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ABSTRACT
Many modern applications are a mixture of streaming, transactional
and analytical workloads. However, traditional data platforms are
each designed for supporting a specific type of workload. The
lack of a single platform to support all these workloads has forced
users to combine disparate products in custom ways. The common
practice of stitching heterogeneous environments has caused enor-
mous production woes by increasing complexity and the total cost
of ownership.

To support this class of applications, we present SnappyData as
the first unified engine capable of delivering analytics, transactions,
and stream processing in a single integrated cluster. We build this
hybrid engine by carefully marrying a big data computational en-
gine (Apache Spark) with a scale-out transactional store (Apache
GemFire). We study and address the challenges involved in build-
ing such a hybrid distributed system with two conflicting compo-
nents designed on drastically different philosophies: one being a
lineage-based computational model designed for high-throughput
analytics, the other a consensus- and replication-based model de-
signed for low-latency operations.

1. INTRODUCTION
An increasing number of enterprise applications, particularly those

in financial trading and IoT (Internet of Things), produce mixed
workloads with all of the following: (1) continuous stream pro-
cessing, (2) online transaction processing (OLTP), and (3) online
analytical processing (OLAP). These applications need to simulta-
neously consume high-velocity streams to trigger real-time alerts,
ingest them into a write-optimized transactional store, and perform
analytics to derive deep insight quickly. Despite a flurry of data
management solutions designed for one or two of these tasks, there
is no single solution that is apt for all three.

SQL-on-Hadoop solutions (e.g., Hive, Impala/Kudu and Spark-
SQL) use OLAP-style optimizations and columnar formats to run
OLAP queries over massive volumes of static data. While apt for
batch-processing, these systems are not designed as real-time oper-

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2017.
8th Biennial Conference on Innovative Data Systems Research (CIDR ‘17)
January 8-11, 2017 , Chaminade, California, USA.

ational databases, as they lack the ability to mutate data with trans-
actional consistency, to use indexing for efficient point accesses,
or to handle high-concurrency and bursty workloads. For example,
Wildfire [17] is capable of analytics and stream ingestion but lacks
ACID transactions.

Hybrid transaction/analytical processing (HTAP) systems, such
as MemSQL, support both OLTP and OLAP queries by storing data
in dual formats (row and columns), but need to be used alongside
an external streaming engine (e.g., Storm [34], Kafka, Confluent)
to support stream processing.

Finally, there are numerous academic [20, 31, 33] and commer-
cial [2, 8, 14, 34] solutions for stream and event processing. Al-
though some stream processors provide some form of state man-
agement or transactions (e.g., Samza [2], Liquid [23], S-Store [27]),
they only allow simple queries on streams. However, more complex
analytics, such as joining a stream with a large history table, need
the same optimizations used in an OLAP engine [18, 26, 33]. For
example, streams in IoT are continuously ingested and correlated
with large historical data. Trill [19] supports diverse analytics on
streams and columnar data, but lacks transactions. DataFlow [15]
focuses on logical abstractions rather than a unified query engine.

Consequently, the demand for mixed workloads has resulted in
several composite data architectures, exemplified in the “lambda”
architecture, which requires multiple solutions to be stitched to-
gether — a difficult exercise that is time consuming and expensive.

In capital markets, for example, a real-time market surveillance
application has to ingest trade streams at very high rates and detect
abusive trading patterns (e.g., insider trading). This requires corre-
lating large volumes of data by joining a stream with (1) historical
records, (2) other streams, and (3) financial reference data which
can change throughout the trading day. A triggered alert could in
turn result in additional analytical queries, which will need to run
on both ingested and historical data. In this scenario, trades arrive
on a message bus (e.g., Tibco, IBM MQ, Kafka) and are processed
by a stream processor (e.g., Storm) or a homegrown application,
while the state is written to a key-value store (e.g., Cassandra) or
an in-memory data grid (e.g., GemFire). This data is also stored
in HDFS and analyzed periodically using a SQL-on-Hadoop or a
traditional OLAP engine.

These heterogeneous workflows, although far too common in
practice, have several drawbacks (D1–D4):

D1. Increased complexity and total cost of ownership: The
use of incompatible and autonomous systems significantly increases
their total cost of ownership. Developers have to master disparate
APIs, data models, and tuning options for multiple products. Once



in production, operational management is also a nightmare. To di-
agnose the root cause of a problem, highly-paid experts spend hours
to correlate error logs across different products.

