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ABSTRACT

With the increase of dataset volumes, training machine learning
(ML) models has become a major computational cost in most or-
ganizations. Given the iterative nature of model and parameter
tuning, many analysts use a small sample of their entire data dur-
ing their initial stage of analysis to make quick decisions on which
direction to take (e.g., whether and what types of features to add,
what type of model to pursue), and use the entire dataset only
in later stages (i.e., when they have converged to speci�c model).
This sampling, however, is performed in an ad-hoc fashion. Most
practitioners are not able to precisely capture the e�ect of sam-
pling on the quality of their model, and eventually on their deci-
sion making process during the tuning phase. Moreover, without
systematic support for sampling operators, many optimizations
and reuse opportunities are lost.

In this paper, we introduce BlinkML, a system for fast training
of ML models with quality guarantees. BlinkML allows users to
make error-computation tradeo�s: instead of training a model on
their full data (i.e., full model), they can train on a smaller sample
and thus obtain an approximate model. With BlinkML, however,
they can explicitly control the quality of their approximate model
by either (i) specifying an upper bound on how much the approx-
imate model is allowed to deviate from the full model, or (ii) in-
quiring about the minimum sample size using which the trained
model would meet a given accuracy requirement. Moreover, the
error guarantees can be expressed in terms of the model’s parame-
ters or its �nal (classi�cation or regression) predictions. BlinkML
currently supports any ML model that relies on maximum likeli-
hood estimation—an important class of ML algorithms, which in-
cludes Generalized Linear Models (e.g., linear regression, logistic
regression, max entropy classi�er, Poisson regression) as well as
PPCA (Probabilistic Principal Component Analysis). Our experi-
ments show that BlinkML can speed up the training of large-scale
ML tasks by 1.54×–322× while incurring only 1% accuracy loss
compared to the full model trained on the entire data.

PVLDB Reference Format:

Yongjoo Park, Jingyi Qing, Xiaoyang Shen, Barzan Mozafari. BlinkML:
Approximate Machine Learning with Probabilistic Guarantees. PVLDB,
12(xxx): xxxx-yyyy, 2019.
DOI: https://doi.org/TBD

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 45th International Conference on Very Large Data Bases,
August 2019, Los Angeles, California.
Proceedings of the VLDB Endowment, Vol. 12, No. xxx
Copyright 2018 VLDB Endowment 2150-8097/18/10... $ 10.00.
DOI: https://doi.org/TBD

1 Introduction

While data management systems have been widely successful in
supporting traditional OLAP-style analytics, they have not been
equally successful in attracting modern machine learning (ML)
workloads. To circumvent this, most analytical database vendors
have added integration layers for popular ML libraries in Python
(e.g., Oracle’s cx_Oracle [3], SQL Server’s pymssql [6], and DB2’s
ibm_db [7]) or R (e.g., Oracle’s RODM [8], SQL Server’s RevoScaleR
[9], and DB2’s ibmdbR [4]). These interfaces simply allow ma-
chine learning algorithms to run on the data in-situ.

However, recent e�orts have shown that data management sys-
tems have much more to o�er. For example, materialization and
reuse opportunities [13, 14, 21, 57, 67], cost-based optimization of
linear algebraic operators [17,20,30], array-based representations [37,
60], avoiding denormalization [41, 42, 56], lazy evaluation [70],
declarative interfaces [49,59,63], and query planning [40,51,58] are
all readily available (or at least familiar) database functionalities
that can deliver signi�cant speedups for various ML workloads.

One additional but key opportunity that has been largely over-
looked is the sampling abstraction o�ered by nearly every database
system. Sampling operators have been mostly used for approxi-
mate query processing (AQP) [18,22,24,28,44,45,52,53]. However,
applying the lessons learned in the data management community
regarding AQP, we could use a similar sampling abstraction to also
speed up an important class of ML workloads.

In particular, ML is often a human-in-the-loop and iterative pro-
cess. The analysts perform some initial data cleaning, feature en-
gineering/selection, hyper-parameter tuning, and model selection.
They, then, inspect the results and may repeat this process, in-
vesting more e�ort in some of these steps, until they are satis-
�ed with the model quality in terms of explanatory or predictive
power. The entire process is therefore slow and computationally
expensive. Many of the computational resources spent on early
iterations are ultimately wasted, as the eventual model can di�er
quite a bit from the initial ones (in terms of features, parameters,
or even model class). In fact, this is the reason why many prac-
titioners use a small sample of their entire data during the initial
steps of their analysis in order to reduce the computational bur-
den and speed up the entire process. For instance, they may �rst
train a model on a small sample (i.e., approximatemodel) to quickly
test a new hypothesis, determine if the newly added feature im-
proves accuracy, or tune a hyper-parameter. Only when the initial
results are promising do they invest in training a full model,1 i.e.,
the model trained on the full dataset (which can take signi�cantly
longer). The problem, however, is that this sampling process is
ad-hoc and comes with no guarantees regarding the extent of er-
ror induced by sampling. The analysts do not know how much

1We do not call this model an exact model since all ML models are inherently approx-
imate. However, the goal of BlinkML is to quantify the amount of error induced by
sampling, i.e., how much could the accuracy improve had we used the entire data.
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their sampling ratio or strategy a�ects the validity of their model
tuning decisions. For example, had they trained a model with this
new feature on the entire dataset rather than a small sample, they
might have witnessed a much higher accuracy, which would have
led them to include that feature in their �nal model.
Our Goal Given that (sub)sampling is already quite common
in early stages of ML workloads—such as feature selection and
hyper-parameter tuning—we propose a high-level system abstrac-
tion for training ML models, with which analysts can explicitly re-
quest error-computation trade-o�s for several important classes of
ML models. This involves systematic support for both (i) bounding
the deviation of the approximate model from the full model given
a sample size, and (ii) predicting the minimum sample size with
which the trained model would meet a given error tolerance. The
error guarantees can be placed on both the model’s parameters
and its �nal predictions. Our abstraction is versatile and provides
strong, PAC-style guarantees for di�erent scenarios. For example,
using an error tolerance ε and a con�dence level δ (0 ≤ δ ≤ 1), the
analysts can request a model whose parameters’ deviation from
those of the full model is no more than ε , with probability at least
1 − δ . Likewise, the users can demand a model whose classi�ca-
tion (or regression) error is within ε of the full model’s error, with
probability at least 1 − δ . Conversely, the analysts may train an
approximate model, and then inquire about the probability of its
predictions being more than ε di�erent from the full model.
Bene�ts The bene�ts are multifold. First, predicting the sam-
pling error enables analysts to make more reliable and informed
decisions throughout their model tuning process. Second, guaran-
teeing the maximum error might make analysts more comfortable
with using sampling, especially in their earlier explorations, which
can signi�cantly reduce computational cost and improve analysts’
productivity. Similarly, this will also eliminate the urge for over-
sampling. Finally, rather than implementing their own sampling
procedures, analysts will be more likely to rely on in-database
sampling operators, allowing for many other optimization, reuse,
and parallelism opportunities.
Challenges While estimating sampling error is a well-studied
problem for SQL queries [11,47], it is much more involved for ML
models. There are two types of approaches here: (i) those that
estimate the error before training the model (i.e., predictive), and
(ii) those that estimate the error after a model is trained (i.e., eval-
uative). A well-known predictive technique is the so-called VC-
dimension [46], which upper bounds the generalization error of
a model. However, given that VC-dimension bounds are data-
independent, they tend to be quite loose in practice [64]. Over-
estimated error bounds would lead the analysts to use the en-
tire dataset, even if similar results could be obtained from a much
smaller sample. 2

