shown in Figure 10(a), IntelliNoAdjust produced
overly-optimistic statistical errors (i.e., lower than the actual
error) for 15% and 20% appends, whereas IntelliAdjust
produced valid statistical errors in all cases. Since this fig-
ure shows the average statistical errors across all queries, we
also computed the fraction of individual queries for which
each method’s statistical error was violated. In Figure 10(b),
the Y-axis indicates those cases where the actual error was
higher than the guaranteed statistical error. This figure
shows more error violations for IntelliNoAdjust, which
increased with the number of new tuples. In contrast, In-
telliAdjust produced valid statistical errors in most cases,
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Figure 9: The effectiveness of Intelli in reducing NoLearn’s error for different (a) levels of diversity in the queried columns, (b) data
distributions, and (c) number of past queries observed. Figure (d) shows Intelli’s overhead for different number of past queries.
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Figure 10: The Section 6’s adjustment technique is highly ef-
fective in delivering correct error estimates in face of new data.

while delivering substantial error reductions compared to
NoLearn.

8. RELATED WORK
Approximate Query Processing — There has been sub-
stantial work on sampling-based approximate query pro-
cessing [6, 7, 9, 12, 15, 20, 31, 40]. Some of these systems
differ in their sample generation strategies. For instance,
STRAT [15] and AQUA [7] create a single stratified sample,
while BlinkDB creates samples based on column sets. On-
line Aggregation (OLA) [16,23,32,42] continuously refine its
answers during query execution. Other have focused on ob-
taining faster or more reliable error estimates [8,43]. These
are orthogonal to our work, as reliable error estimates from
an underlying AQP engine will also benefit DBL.

Adaptive Indexing, View Selection — Adaptive In-
dexing and database cracking [24, 34] incrementally update
indices as part of query processing in order to speed up
future queries accessing previously accessed tuples. Ma-
terialized views are another means of speeding up future
queries [19, 22, 27]. While these techniques are orthogonal
to DBL (i.e., they can be used in the underlying AQP en-
gine), they are fundamentally different than DBL (refer to
Previous Approaches in Section 1).

Pre-computation — COSMOS [42] stores the (exact) re-
sults of past queries as multi-dimensional cubes. These ag-
gregated cubes are then re-used if they are contained in the
new query’s input range, while boundary tuples are read
from the database. This approach is not probabilistic and
is limited to low-dimensional data due to the exponential
explosion in the number of possible cubes. Also, similar to
view selection, COSMOS relies on strict query containment.

Model-based and Statistical Databases — Statistical
approaches have been used in databases for various goals.
For example, MauveDB [17] constructs views that express
a statistical model, hiding the possible irregularities of the
underlying data. MauveDB’s goal is to support statistical
modeling, such as regression or interpolation, rather than
speeding up future queries. BayesDB [28] provides a SQL-
like language that enables non-statisticians to declaratively
use various statistical models.

9. CONCLUSION AND FUTURE WORK
In this paper, we presented database learning, a novel

approach to exploit past queries’ (approximate) answers in
speeding up new queries using a principled statistical method-
ology. We presented a prototype of this vision, called In-
telli, on top of SparkSQL. Through extensive experiments
on real-world and benchmarks query logs, we demonstrated
that Intelli supports 73.7% of real-world analytical queries,
speeding them up by up to 10.43x compared to existing
sampling-based approximation engines.

Exciting lines of future work include: (1) study other in-
ferential techniques for realizing database learning, (2) de-
velop an idea of active database learning, whereby the engine
itself proactively executes certain approximate queries that
can best improve its internal model, and (3) extend Intelli
to support visual analytics [33].
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