D2. Lower performance: Performing analytics necessitates
data movement between multiple non-colocated clusters, resulting
in several network hops and multiple copies of data. Data may also
need to be transformed when faced with incompatible data models
(e.g., turning Cassandra’s ColumnFamilies into Storm’s domain
objects).

D3. Wasted resources: Duplication of data across different
products wastes network bandwidth (due to increased data shuf-
fling), CPU cycles, and memory.

D4. Consistency challenges: The lack of a single data gover-
nance model makes it harder to reason about consistency seman-
tics. For instance, a lineage-based recovery in Spark Streaming
may replay data from the last checkpoint and ingest it into an ex-
ternal transactional store. With no common knowledge of lineage
and the lack of distributed transactions across these two systems,
ensuring exactly-once semantics is often left as an exercise for the
application [4].

Our goal — We aim to offer streaming, transaction processing, and
interactive analytics in a single cluster, with better performance,
fewer resources, and far less complexity than today’s solutions.

Challenges — Realizing this goal involves overcoming significant
challenges. The first challenge is the drastically different data struc-
tures and query processing paradigms that are optimal for each type
of workload. For example, column stores are optimal for analytics,
transactions need write-optimized row-stores, and infinite streams
are best handled by sketches and windowed data structures. Like-
wise, while analytics thrive with batch-processing, transactions rely
on point lookups/updates, and streaming engines use delta/incre-
mental query processing. Marrying these conflicting mechanisms
in a single system is challenging, as is abstracting away this hetero-
geneity from programmers.

Another challenge is the difference in expectations of high avail-
ability (HA) across different workloads. Scheduling and resource
provisioning are also harder in a mixed workload of streaming jobs,
long-running analytics, and short-lived transactions. Finally, achiev-
ing interactive analytics becomes non-trivial when deriving insight
requires joining a stream against massive historical data [7].

Our approach — Our approach is a seamless integration of Apache
Spark, as a computational engine, with Apache GemFire, as an
in-memory transactional store. By exploiting the complementary
functionalities of these two open-source frameworks, and carefully
accounting for their drastically different design philosophies, Snap-
pyData is the first unified, scale-out database cluster capable of
supporting all three types of workloads. SnappyData also relies on
a novel probabilistic scheme to ensure interactive analytics in the
face of high-velocity streams and massive volumes of stored data.

Contributions — We make the following contributions.

1. We discuss the challenges of marrying two breeds of distributed
systems with drastically different design philosophies: a lineage-
based system designed for high-throughput analytics (Spark) and
a consensus-driven replication-based system designed for low-
latency operations (GemFire) §2.

2. We introduce the first unified engine to support streaming, trans-
actions, and analytics in a single cluster. We overcome the chal-
lenges above by offering a unified API §4, utilizing a hybrid stor-
age engine, sharing state across applications to minimize serial-

ization §5, providing high-availability through low-latency fail-
ure detection and decoupling applications from data servers §6.1,
bypassing the scheduler to interleave fine-grained and long-running
jobs §6.2, and ensuring transactional consistency §6.3.

3. Using a mixed benchmark, we show that SnappyData delivers
1.5–2× higher throughput and 7–142× speedup compared to to-
day’s state-of-the-art solutions §7.

2. OVERVIEW
2.1 Approach Overview

To support mixed workloads, SnappyData carefully fuses Apache
Spark, as a computational engine, with Apache GemFire, as a trans-
actional store.

Through a common set of abstractions, Spark allows program-
mers to tackle a confluence of different paradigms (e.g., stream-
ing, machine learning, SQL analytics). Spark’s core abstraction,
a Resilient Distributed Dataset (RDD), provides fault tolerance by
efficiently storing the lineage of all transformations instead of the
data. The data itself is partitioned across nodes and if any partition
is lost, it can be reconstructed using its lineage. The benefit of this
approach is two-fold: avoiding replication over the network, and
higher throughput by operating on data as a batch. While this ap-
proach provides efficiency and fault tolerance, it also requires that
an RDD be immutable. In other words, Spark is simply designed
as a computational framework, and therefore (i) does not have its
own storage engine and (ii) does not support mutability semantics.1

On the other hand, Apache GemFire [1] (a.k.a. Geode) is one
of the most widely adopted in-memory data grids in the industry,2

which manages records in a partitioned row-oriented store with
synchronous replication. It ensures consistency by integrating a
dynamic group membership service and a distributed transaction
service. GemFire allows for indexing and both fine-grained and
batched data updates. Updates can be reliably enqueued and asyn-
chronously written back out to an external database. In-memory
data can also be persisted to disk using append-only logging with
offline compaction for fast disk writes [1].