Common techniques for the evaluative approach include cross-
validation [16] and Radamacher complexity [46]. Since these tech-
niques are data-dependent, they provide tighter error estimates.
However, they only bound the generalization error. While useful
for evaluating the model’s quality on future (i.e., unseen) data, the
generalization error provides little help in predicting how much
the model quality would di�er if the entire dataset were used in-
stead of the current sample. Furthermore, when choosing the min-
imum sample size, the evaluative approaches can be quite expen-
sive: one would need to train multiple models each on a di�erent
sample size until a desirable error tolerance is met. Given that
most ML models do not have an incremental training procedure
2This is why VC-dimensions are sometimes used indirectly, as a comparative measure
of quality [42].

(besides a warm start [19]), training multiple models to �nd an ap-
propriate sample size might take longer overall than simply train-
ing a model on the full dataset (see Section 6.4).

Our Approach Given a test example x , the model’s predic-
tion is simply a function m(x ;θ ), where θ is the model parameter
learned during the training phase. Let θN be the model parameter
obtained if one trains on the entire dataset (say, of size N ), and θ̂n
be the model parameter obtained if one trains on a sample of size
n.3 Obtainingθn is fast whenn � N ; however, θN is unknown un-
less we use the entire dataset. Our key idea is to exploit the asymp-
totic distribution of θN − θ̂n to analytically (thus, e�ciently) de-
rive the conditional distribution of θ̂N | θn , where θ̂N represents
our (limited) probabilistic knowledge of θN (Theorem 1 and Corol-
lary 1). The asymptotic distribution of θN − θ̂n is available for the
ML methods relying on maximum likelihood estimation for their
parameter optimizations, which includes Generalized Linear Mod-
els [16] and Probabilistic PCA [62]. This indicates that, while we
cannot determine the exact value of θN without training the full
model, we can use the conditional distribution of θ̂N | θn to prob-
abilistically bound the deviation of θN from θn , and consequently,
the deviation of m(x ;θN ) from m(x ;θn ) (Section 4.2). This also
means we can estimate the deviation of m(x ;θN ) from m(x ;θn′′ )
for any other sample size, say n′′, using only the model trained on
the original sample of size n (Section 5.2). In other words, without
having to perform additional training, we can e�ciently search for
the minimum sample size n′, with which the approximate model,
m(x ;θn′ ) would be guaranteed, with probability 1 − δ , to not de-
viate fromm(x ;θN ) by more than ε .

Contributions We make the following contributions:

1. We introduce BlinkML, a system that o�ers error-computation
trade-o�s for training ML models. (Sections 2 and 3)

2. We present an e�cient algorithm that computes the probabilis-
tic di�erence between an approximate model and the full model,
without having to train the full model on the entire dataset.
Our algorithm supports any ML model that relies on maximum
likelihood estimation for its parameter optimization, which in-
cludes Generalized Linear Models (e.g., linear regression, logis-
tic regression, max entropy classi�er, Poisson regression) and
Probabilistic Principal Component Analysis. (Section 4)

3. We propose a technique that analytically estimates the proba-
bilistic di�erence between the full model and a model trained
on a sample of an arbitrary size, without having to train either
of them. BlinkML relies on this contribution for automatically
and e�ciently inferring the minimum sample size that would
meet a given error tolerance requested by the user. (Section 5)

4. We empirically validate the statistical correctness and compu-
tational bene�ts of BlinkML through extensive experiments.
(Section 6)

The remainder of this paper is organized as follows. Section 2
describes the user interaction scenarios with BlinkML. Section 3
explains BlinkML’s work�ow and the architecture. Section 4 es-
tablishes statistical properties of BlinkML-supported ML models
and describes how to exploit those statistical properties for esti-
mating the accuracy of an approximate model. Section 5 describes
how to e�ciently estimate the minimum sample size that satis-
�es the user-requested accuracy. We present our experiments in
Section 6 and discuss related work in Section 7.

3Note that θ̂n is a random variable; a speci�c model parameter θn trained on a spe-
ci�c sample (of size n) is an instance of θ̂n .
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Figure 1: Interaction di�erence between traditional ML libraries
and BlinkML. BlinkML can quickly train an approximate ML
model in accordance to a user-speci�ed approximation contract:
AccContract or ScaleContract. Latency and accuracy exam-
ples are based on our experiment results (Section 6).

2 User Interaction

In this section, we describe how the user interacts with BlinkML.

2.1 Interface

In this section, we �rst describe the interface of a traditional ML li-
brary (e.g., scikit-learn [54], Weka [33], MLlib [1]), and then present
the di�erence in BlinkML’s interface.
Traditional ML Libraries As depicted in Figure 1 (top), with
a typical ML library, the user provides a training set D and speci-
�es a model class (e.g., linear regression, logistic regression, PPCA)
along with model-speci�c con�gurations (e.g., regularization coef-
�cients for linear or logistic regression, the number of factors for
PPCA). A training set D is a (multi-)set of N training examples,
which we denote as {(x1,y1), . . . , (xN ,yN )}. The d-dimensional
vector xi is called a feature vector, and a real-valued yi is called a
label. Then, the traditional ML library outputs a modelmN trained
on the given training set. We callmN a full model.

Figure 2a is an example of a code snippet that trains a logis-
tic regression classi�er using scikit-learn (i.e., the sklearn mod-
ule) [54].