Best of two worlds — To combine the best of both worlds, Snappy-
Data seamlessly integrates Spark and GemFire runtimes, adopting
Spark as the programming model with extensions to support mu-
tability and HA (high availability) through GemFire’s replication
and fine grained updates. This marriage, however, poses several
non-trivial challenges.

2.2 Challenges of Marrying Spark & GemFire
Each Spark application runs as an independent set of processes

(i.e., executor JVMs) on the cluster. While immutable data can
be cached and reused in these JVMs within a single application,
sharing data across applications requires an external storage tier
(e.g., HDFS). In contrast, our goal in SnappyData is to achieve
an “always-on” operational design whereby clients can connect at
will, and share data across any number of concurrent connections.
The first challenge is thus to alter the life-cycle of Spark executors
so that their JVMs are long-lived and de-coupled from individual
applications. This is difficult because, unlike Spark which spins
up executors on-demand (using Mesos or YARN) with resources
1Although IndexedRDD [6] offers an updatable key-value store [6],
it does not support colocation for high-rate ingestions or distributed
transactions. It is also unsuitable for HA, as it relies on disk-based
checkpoints for fault tolerance.
2GemFire is used by major airlines, travel portals, insurance firms,
and 9 out of 10 investment banks on Wall Street [1].



Figure 1: SnappyData’s core components

sufficient only for the current job, we need to employ a static re-
source allocation policy whereby the same resources are reused
concurrently across several applications. Moreover, unlike Spark
which assumes that all jobs are CPU-intensive and batch (or micro-
batch), in a hybrid workload we do not know if an operation is a
long-running and CPU-intensive job or a low-latency data access.

The second challenge is that in Spark a single driver orchestrates
all the work done on the executors. Given the need for high con-
currency in our hybrid workloads, this driver introduces (i) a single
point of contention, and (ii) a barrier for HA. If the driver fails, the
executors are shutdown, and any cached state has to be re-hydrated.

Due to its batch-oriented design, Spark uses a block-based mem-
ory manager and requires no synchronization primitives over these
blocks. In contrast, GemFire is designed for fine-grained, highly
concurrent and mutating operations. As such, GemFire uses a va-
riety of concurrent data structures, such as distributed hashmaps,
treemap indexes, and distributed locks for pessimistic transactions.
SnappyData thus needs to (i) extend Spark to allow arbitrary point
lookups, updates, and inserts on these complex structures, and (ii)
extend GemFire’s distributed locking service to support modifica-
tions of these structures from within Spark.

Spark RDDs are immutable while GemFire tables are not. Thus,
Spark applications accessing GemFire tables as RDDs may expe-
rience non-deterministic behavior. A naïve approach of creating
a copy when the RDD is lazily materialized is too expensive and
defeats the purpose of managing local states in Spark executors.

Finally, Spark’s growing community has zero tolerance for in-
compatible forks. This means that, to retain Spark users, Snap-
pyData cannot change Spark’s semantics or execution model for
existing APIs (i.e., all changes in SnappyData must be extensions).

3. ARCHITECTURE
Figure 1 depicts SnappyData’s core components (the original

components from Spark and GemFire are highlighted).
SnappyData’s hybrid storage layer is primarily in-memory, and

can manage data in row, column, or probabilistic stores. Snap-
pyData’s column format is derived from Spark’s RDD implemen-
tation. SnappyData’s row-oriented tables extend GemFire’s ta-
ble and thus support indexing, and fast reads/writes on indexed
keys §5.1. In addition to these “exact” stores, SnappyData can
also summarize data in probabilistic data structures, such as strati-
fied samples and other forms of synopses. SnappyData’s query en-
gine has built-in support for approximate query processing (AQP),
which can exploit these probabilistic structures. This allows appli-
cations to trade accuracy for interactive-speed analytics on streams
or massive datasets §5.2.

SnappyData supports two programming models—SQL (by ex-
tending SparkSQLdialect) and Spark’s API. Thus, one can perceive

1 // Create a SnappyContext from a SparkContext
2 val spContext = new org.apache.spark.SparkContext(conf)
3 val snpContext = org.apache.spark.sql. SnappyContext (

spContext)
4

5 // Create a column table using SQL
6 snpContext.sql("CREATE TABLE MyTable (id int, data string)

using column")
7

8 // Append contents of a DataFrame into the table
9 someDataDF.write.insertInto("MyTable");

10

11 // Access the table as a DataFrame
12 val myDataFrame: DataFrame = snpContext.table("MyTable")
13 println(s"Number of rows in MyTable = ${myDataFrame.count()

}")

Listing 1: Working with DataFrames in SnappyData

SnappyData as a SQL database that uses Spark’s API as its lan-
guage for stored procedures. Stream processing in SnappyData is
primarily through Spark Streaming, but it is modified to run in-situ
with SnappyData’s store §4.