The trained modelmN is used di�erently depending on the type
of learning. In supervised learning, m(x ) predicts a label for an
unseen feature vector x . For example, if x encodes a review of a
restaurant, a trained logistic regression classi�ermN (x ) may pre-
dict whether the review is positive or negative. In unsupervised
learning,mN () returns parameters that capture certain character-
istics of the training set. For example, if D consists of bitmap im-
ages of handwritten digits,mN () might be a factor analysis model
(e.g., PPCA) which returns a small number (q) of images that most
accurately reconstruct the handwritten digit images when linearly
combined [62]; here, the value of q is the model-speci�c con�g-
uration of PPCA. When the meaning is clear, we may omit the
parameter (i.e., x ) ofmN and simply usemN (·) ormN .
BlinkML In addition to the inputs required by traditional ML
libraries, BlinkML needs one extra input: an approximation con-
tract. The approximation contract speci�es the quality of the ap-
proximate model trained by BlinkML. The approximation con-

1 from sklearn import linear_model as sml
2 lr = sml.LogisticRegression ()
3 model = lr.fit(features , labels)

(a) scikit-learn

1 import blinkml as bml
2 lr = bml.LogisticRegression ()
3 ap = bml.ApproxContract(err=0.01, delta =0.05)
4 model = lr.fit(features , labels , ap)

(b) BlinkML (AccContract)

1 import blinkml as bml
2 lr = bml.LogisticRegression ()
3 ap = bml.ApproxContract(n=10000 , delta =0.05)
4 model = lr.fit(features , labels , ap)

(c) BlinkML (ScaleContract)

Figure 2: Examples of training a model in a typical ML library
(scikit-learn in this case) versus BlinkML.

tract is one of the following types: AccContract, which consists
of an error bound ε and a con�dence level δ , or ScaleContract,
which consists of a sample sizen and a con�dence level δ . Figure 1
(middle and bottom) shows examples of the two user interaction
scenarios with BlinkML. These contracts are de�ned as follows.

1. AccContract: Given an error bound ε and a con�dence
level δ , BlinkML returns an approximate modelmn′ such that the
di�erence between mn′ and the full model mN is within ε with
probability at least 1 − δ . That is,

Pr[v (mn′ , mN ) ≤ ε] ≥ 1 − δ

wherev (·, ·) is the model di�erence, a function that de�nes the dif-
ference between the two models.

The model di�erence depends on the ML task. For example, in
supervised learning (i.e., classi�cation or regression), the model
di�erence captures the expected di�erence between the predic-
tions of two models. That is,

v (m1,m2) = E[m1 (x ) ,m2 (x )] (classi�cation)

v (m1,m2) = E[(m1 (x ) −m2 (x ))
2] (regression)

For unsupervised learning (e.g., PPCA), the model di�erence cap-
tures the di�erence between the model parameters. For instance,

v (m1,m2) = 1 − cosine(θ1,θ2) (PPCA)

where cosine(·, ·) indicates the cosine similarity.
The approximate model mn′ is trained on a sample of size n′,

and the value of n′ is automatically inferred by BlinkML. Fig-
ure 2b shows an example of training an approximate model in
BlinkML with AccContract. The values of ε and δ are speci-
�ed when instantiating an object of type ApproxContract, which
is then passed to the fit function to initiate the training.

2. ScaleContract: Given a sample size n and a con�dence
level δ , BlinkML returns (1) an approximate modelmn trained on
a sample of size n, and (2) the estimated accuracy εn , such that
the model di�erence between mn (·) and mN (·) is guaranteed to
be within εn , with probability at least 1 − δ . That is,

Pr[v (mn (·), mN (·)) ≤ εn] ≥ 1 − δ

Here, the meanings of εn and δ for classi�cation and regression
tasks are identical to AccContract. Figure 2c shows an example
of training a model in BlinkML with ScaleContract.
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Model Class BlinkML Class Name

Linear regression LinearRegression
Logistic regression LogisticRegression
Max entropy classi�er MaxEntropy
PPCA PPCA

Table 1: ML model classes currently available in BlinkML.

Model

Trainer

Model

Accuracy

Estimator

Sample

Size

Estimator

BlinkML Coordinator

Training

Set

AccContract �ows ScaleContract �ows

Figure 3: Architecture of BlinkML. All communications are
through Coordinator. For AccContract, orange �ows are used.
For ScaleContract, green �ows are used.

2.2 Supported ML Models

BlinkML currently supports the following four model classes: lin-
ear regression, logistic regression, max entropy classi�er, and PPCA.
However, BlinkML’s core technical contributions (Theorems 1 and 2
in Sections 4 and 5) can be generalized to any ML algorithms that
rely on maximum likelihood estimation. We are currently focused
on adding more con�guration options for these currently available
models, but we also plan to extend our supported model classes
in the future (e.g., naïve Bayes classi�er and decision trees). Al-
though neural networks are also quite popular, BlinkML’s near-
term vision is to focus on better understood models that can still
be quite costly when faced with large datasets.

To use a speci�c model class, the user simply invokes the cor-
responding class name in BlinkML (see Figures 2b and 2c for an
example of training a LogisticRegression). Table 1 summarizes
the currently implemented model classes and their corresponding
class names. Note that the users of BlinkML are not required
to understand or derive any mathematical expressions in order
to use (and bene�t from) the approximation contracts o�ered by
BlinkML for any of these supported models.

3 Work�ow and Architecture

This section describes the internal components of BlinkML and
how they operate together to produce an accuracy-guaranteed ap-
proximate model. As depicted in Figure 3, BlinkML has four main
components: (1) Model Trainer, (2) Model Accuracy Estimator, (3)
Sample Size Estimator, and (4) Coordinator. Those components are
designed to be agnostic to the individual model, using an abstrac-
tion introduced in Section 3.2. We then describe the operations of
each component in Section 3.3 and our sampling process in Sec-
tion 3.4.

3.1 Internal Work�ow

BlinkML’s operations di�er based on the approximation contract
(AccContract or ScaleContract). Coordinator controls these
di�erent work�ows, as follows.
AccContract First, Coordinator obtains a size-n0 sampleDn0
of the training set D. We call Dn0 the initial training set (n0 is 10K
by default). Coordinator then invokes Model Trainer to train an

1 class LogisticRegressionModel(ModelClass ):
2
3 def __init__(self , config , holdout_features ):
4 self._c = config # ex. regularization coeff
5 self._hold = holdout_features
6
7 def diff(self , model1 , model2 ):
8 """
9 Computes misclassification ratio.