SQL queries are federated between Spark’s Catalyst and Gem-
Fire’s OLTP engine. An initial query plan determines if the query
is a low latency operation (e.g., a key-based lookup) or a high
latency one (scans/aggregations). SnappyData avoids scheduling
overheads for OLTP operations by immediately routing them to ap-
propriate data partitions §6.2.

To support replica consistency, fast point updates, and instanta-
neous detection of failure conditions in the cluster, SnappyData
relies on GemFire’s P2P (peer-to-peer) cluster membership ser-
vice [1]. Transactions follow a 2-phase commit protocol using
GemFire’s Paxos implementation to ensure consensus and view
consistency across the cluster.

4. A UNIFIED API
Spark offers a rich procedural API for querying and transform-

ing disparate data formats (e.g., JSON, Java Objects, CSV). Like-
wise, to retain a consistent programming style, SnappyData offers
its mutability functionalities as extensions of SparkSQL’s dialect
and its DataFrame API. These extensions are backward compati-
ble, i.e., applications that do not use them observe Spark’s original
semantics.

A DataFrame in Spark is a distributed collection of data orga-
nized into named columns. A DataFrame can be accessed from
a SQLContext, which itself is obtained from a SparkContext (a
SparkContext is a connection to Spark’s cluster). Likewise, much
of SnappyData’s API is offered through SnappyContext, which
is an extension of SQLContext. Listing 1 is an example of using
SnappyContext.

Stream processing often involves maintaining counters or more
complex multi-dimensional summaries. As a result, stream pro-
cessors today are either used alongside a scale-out in-memory key-
value store (e.g., Storm with Redisor Cassandra) or come with their
own basic form of state management (e.g., Samza, Liquid [23]).
These patterns are often implemented in the application code us-
ing simple get/put APIs. While these solutions scale well, we find
that users modify their search patterns and trigger rules quite of-
ten. These modifications require expensive code changes and lead
to brittle and hard-to-maintain applications.

In contrast, SQL-based stream processors offer a higher level
abstraction to work with streams, but primarily depend on row-
oriented stores (e.g., [5, 8, 27]) and are thus limited in supporting



complex analytics. To support continuous queries with scans, ag-
gregations, top-K queries, and joins with historical and reference
data, some of the same optimizations found in OLAP engines must
be incorporated in the streaming engine [26]. Thus, SnappyData
extends Spark Streaming to allow declaring and querying streams
in SQL. More importantly, SnappyData provides OLAP-style op-
timizations to enable scalable stream analytics, including columnar
formats, approximate query processing, and co-partitioning [9].

5. HYBRID STORAGE
5.1 Row and Column Tables

Tables can be partitioned or replicated and are primarily man-
aged in memory with one or more consistent replicas. The data can
be managed in Java heap memory or off-heap. Partitioned tables are
always partitioned horizontally across the cluster. For large clus-
ters, we allow data servers to belong to one or more logical groups,
called “server groups”. The storage format can be “row” (either
partitioned or replicated tables) or “column” (only supported for
partitioned tables) format. Row tables incur a higher in-memory
footprint but are well suited to random updates and point lookups,
especially with in-memory indexes. Column tables manage col-
umn data in contiguous blocks and are compressed using dictio-
nary, run-length, or bit encoding [36]. Listing 2 highlights some
of SnappyData’s syntactic extensions to the using and options

clauses of the create table statement.
We extend Spark’s column store to support mutability. Updat-

ing row tables is trivial. When records are written to column ta-
bles, they first arrive in a delta row buffer that is capable of high
write rates and then age into a columnar form. The delta row buffer
is merely a partitioned row table that uses the same partitioning
strategy as its base column table. This buffer table is backed by
a conflating queue that periodically empties itself as a new batch
into the column table. Here, conflation means that consecutive up-
dates to the same record result in only the final state getting trans-
ferred to the column store. For example, inserted/updated records
followed by deletes are removed from the queue. The delta row
buffer itself uses copy-on-write semantics to ensure that concurrent
application updates do not cause inconsistency [10]. SnappyData
extends Spark’s Catalyst optimizer to merge the delta row buffer
during query execution.

5.2 Probabilistic Store
Achieving interactive response time is challenging when running

complex analytics on streams, e.g., joining a stream with a large
table [30]. Even OLAP queries on stored datasets can take tens
of seconds to complete if they require a distributed shuffling of
records, or if hundreds of concurrent queries run in the cluster [13].
In such cases, SnappyData’s storage engine is capable of using
probabilistic structures to dramatically reduce the volume of input
data and provide approximate but extremely fast answers. Snappy-
Data’s probabilistic structures include uniform samples, stratified
samples, and sketches [22]. The novelty in SnappyData’s approach
compared to previous AQP engines [40] is in the way that it creates
and maintains these structures efficiently and in a distributed man-
ner. Given these structures, SnappyData uses off-the-shelf error es-
timation techniques [11, 41]. Thus, we only discuss SnappyData’s
sample selection and maintenance strategies.

Sample selection — Unlike uniform samples, choosing which strat-
ified samples to build is a non-trivial problem. The key question is
which sets of columns to build a stratified sample on. Prior work
has used skewness, popularity, and storage cost as the criteria for
choosing column-sets [12, 13]. SnappyData extends these crite-

ria as follows: for any declared or foreign-key join, the join key
is included in a stratified sample in at least one of the participat-
ing relations (tables or streams). However, SnappyData never in-
cludes a table’s primary key in its stratified sample(s). Furthermore,
we offer our open-source tool, called WorkloadMiner, which auto-
matically analyzes past query logs and reports a rich set of statis-
tics [3]. These statistics guide SnappyData’s users through the
sample selection process. WorkloadMiner is integrated into Clif-
fGuard. CliffGuard guarantees a robust physical design (e.g., set
of samples), which remains optimal even if future queries deviate
from past ones [28].

Once a set of samples is chosen, the challenge is how to update
them, which is a key differentiator between SnappyData and pre-
vious AQP systems that use stratified samples [12, 21, 39].

Sample maintenance — Previous AQP engines that use offline
sampling update and maintain their samples periodically using a
single scan of the entire data [29]. This strategy is not suitable
for SnappyData with streams and mutable tables for two reasons.
First, maintaining per-stratum statistics across different nodes in
the cluster is a complex process. Second, updating a sample in a
streaming fashion requires maintaining a reservoir [16, 35], which
means the sample must either fit in memory or be evicted to disk.
Keeping samples entirely in memory is impractical for infinite streams
unless we perpetually decrease the sampling rate. Likewise, disk-
based reservoirs are inefficient as they require retrieving and re-
moving individual tuples from disk as new tuples are sampled.

To solve these problems, SnappyData always includes times-
tamp as an additional column in every stratified sample. Uniform
samples are treated as a special case with only one stratified col-
umn, i.e., timestamp. As new tuples arrive in a stream, a new batch
(in row format) is created for maintaining a sample of each ob-
served value of the stratified columns. Whenever a batch size ex-
ceeds a certain threshold (1M tuples by default), it is evicted and
archived to disk (in a columnar format) and a new batch is started
for that stratum.

Treating each micro-batch as an independent stratified sample
has several benefits. First, this allows SnappyData to adaptively
adjust the sampling rate for each micro-batch without the need for
inter-node communications in the cluster. Second, once a micro-
batch is completed, its tuples never need to be removed or replaced,
and therefore they can be safely stored in a compressed columnar
format and even archived to disk. Only the latest micro-batch needs
to be in-memory and in row-format. Finally, each micro-batch can
be routed to a single node, reducing the need for network shuffles.

5.3 State Sharing
SnappyData hosts GemFire’s tables in the executor nodes as ei-

ther partitioned or replicated tables. When partitioned, the individ-
ual buckets are presented as Spark RDD partitions and their access
is therefore parallelized. This is similar to the way that any external
data source is accessed in Spark, except that the common opera-
tors are optimized in SnappyData. For example, by keeping each
partition in columnar format, SnappyData avoids additional copy-
ing and serialization and speeds up scan and aggregation operators.
SnappyData can also colocate tables by exposing an appropriate
partitioner to Spark (see Listing 2).

Native Spark applications can register any DataFrame as a tem-
porary table. In addition to being visible to the Spark application,
such a table is also registered in SnappyData’s catalog—a shared
service that makes tables visible across Spark and GemFire. This
allows remote clients connecting through ODBC/JDBC to run SQL
queries on Spark’s temporary tables as well as tables in GemFire.