10 """
11 y1 = model1.predict(self._hold)
12 y2 = model2.predict(self._hold)
13 return numpy.mean(y1 != y2)
14
15 def grads(self , theta , features , labels ):
16 """
17 Computes a list of per -example gradients
18 """
19 q = sigmoid(features.dot(theta)-labels)
20 q = features * q
21 r = self._c.beta * theta
22 return q + r
23
24 def solve(self , features , labels ):
25 """
26 If available , this method directly computes
27 optimal parameter values.
28 """
29 raise NotImplementedError

Figure 4: Example of a model class speci�cation (MCS) in
BlinkML.

initial model m0 on Dn0 , and subsequently invokes Model Accu-
racy Estimator to estimate the accuracy ε0 ofm0 (with con�dence
1 − δ ). If ε0 is smaller than or equal to the user-requested error
bound ε , Coordinator simply returns the initial model to the user.
Otherwise, Coordinator prepares to train a second model, called
the �nal model mn′ . To determine the sample size n′ required
for the �nal model to satisfy the error bound, Coordinator con-
sults Sample Size Estimator to estimate the smallest n′ with which
the model di�erence between mn′ and mN (i.e., the unknown full
model) would not exceed ε with probability at least 1−δ . Note that
this operation of Sample Size Estimator does not rely on Model
Trainer; that is, no additional (approximate) models are trained
for estimating n′. Finally, Coordinator invokes Model Trainer (for
a second time) to train on a sample of size n′ and return mn′ to
the user. Therefore, in the worst case, at most two approximate
models are trained with AccContract.
ScaleContract First, Coordinator obtains a size-n sample
Dn of the training set D, and invokes Model Trainer to train an
approximate model mn on Dn . Next, Coordinator invokes Model
Accuracy Estimator to compute εn such that the model di�erence
betweenmn andmN (i.e., the unknown full model) would not ex-
ceed εn with probability 1−δ . Finally, Coordinator returnsmn and
εn to the user. Thus, with ScaleContract, only one approximate
model is trained.

3.2 Model Abstraction

For generality and to be agnostic to the di�erent ML models, BlinkML
relies on an abstraction, called model class speci�cation (MCS). We
�rst present the common mathematical form of the ML models
supported by BlinkML, and then introduce our MCS abstraction.
Mathematical Form BlinkML currently supports any ML model
that relies on maximum likelihood estimation. Such models are
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trained by �nding a model parameter value θ that maximizes the
likelihood of the training set D. This optimization is equivalent to
solving the following minimization problem:

arg minθ fn (θ ) (1)

where

fn (θ ) =
1
n

n∑
i=1

log Pr(xi ,yi ; θ ) + R (θ ) (2)

Here, Pr(xi ,yi ; θ ) indicates the likelihood of observing the pair
(xi , yi ) given θ , R (θ ) is the optional regularization term typically
used to prevent over�tting, and n is the number of training ex-
amples used. When n=N , this results in training the full model
mN , and otherwise we have an approximate model mn . Di�erent
ML models use di�erent expressions for Pr(xi ,yi ; θ ). For exam-
ple, PPCA uses the Gaussian distribution with covariance matrix
xix>i whereas logistic regression uses the Bernoulli distribution
with its mean being the sigmoid function of x>i θ .

The solution θn to the minimization problem in Equation (1) is
a value of θ at which the gradient дn (θ ) = ∇fn (θ ) of the objective
function fn (θ ) becomes zero. That is,

дn (θn ) =


1
n

n∑
i=1

q(θn ;xi ,yi )

+ r (θn ) = 0 (3)

whereq(θ ;xi ,yi ) denotes∇θ log Pr(xi ,yi ;θ ) and r (θ ) denotes∇θR (θ ).
Model Class Speci�cation (MCS) A model class speci�cation
is the abstraction that allows BlinkML’s components to remain
generic and not tied to the speci�c internal logic of the supported
ML models. Note that BlinkML already includes the necessary
MCS de�nitions for the currently supported model classes (see
Section 2.2). Regular users therefore do not need to provide their
own MCS. However, more advanced developers can easily inte-
grate new ML models (as long as they are based on maximum like-
lihood estimation) by de�ning new MCS. To de�ne a new MCS in
BlinkML, the developers must inherit from the main ModelClass
class and implement three virtual functions: diff(), grads(), and
optionally, solve().
1. diff(m1, m2): This function computes the model di�erence
v (m1,m2) between two models m1 and m2. For example, for
classi�cation (e.g., logistic regression, max entropy classi�er),
v (m1,m2) = E[m1 (x ) ,m2 (x )] for x ∼ D. For regression (e.g.,
linear regression),v (m1,m2) = E[(m1 (x )−m2 (x ))2] for x ∼ D.
For PPCA, v (m1,m2) computes one minus the average cosine
similarity between two models’ respective extracted factors.

2. grads: This function computes and returns a list ofq(θ ;xi ,yi )+
r (θ ) for i = 1, . . . ,n, as de�ned in Equation (3). Although itera-
tive optimization algorithms typically rely only on the average
of this list of values (i.e., the gradient∇θ fn (θ )), the grads func-
tion must return individual values (without averaging them), as
they are internally used by BlinkML (see Section 4.3).

3. solve: This optional function computes the optimal model pa-
rameters for models that have a closed-form expression. (Cur-
rently, BlinkML implements the optional solve functions for
linear regression and PPCA, as they both have closed-form so-
lutions.)

Figure 4 shows an example of a model class speci�cation.

3.3 Architecture

As despited in Figure 3, BlinkML is comprised of four major com-
ponents. We discussed the Coordinator’s role in Section 3.1. Here,
we discuss the remaining components: Model Trainer, Model Ac-
curacy Estimator, and Sample Size Estimator.

Model Trainer

scipy.optimize

Gradient Computer

NumPy / SciPy

Apache

Spark

Data in
Local Memory

Data distributed
among multiple workers

Training Set (Dn ), grads
Approximate Model (mn )

Figure 5: Iterative training in Model Trainer. Depending on the
size of Dn , gradients are either computed locally (green �ow) or
using multiple workers in Apache Spark (orange �ow).

3.3.1 Model Trainer
Model Trainer trains a model by �nding its optimal parameter
value, θ . Model Trainer takes two inputs: (1) a subset Dn of the
training set D, where n ≤ N , and (2) a model class speci�cation
(MCS).

To train and output a modelmn , Model Trainer takes a di�erent
approach depending on the size of Dn and the given model class
speci�cation, as follows.
1. Closed-Form If the MCS includes the optional solve func-
tion, Model Trainer simply relies on its solve function to �nd its
optimal model parameters.
2. Iterative If the solve function is not present, BlinkML uses
the grads function and the optimization libraries in the SciPy’s
optimizemodule [54]. To �nd the optimal parameter values, most
optimization libraries require the gradient ∇fn (θ ) of the objective
function fn (θ ).4 The gradient is computed by averaging the out-
puts of the grads function. When using SciPy’s optimize mod-
ule, computing the gradients is typically the dominant cost. Model
Trainer therefore computes the grads function either locally or in
a distributed fashion, as described next. (This is depicted in Fig-
ure 5.)
2.1. Iterative (Local) For small- and medium-scale problems
(n < 1M, by default), the grads function is computed locally using
NumPy (for dense features) or SciPy (for sparse features).
2.2. Iterative (Distributed) For large-scale problems (n ≥ 1M,
by default), BlinkML computes the gradients using multiple work-
ers (via Apache Spark [65]). To distribute Dn between the remote
workers, BlinkML packs each 10K training examples into a sin-
gle element of Spark’s RDD. Then, the grads function is invoked
on each element of the RDD. According to our empirical studies,
this enables Spark to exploit NumPy’s highly-e�cient matrix op-
erations for each RDD element. Note that this distributed compu-
tation is possible only because the gradient expression in Equa-
tion (3) has a special structure that enables data-parallelism. That
is, given θ , q(θ ;xi , ti ) is independent of q(θ ;x j , tj ) for i , j.