In streaming scenarios, the data can be sourced into any table



1 CREATE [Temporary] TABLE [IF NOT EXISTS] table_name (
2 <column definition>
3 )
4 USING [ROW | COLUMN]
5 −− Should it be row or column oriented?
6 OPTIONS (
7 PARTITION_BY ’PRIMARY KEY | column(s) ’,
8 −− Partitioning on primary key or one or more columns
9 −− Will be a replicated table by default

10 COLOCATE_WITH ’parent_table’,
11 −− Colocate related records in the same partition ?
12 REDUNDANCY ’1’ ,
13 −− How many memory copies?
14 PERSISTENT [Optional disk store name]
15 −− Should this persist to disk too?
16 OFFHEAP "true | false",
17 −− Store in off−heap memory?
18 EVICTION_BY "MEMSIZE 200 | HEAPPERCENT"
19 −− Heap eviction based on size or occupancy ratio ?
20 ... )

Listing 2: Create Table DDL in SnappyData

from parent stream RDDs (DStream), which themselves could source
events from an external queue, such as Kafka. To minimize shuf-
fling, SnappyData tables can preserve the partitioning scheme used
by their parent RDDs. For example, a Kafka queue listening on
Telco CDRs (call detail records) can be partitioned on subscriberID
so that Spark’s DStream and the SnappyData table ingesting these
records will be partitioned on the same key.

5.4 Locality-Aware Partition Design
A major challenge in horizontally partitioned distributed databases

is to restrict the number of nodes involved in order to minimize (i)
shuffling during query execution and (ii) distributed locks [25, 38].
In addition to network costs, shuffling can also cause CPU bot-
tlenecks by incurring excessive copying (between kernel and user
space) and serialization costs [32]. To reduce the need for shuffling
and distributed locks, our data model promotes two fundamental
ideas:

1. Co-partitioning with shared keys — A common technique
in data placement is to take the application’s access patterns into
account. We pursue a similar strategy in SnappyData: since joins
require a shared key, we co-partition related tables on the join key.
SnappyData’s query engine can then optimize its query execution
by localizing joins and pruning unnecessary partitions.

2. Locality through replication — Star schemas are quite preva-
lent, wherein a few ever-growing fact tables are related to several
dimension tables. Since dimension tables are relatively small and
change less often, schema designers can ask SnappyData to repli-
cate these tables. SnappyData particularly uses these replicated
tables to optimize joins.

6. HYBRID CLUSTER MANAGER
Spark applications run as independent processes in the cluster,

coordinated by the application’s main program, called the driver
program. Spark applications connect to cluster managers (YARN
or Mesos) to acquire executor nodes. While Spark’s approach is ap-
propriate for long-running tasks, as an operational database, Snap-
pyData’s cluster manager must meet additional requirements, such
as high concurrency, high availability, and consistency.

6.1 High Availability
To ensure high availability (HA), SnappyData needs to detect

faults and be able to recover from them instantly.

Failure detection — Spark uses heartbeat communications with a
central master process to determine the fate of the workers. Since
Spark does not use a consensus-based mechanism for failure detec-
tion, it risks shutting down the entire cluster due to master failures.
However, as an always-on operational database, SnappyData needs
to detect failures faster and more reliably. For faster detection,
SnappyData relies on UDP neighbor ping and TCP ack timeout
during normal data communications. To establish a new, consistent
view of the cluster membership, SnappyData relies on GemFire’s
weighted quorum-based detection algorithm [1]. Once GemFire
establishes that a member has indeed failed, it ensures that a con-
sistent view of the cluster is applied to all members, including the
Spark master, driver, and data nodes.

Failure recovery — Recovery in Spark is based on logging the
transformations used to build an RDD (i.e., its lineage) rather than
the actual data. If a partition of an RDD is lost, Spark has sufficient
information to recompute just that partition [37]. Spark can also
checkpoint RDDs to stable storage to shorten the lineage, thereby
shortening the recovery time. The decision of when to checkpoint,
however, is left to the user. GemFire, on the other hand, relies
on replication for instantaneous recovery, but at the cost of lower
throughput. SnappyData merges these recovery mechanisms as
follows:

1. Fine-grained updates issued by transactions avoid the use of Spark’s
lineage altogether, and instead use GemFire’s eager replication
for fast recovery.

2. Batched and streaming micro-batch operations are still recovered
by RDD’s lineage, but instead of HDFS, SnappyData writes their
checkpoints to GemFire’s in-memory storage, which itself relies
on a fast P2P (peer-to-peer) replication for recovery. Also, Snap-
pyData’s intimate knowledge of the load on the storage layer, the
data size, and the cost of recomputing a lost partition, allows for
automating the choice of checkpoint intervals based on an appli-
cation’s tolerance for recovery time.

6.2 Hybrid Scheduler and Provisioning
Thousands of concurrent clients can simultaneously connect to a

SnappyData cluster. To support this degree of concurrency, Snap-
pyData categorizes incoming requests as low and high latency op-
erations. By default, SnappyData treats a job as a low-latency
operation unless it accesses a columnar table. However, applica-
tions can also explicitly label their latency sensitivity. Snappy-
Data allows low-latency operations to bypass Spark’s scheduler
and directly operate on the data. High-latency operations are passed
through Spark’s fair scheduler. For low-latency operations, Snap-
pyData attempts to re-use their executors to maximize their data
locality (in-process). For high-latency jobs, SnappyData dynam-
ically expands their compute resources while retaining the nodes
caching their data.

6.3 Consistency Model
SnappyData relies on GemFire for its consistency model. Gem-

Fire supports “read committed” and “repeatable read” transaction
isolation levels using a variant of the Paxos algorithm [24]. Trans-
actions detect write-write conflicts and assume that writers rarely
conflict. When write locks cannot be obtained, transactions abort
without blocking [1].

SnappyData extends Spark’s SparkContext and SQLContext

to add mutability semantics. SnappyData gives each SQL connec-
tion its own SQLContext in Spark to allow applications to start,
commit, and abort transactions.



While any RDD obtained by a Spark program observes a consis-
tent view of the database, multiple programs can observe different
views when transactions interleave. An MVCC mechanism (based
on GemFire’s internal row versions) can be used to deliver a single
snapshot view to the entire application.

In streaming applications, upon faults, Spark recovers lost RDDs
from their lineage. This means that some subset of the data will
be replayed. To cope with such cases, SnappyData ensures the
exactly-once semantics at the storage layer so that multiple write
attempts are idempotent, hence relieving developers of having to
ensure this in their own applications. SnappyData achieves this
goal by placing the entire flow as a single transactional unit of
work, whereby the source (e.g., a Kafka queue) is acknowledged
only when the micro-batch is entirely consumed and the applica-
tion state is successfully updated. This ensures automatic rollback
of incomplete transactions.

7. EXPERIMENTS
SnappyData’s main advantage is reducing the TCO by replacing

disparate environments with an integrated solution for streaming,
OLTP, and OLAP workloads. Since the long-term value of reduced
operational costs and ease-of-use are hard to quantify, here we
answer a related question: How does SnappyData’s performance
compare to that of existing solutions that stitch disparate but highly
specialized systems for OLAP, OLTP, and stream processing?

In summary, our comparisons against the state-of-the-art solu-
tions indicate that, under mixed workloads, SnappyData (i) ingests
data streams 3.3× faster than Spark+ Cassandra and 2× times
faster than Spark+MemSQL, (ii) executes transactions 1.5× faster
than Spark+ Cassandra and slightly faster than Spark+MemSQL,
and (ii) runs analytical queries 142× and 7× faster than Spark+
Cassandra and Spark+MemSQL, respectively. Furthermore, when
a small error is tolerable, SnappyData’s probabilistic structures
can deliver an additional order-of-magnitude speedup for analyti-
cal queries.

Workload — Since existing benchmarks consist of only one or two
types of workloads, we present our results on a mixed workload
inspired by real-world ad analytics.3 Our workload is comprised of
an ad network with three components running concurrently:

• Streaming component. The impression logs continuously arrive
on a message bus. The ad servers aggregate these logs by pub-
lisher and geographical region, compute their average bid, num-
ber of impressions, and number of uniques every few seconds,
and continuously write this data into a partitioned store.

• Transactional component. As new impression logs arrive, the
respective profiles are updated transactionally.

• Analytical component. Three classes of analytical queries are
executed on entire data (both past and current): (Q1) top-20 ads
receiving the greatest number of impressions for each geograph-
ical region, (Q2) top-20 ads receiving the largest amount of bids
for each geographical region, and (Q3) top-20 publishers receiv-
ing the largest amount of bids overall.

Baselines — We compare SnappyData with two popular Lambda
stacks: Spark+Cassandra and Spark+MemSQL, whereby the mu-
tation is handled by Cassandra (state-of-the-art KV-store) or Mem-
SQL (state-of-the-art HTAP database), respectively. Here, the datasets

3For comparisons using traditional benchmarks, such as TPC-H
and YCSB, see [9].

are stored in Cassandra or MemSQL and exposed to Spark as RDDs.
For analytical queries, the Spark-Cassandra connector fetches the
required data from Cassandra (after pushing down the filters), and
run the queries inside Spark. The Spark-MemSQL connector is far
more aggressive and sends the analytical queries to run on Mem-
SQL in their entirety. Both connectors provide an API for stream
ingestion and data updates from the Spark context. Therefore, the
actual mutation (i.e., transaction) is processed inside Cassandra
and MemSQL.