The output of Model Trainer is the model mn (·) = m( · ;θn ),
which includes the parameter θn trained on Dn . Figure 5 depicts
Model Trainer’s input and output.

3.3.2 Model Accuracy Estimator
Given an approximate model mn , a con�dence level δ , and an
MCS, Model Accuracy Estimator computes εn , such thatv (mn ,mN ) ≤

4The gradient of a function can be numerically approximated using the function it-
self; however, these approximations are much slower.
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εn with probability at least 1 − δ .
To achieve this goal, Model Accuracy Estimator exploits the fact

that bothmn andmN are essentially the same function (i.e.,m(·))
but with di�erent model parameters (i.e., θn and θN ). Although
we cannot compute the exact value of θN without training the
full model mN , we can still estimate its probability distribution
(we explain this in Section 4.1). Model Accuracy Estimator uses
this estimated probability distribution to estimate mN ’s probabil-
ity distribution (or more accurately, the probability distribution of
the output of mN (·)). The probability distribution of mN is then
used to estimate the distribution ofv (mn ,mN ), which is the quan-
tity we aim to upper bound. The upper bound εn is determined by
simply �nding the value that is larger than v (mn ,mN ) with prob-
ability at least 1 − δ . We discuss this process more formally in
Section 4.

3.3.3 Sample Size Estimator
Given an error bound ε , a con�dence δ , and the initial model m0,
Sample Size Estimator estimates the minimum sample sizen′, such
that v (mn′ ,mN ) ≤ ε with probability at least 1 − δ . Here, mn′ is
the approximate model trained on a sample of sizen′, sayDn′ . The
core function of Sample Size Estimator is to compute Pr(v (mn′′ ,mN )
≤ ε ) for an arbitrary n′′. Note that v (mn′′ ,mN ) is a random vari-
able since its output relies on a random sample Dn′′ .

Similar to Model Accuracy Estimator, Sample Size Estimator ex-
ploits the probability distributions of mn′′ and mN to compute
Pr(v (mn′′ ,mN ) ≤ ε ). In this case, however, the model parameters
of both mn′′ and mN are unknown. Thus, Sample Size Estimator
treats both model parameters as random variables and uses the
joint probability distribution of (θ̂n′′ , θ̂N ) to estimatev (mn′′ ,mN ),
where θ̂n′′ is the random variable for the unknown model param-
eter θn′′ of mn′′ . We describe this process in more details in Sec-
tion 5.

3.4 Sampling Process

When the training set D �ts in memory, BlinkML produces Dn
by simply invoking numpy.random.choice to perform uniform
sampling without replacement. When D does not �t in memory,
BlinkML tries to use o�ine samples whenever possible, in the
form of a pre-shu�ed dataset on disk (similar to [34]) or a se-
quence of telescopic samples (similar to [12]). Otherwise, BlinkML
performs Bernoulli sampling (as a more e�cient approximation
of uniform sampling without replacement) on-the-�y by reading
from disk or querying a SQL database. For the latter, it uses the
TABLESAMPLE operator when supported by the database, and oth-
erwise issues the following SQL query: select * from D where
rand() < ratio. Note that, although our theoretical contribu-
tions in Sections 4 and 5 are primarily designed for uniform ran-
dom sampling, our results can be extended to biased (i.e., strati�ed)
sampling by applying the asymptotic theory on biased sampling
(instead of central limit theorem) [50].

4 Model Accuracy Estimator

Model Accuracy Estimator is the component that estimates the
accuracy of an approximate model. This section describes its es-
timation process. To understand Model Accuracy Estimator, it is
crucial to understand the statistical properties of Equation (3) from
Section 3.2. In Section 4.1, we �rst establish these statistical prop-
erties. Then, in Section 4.2, we exokaun how BlinkML exploits
these statistical properties to estimate the accuracy of an approx-
imate model. Lastly, in Section 4.3, we show how to e�ciently
compute certain statistics required for expressing these properties.

4.1 Model Parameter Distribution

In this section, we present how to probabilistically express the pa-
rameter values of the (unknown) full model mN only given an
approximate model mn . Let θn and θN be the parameters of mn
andmN , respectively. Also, let θ̂n be a random variable represent-
ing the distribution of the approximate model’s parameters; θn is
simply one instance of θ̂n . We also use θ̂N to represent our (lim-
ited) knowledge of θN . In the remainder of this section, we �rst
derive the distribution of θ̂n − θ̂N , and then use this distribution
to derive the conditional distribution of θ̂N | θn . We will use this
conditional distribution in the following section to estimate the
accuracy ofmn .

The following theorem provides the distribution of θ̂n − θ̂N .

Theorem 1. Let J be the Jacobian of дn (θ ) − r (θ ) evaluated at θn ,
and let H be the Jacobian of дn (θ ) evaluated at θn . Then,

θ̂n − θ̂N → N (0, α H−1 JH−1), α =
1
n
−

1
N

as n → ∞. N denotes a normal distribution.

The above theorem is a generalization of the sampling distribu-
tion of the maximum likelihood estimator [26, 48]. We defer the
proof to Appendix B.

The following corollary provides the conditional distribution of
θ̂N | θn (proof in Appendix B).

Corollary 1. Without any a priori knowledge of θN ,

θ̂N | θn → N (θn , α H
−1 JH−1), α =

1
n
−

1
N

as n → ∞.

The following section uses the conditional probability distribu-
tion θ̂N | θn to estimate the accuracy of an approximate model.

4.2 Probabilistic Error Bounds

In this section, we describe how Model Accuracy Estimator esti-
mates the accuracy of an approximate model mn . Speci�cally, we
show how to compute εn such thatv (mn ,mN ) ≤ εn with probabil-
ity at least 1−δ , by exploiting the conditional distribution θ̂N | θn
derived in the previous section.