Setup — We used 5 c4.2xlarge EC2 instances, each with 8 Cores,
15GB RAM, and a dedicated EBS bandwidth of 1000 Mbps. We
used Kafka 2.10_0.8.2.2, Spark 2.0.0, Cassandra 3.9, MemSQL
Ops-5.5.10 Community Edition, and SnappyData 0.6.1 (the lat-
est GA versions available at the time of testing). We also used
Spark-MemSQL Connector 2.10_1.3.3 and Spark-Cassandra con-
nector 2.0.0_M3. One machine acted as Spark Master and OLAP
coordinator and the other four machines were workers. A single
Kafka producer process generated ad impressions (asynchronously)
over 16 threads, while four Kafka brokers colocated on the worker
nodes. The incoming data was processed in micro-batches by Spark
Streaming and then ingested into the local store. We used 8 Kafka
partitions. The Kafka producer used Avro Java objects to represent
as impressions. Each impression, when serialized, was 64 bytes.
Whenever supported by the store, we used columnar format for
faster scans and aggregations.

Results — As shown in Figure 2a, SnappyData ingested data 2×
faster than Spark+Cassandra and 1.5× faster than Spark+MemSQL.
During data ingestion, all three systems updated their state transac-
tionally. However, as shown in Figure 2b, the transaction latency
was, on average, higher in Spark+Cassandra (about 0.07 millisec-
onds) than in Spark+MemSQL and SnappyData (about 0.04 mil-
liseconds each).

After ingesting 300M records, we executed our analytical queries
(Q1–Q3) in each system. As shown in Figure 2c, SnappyData
significantly outperformed both solutions. SnappyData ran these
queries on average 142× faster than Spark+ Cassandra and 7×
faster than Spark+MemSQL. To determine how much of Mem-
SQL’s lower performance was due to the inefficiencies of its Spark
connector, we also ran the same queries directly through Mem-
SQL’s own SQL shell. As shown in Figure 2c, MemSQL’s direct
performance was better than Spark+MemSQL, but it was still about
5× slower than SnappyData.

Analysis — The Spark+Cassandra connector adds a significant
overhead to query processing. This is because the data has to be
serialized and copied to the Spark cluster, converted into a new for-
mat, and shuffled across multiple partitions.

The Spark+MemSQL connector, on the other hand, attempts to
push as much of the query processing as possible to MemSQL.
This significantly reduces the amount of data movement into Spark.
The connector also attempts to colocate its partitions with those
of Kafka so that queuing and ingestion occur without having to
shuffle any records. This explains the superior ingestion rate of
Spark+MemSQL compared to Spark+Cassandra.

SnappyData embeds its column store alongside Spark executors,
providing by-reference data access to rows (instead of by-copy).
SnappyData also ensures that each partition at the storage layer
uses its parent’s partitioning method. Thus, each update becomes a
local write (i.e., no shuffles). When queried, SnappyData’s data is
column-compressed and formatted in the same format as Spark’s,
leading to significantly lower latencies.

Probabilistic query performance — After ingesting 2 billion ad
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Figure 2: Performance of various solutions under a mixed workload with stream ingestion, transactions, and analytical queries.

Figure 3: Interactive analytics in SnappyData w/ and w/o approx-
imation.

impressions, we studied SnappyData’s performance in its “approx-
imate” mode (with an error tolerance of 0.05). As shown in Fig-
ure 3, our probabilistic store speeds up analytical queries by almost
an additional factor of 7×.

8. CONCLUSION
We proposed a unified platform for real time operational analyt-

ics, SnappyData, to support OLTP, OLAP, and stream analytics in
a single integrated solution. Our approach is a deep integration of
a computational engine for high throughput analytics (Spark) with
a scale-out in-memory transactional store (GemFire). SnappyData
extends SparkSQL and Spark Streaming APIs with mutability se-
mantics, and offers various optimizations to enable colocated pro-
cessing of streams and stored datasets. We also made the case for
integrating approximate query processing into this platform for en-
abling real-time operational analytics over large (stored or stream-
ing) data. Hence, we believe that our platform significantly lowers
the TCO for mixed workloads compared to disparate products that
are managed, deployed, and monitored separately.
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