Let h(θN ) denote the probability density function of the nor-
mal distribution with mean θn and covariance matrix αH−1 JH−1

(obtained in Corollary 1). Then, we aim to �nd εn that satis�es:(∫
1 [v (m( · ;θn ),m( · ;θN )) ≤ εn] h(θN ) dθN

)
≥ 1 − δ (4)

where 1 [·] is the indicator function that returns 1 if its argument
is true and returns 0 otherwise. The above expression involves
blackbox functions such as m(·) and v ( · , · ); thus, it cannot be
analytically computed in general.5

Model Accuracy Estimator approximately computes the inte-
grationpv in Equation (4) using the empirical distribution ofh(θN )

5We have also considered analytic computations of Equation (4) by relying on model-
speci�c information; See the end of Section 4.2 for a discussion of these alternatives.
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as follows. Let θN ,1, . . . ,θN ,k be i.i.d. samples drawn from h(θN ).
Then,

pv =

∫
1 [v (m( · ;θn ), m( · ;θN )) ≤ εn] h(θN ) dθN (5)

≈
1
k

k∑
i=1

1
[
v (m( · ;θn ), m( · ;θN ,i )) ≤ εn

]
= p̃v (6)

The value of p̃v converges to pv as k → ∞; thus, the estimate
is consistent. We analyze its accuracy in more detail shortly. To
obtain a large number k of sampled values, an e�cient sampling
algorithm is necessary. Since θ̂N follows a normal distribution,
there are already standard libraries, such as numpy.random. How-
ever, BlinkML uses its own custom sampler to avoid directly com-
puting the covariance matrix H−1 JH−1 (see Section 5.3). To �nd
εn that makes p̃v ≥ 1−δ , it su�ces to �nd the kδ -th smallest value
in the list of v (m( · ;θn ), m( · ;θN ,i )) for i = 1, . . . ,k .
Accuracy Now we analyze the accuracy of using Equation (6).
For our analysis, we use the expected relative root mean square
(rms) error of p̃v (in comparison to pv ). Observe that since θ̂N ,1,

. . . , θ̂N ,k are i.i.d. samples, p̃v follows a binomial distribution with
mean pv and standard deviation

√
pv (1 − pv )/k . Thus, the ex-

pected relative rms error is
√
(1/pv − 1)/k . For instance, when

pv = 0.90 and k = 1,000, the relative rms error is about 0.01.
BlinkML uses 1,000 for k by default and targets the cases where
pv is not smaller than 0.90 (i.e., δ ≤ 0.10). Thus, the expected
relative rms error of p̃v is small.
AlternativeApproaches We brie�y describe why using model-
speci�c information does not necessarily lead to a more e�cient
computation of Equation (5). For our description, we use logistic
regression as an example. Since logistic regression is a classi�-
cation algorithm, the model di�erence between mn = m(x ;θn )
and mN = m(x ;θN ) is computed by E[m(x ;θn ) , m(x ;θN )],
where the model prediction of logistic regression is m(x ;θ ) =
1
[
θ>x ≥ 0

]
. Thus,

pv =

∫
E[m(x ;θn ) =m(x ;θN )]h(θN ) dθN

=
1
`

∑̀
j=1

∫
A+
1
[
θ>n x j ≥ 0

]
dh(θN ) +

∫
A−

1
[
θ>n x j < 0

]
dh(θN )

where ` is the number of training examples used for computing
the expectation, A+ is the area of θN such that θ>N x j ≥ 0, and
A− is the area of θN such that θ>N x j < 0. The above integration
computes the probability that the full model’s prediction for x j
lies on the same side of the decision boundary (i.e., θ>x j ≥ 0 or
θ>x j < 0) as the approximate model’s prediction for x j . Comput-
ing the above integration is non-trivial because θN is multidimen-
sional and the areas, A+ and A−, cannot be analytically expressed
in general. Moreover, integrating multivariate normal distribu-
tion, h(θN ), cannot be computed analytically. This di�culty be-
comes even more severe for multi-class classi�cation algorithms,
such as max entropy classi�er. In contrast, Model Accuracy Esti-
mator’s current approach easily generalizes to all supported ML
models, while its runtime overhead is still low (see Section 6.5 for
empirical study of runtime overhead).

4.3 Computing Necessary Statistics

In this section, we present several methods for computingH (which
appears in Theorem 1) and discuss pros and cons of those meth-
ods. Computing J is straightforward given H since J = H − Jr ,

where Jr is the Jacobian of r (θ ). We present three methods: (1)
ClosedForm, (2) InverseGradients, and (3) ObservedFisher.
Method 1: ClosedForm ClosedForm uses the analytic form
of the Jacobian H (θ ) of дn (θ ), and sets θ = θn by the de�nition
of H . For instance, H (θ ) of L2-regularized logistic regression is
expressed as follows:

H (θ ) =
1
n
X>QX + βI

where X is an n-by-d matrix whose i-th row is xi , and Q is a d-
by-d diagonal matrix whose i-th diagonal entry is σ (θ>xi ) (1 −
σ (θ>xi )), and β is the coe�cient of L2 regularization. When H (θ )
is available, as in the case of logistic regression, ClosedForm is fast
and exact.

However, inverting H is computationally expensive when d is
large. Also, using ClosedForm is less straightforward when ob-
taining analytic expression of H (θ ) is non-trivial. Thus, BlinkML
supports ClosedForm only for linear regression and logistic re-
gression. For other methods, such as max entropy classi�er and
PPCA, either of the following two methods is used.
Method 2: InverseGradients InverseGradients numerically
computes H by relying on the Taylor expansion of дn (θ ): дn (θn +
dθ ) ≈ дn (θn ) + Hdθ . Since дn (θn ) = 0, the Taylor expansion
simpli�es to:

дn (θn + dθ ) ≈ Hdθ

The values ofдn (θn+dθ ) andдn (θn ) are computed using the grads
function provided by the MCS. The remaining question is what
values of dθ to use for computing H . Since H is a d-by-d matrix,
BlinkML uses d number of linearly independent dθ to fully con-
struct H . That is, let P be ϵI , where ϵ is a small real number (10−6

by default). Also, let R be the d-by-d matrix whose i-th column is
дn (θn + P ·,i ) where P ·,i is the i-th column of P . Then,

R ≈ HP ⇒ H ≈ RP−1

Since InverseGradients only relies on the grads function, it is ap-
plicable to all supported models. Although InverseGradients is ac-
curate, it is still computationally ine�cient for high-dimensional
data, since the grads function must be called d times. We study
its runtime overhead in Section 6.6.
Method 3: ObservedFisher ObservedFisher numerically com-
putes H by relying on the information matrix equality [26]. Ac-
cording to the information matrix equality, the covariance matrix
C of q(θn ;xi ,yi ) for i = 1, . . . ,n is equal to J ; then, H can sim-
ply be computed as H = J + Jr . Instead of computing C directly,
however, ObservedFisher takes a slightly di�erent approach to en-
sure the positive de�niteness of J andH . This process also ensures
the positive de�niteness ofH−1 JH−1, which is the requirement for
the covariance matrix of a normal distribution. LetQ be then-by-d
matrix whose i-th row is q(θn ;xi ,yi ). Then, ObservedFisher per-
forms the singular value decomposition of Q> to obtainU , Σ, and
V such that Q> = U ΣV>. Then, ObservedFisher computes J as
follows:

J = C = Q>Q = U Σ2U> ≈ U Σ2
+U
> (7)

where Σ+ is a diagonal matrix with only positive singular values.
Note that the diagonal entries of Σ2

+ are the eigenvalues of J ; be-
cause they are also all positive, J is positive de�nite.

ObservedFisher requires only a single call of the grads function;
thus, ObservedFisher is faster than InverseGradients, particularly
for high-dimensional data (see Section 6.6 for experiments). Also,
ObservedFisher exposesU and Σ+, which are used for BlinkML’s
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custom sampler (Section 5). Due to these reasons, ObservedFisher
is BlinkML’s default approach to computing H and J .

5 Sample Size Estimator

Sample Size Estimator estimates the minimum sample size n′ such
that the model di�erence between mn′ and mN is not larger than
the requested error bound ε with probability at least 1 − δ .

Sample Size Estimator does not train any additional approxi-
mate models; it only relies on the initial model m0 given to this
component. For this, Sample Size Estimator uses probabilistic mod-
eling ofmn′ andmN , which is described in Section 5.1. Section 5.2
presents how to estimate n′ relying on the probabilistic modeling.
Lastly, Section 5.3 describes several optimizations that enable fast
estimation of n′.

5.1 EstimatingModelQuality sansTraining

This section explains how Sample Size Estimator computes the
probability of v (mn′ ,mN ) ≤ ε given the initial model m0. Since
both models—mn′ =m( · ; θ̂n′ ) andmN =m( · ; θ̂N )—are uncertain,
Sample Size Estimator uses the joint probability distributions of
θ̂n′ and θ̂N to compute pv = Pr(v (mn′ ,mN ) ≤ ε ). The computed
probability pv is then used in the following section for estimating
n′.

Like Model Accuracy Estimator, Sample Size Estimator approx-
imately computes pv using the i.i.d. samples from the joint distri-
bution h(θn′ ,θN ) of (θn′ ,θN ) as follows:

pv (n
′) =

"
1 [v (m( · ;θn′ ),m( · ;θN )) ≤ ε] h(θn′ ,θN ) dθn′ dθN

≈
1
k

k∑
i=1

1
[
v (m( · ;θn′,i ),m( · ;θN ,i )) ≤ ε

]
= p̃v (n

′0) (8)

To obtain i.i.d. samples, (θn′,i ,θN ,i ) for i = 1, . . . ,k , fromh(θn′ ,θN ),
Sample Size Estimator uses the following relationship:

Pr(θn′ ,θN | θ0) = Pr(θN | θn′ ) Pr(θn′ | θ0)

where the conditional distributions, θN | θn′ and θn′ | θ0, are
obtained using Corollary 1. That is, Model Accuracy Estimator
uses the following two-stage sampling procedure. It �rst samples
θn′,i from N (θ0, α1H−1 JH−1) where α1 = (1/n0 − 1/n′); then,
samples θN ,i fromN (θn′,i , α2H−1 JH−1) where α2 = (1/n′−1/N ).
This process is repeated for every i = 1, . . . ,k to obtain k pairs of
(θn′,i ,θN ,i ). Finally, p̃v (n′) is obtained by counting the fraction
of the cases in which 1

[
v (m( · ;θn′,i ),m( · ;θN ,i )) ≤ ε

]
returns 1.

5.2 Sample Size Searching

To �nd the minimum n′ such that p̃v (n′) ≥ 1− δ , Sample Size Es-
timator uses binary search, exploiting that p̃v (n′) tends to be an
increasing function of n′. We �rst provide an intuitive explana-
tion; next, we present a formal argument.

Observe that p̃v (n′) relies on the two model parameters θn′ and
θN . If θn = θN , p̃v (n) is trivially equal to 1. According to Theo-
rem 1, the di�erence between those two parameters, i.e., θ̂n′ − θ̂N ,
follows a normal distribution whose covariance matrix shrinks by
a factor of 1/n′ − 1/N . Therefore, those parameter values become
closer as n′ → N , which implies that the value of p̃v (n′) must in-
crease toward 1 as n → N . The following theorem formally shows
that p̃v (n′) is guaranteed to be an increasing function for a large
class of cases (its proof is in Appendix B).

Theorem 2. Let h(θ ;γ ) be the probability density function of a
normal distribution with mean θN and covariance matrixγ C , where
γ is a real number, andC is an arbitrary positive semide�nite matrix.
Also, let B be the box area of θ such that v (m( · ;θ ),m( · ;θN )) ≤ ε .
Then, the following function pv (γ )

pv (γ ) =

∫
B
h(θ ;γ ) dθ

is a decreasing function of γ .

Since binary search is used, Sample Size Estimator needs to com-
pute p̃v (n

′) for di�erent values of n′; in total, O (log2 (N − n0))
times. Thus, a fast mechanism for producing i.i.d. samples is de-
sirable. The following section describes BlinkML’s optimizations.

5.3 Optimizations for Fast Sampling

This section describes Sample Size Estimator’s sampling mecha-
nism. For computing pv (n

′), Sample Size Estimator relies on the
i.i.d. samples from the normal distribution with covariance ma-
trix (1/n′ − 1/N )H−1 JH−1. A basic approach would be to use o�-
the-shelf functions, such as the one shipped in the numpy.random
module, for every di�erent n′. Albeit simple, this basic approach
involves many redundant operations that could be avoided. We
describe two orthogonal approaches to reduce the redundancy,
which enables much faster sampling operations.
Sampling by Scaling We can avoid invoking a sampling func-
tion multiple times for di�erentn′ by exploiting the structural sim-
ilarity of the covariance matrices associated with di�erent n′. Let
θ̂n ∼ N (0, (1/n − 1/N )H−1 JH−1), and let θ̂0 ∼ N (0, H−1 JH−1).
Then, there exists the following relationship:

θ̂n =
√

1/n − 1/N θ̂0.

This indicates that we can �rst draw i.i.d. samples from the un-
scaled distributionN (0,H−1 JH−1); then, we can scale those sam-
pled values by

√
1/n − 1/N whenever the i.i.d. samples fromN (0, (1/n−

1/N )H−1 JH−1) are needed.
Avoiding Direct Covariance Computation When r (θ ) = βθ
in Equation (3) (i.e., no regularization or L2 regularization), Sam-
ple Size Estimator avoids the direct computations of H−1 JH−1. In-
stead, it simply draws samples from the standard normal distri-
bution and applies an appropriate linear transformation L to the
sampled values (L is obtained shortly). Note that sampling from
the standard normal distribution is much faster because no de-
pendencies need to be enforced among sampled values.

For this, the following relationship is used:

z ∼ N (0, I ) ⇒ L z ∼ N (0, L L>).

That is, if there exists L such that L L> = H−1 JH−1, Sample Size
Estimator can obtain the samples of θ̂0 by multiplying L to the
samples drawn from the standard normal distribution.

Speci�cally, Sample Size Estimator performs the following for
obtaining L. Observe from Equation (7) that J = U Σ2

+U
>. Since

H = J + β , H = U (Σ2
+ + βI )U

>. Thus,

H−1 JH−1 = U (Σ2
+ + βI )

−1U> U Σ2
+U
> U (Σ2

+ + βI )
−1U>

⇒ H−1 JH−1 = (UΛ) (UΛ)>

where Λ is a diagonal matrix whose i-th diagonal entry is si/(s2
i +

β ), where si is the i-th singular value of J contained in Σ+. Note
that both U and Σ+ are already computed when ObservedFisher
is used for computing necessary statistics in Section 4.3. Thus,
computing L only involves a simple matrix multiplication.
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Dataset No. of Examples (N ) Dimension (d ) Size on Disk

HIGGS 77,000,000 28 30 GB
Yelp 10,000,000 1,000 3.1 GB
MNIST 4,500,000 784 6.9 GB

Table 2: Key statistics of the datasets used in our experiments.

6 Experiments

In addition to our theoretical guarantees in Sections 4 and 5, we
also evaluate BlinkML empirically to answer several questions:
1. How faster is approximate training in practice?
2. Does BlinkML meet the user-requested accuracies?
3. Is BlinkML’s estimated minimum sample size optimal?
4. How large is the runtime overhead of BlinkML?
Overall, our experimental results show the following:
1. BlinkML reduced training time by 35.03%–99.69% (i.e., 1.54×–

322× faster) when training 99% accurate models. (Section 6.2)
2. The actual accuracy of BlinkML’s approximate models was in

most cases even higher than the requested accuracy. (Section 6.3)
3. BlinkML’s estimated minimum sample sizes were close to opti-

mal. In fact, BlinkML’s training time was only slightly higher
than an oracle that had the perfect knowledge of the optimal
sample size a priori. (Section 6.4)

4. The runtime overheads of BlinkML was only 0.39%–0.44% for
AccContract and 0.03%–0.12% for ScaleContract compared
to the time needed for training a full model. (Section 6.5)

5. We also studied the pros and cons of the two statistics com-
putation methods: InverseGradients and ObservedFisher. (Sec-
tion 6.6)

6.1 Experiment Setup

Here, we present our computational environment as well as the
di�erent models and datasets used in our experiments.
Models We used three di�erent ML models in our evaluations:
1. LogisticRegression (LR). LR is a binary classi�er. LR is trained

by �nding parameter values of a sigmoid prediction function
such that the misclassi�cation rate is minimized on the train-
ing set. To avoid over�tting, LR is often trained with regular-
ization. We used L2-regularized LR with coe�cient β = 0.001.
Given that LR has no closed-form solution, it is typically trained
using an iterative optimization method (e.g., the optimization
libraries in scipy.optimize).

2. Max Entropy Classi�er (ME). ME is a multi-class classi�er.
ME is trained by �nding parameter values of a softmax predic-
tion function such that the misclassi�cation rate is minimized
on the training set. Similar to LR, we used a L2-regularized ME
with regularization coe�cient β = 0.001, and since there is no
closed-form solution for ME, we used the optimization libraries
in scipy.optimize.

3. Probabilistic PrincipalComponentAnalysis (PPCA). PPCA
is a factor-analysis method. PPCA is trained by �nding a small
number (q) of vectors that can most accurately reconstruct the
training set using linear transformations [62]. The optimal pa-
rameters (i.e., factors) can be found by performing eigendecom-
position of a sample covariance matrix constructed from the
training set. For PPCA, we disabled the use of Apache Spark
since computing the covariance locally was signi�cantly faster.

As mentioned earlier, an optimization method must be chosen for
LR and ME. Based on our empirical studies, BlinkML uses the
BFGS optimization when the dataset is low-dimensional (d < 100).

For high-dimensional datasets (d ≥ 100), BlinkMLuses a memory-
e�cient alternative called L-BFGS.
Datasets We have used three real-world datasets.
1. HIGGS. This is a 7× scaled version of a Higgs bosons simulation

dataset [15]. Each training example is a pair of physical proper-
ties of an environment and a binary indicator of Higgs bosons
production.

2. Yelp. This is a 10% subset of the publicly available Yelp re-
views [10]. Each training example is a pair of an English review
and a rating (between 0 and 5). The original dataset contains
737,530 distinct words; we performed feature selection and used
the 1,000 most frequently used words. When applying LR to
Yelp, we formulated a binary classi�cation task by converting
ratings of 0–2 to 0 (negative) and ratings of 3–5 to 1 (positive).

3. MNIST.This is an image dataset (a.k.a. in�nite MNIST [5]), which
contains the bitmap images of hand-written digits. Each train-
ing example is a pair of a bitmap image and the actual digit in
the image. When applying PPCA on MNIST, we used q=10.

Several key statistics of these datasets are summarized in Table 2.
Environment All our experiments were conducted on an EC2
cluster with one m5.4xlarge node as a master and �ve m5.2xlarge
nodes as workers.6 We used Python 3.6 shipped with Conda [2]
and Apache Spark 2.2 shipped with Cloudera Manager 5.11.

6.2 Training Time Savings

This section measures the time savings when one uses BlinkML’s
approximate model training (AccContract), compared to train-
ing the full model . We used eight model and dataset combinations:
(LR, HIGGS), (LR, Yelp), (ME, HIGGS), (ME, Yelp), (ME, MNIST),
(PPCA, HIGGS), (PPCA, Yelp), and (PPCA, MNIST). For LR and ME,
we varied the requested accuracy (1−ε )×100% from 85% to 99.5%.
For PPCA, we varied the requested accuracy ((1− ε ) × 100%) from
95% to 99.99%. We �xed δ at 0.05. For each case, we repeated
BlinkML’s training 20 times.

Due to space constraints, Figure 6 shows the average training
time of those 20 runs only for three combination, i.e., (LR, HIGGS),
(ME, Yelp), and (PPCA, MNIST). The results for other combinations
are reported in Appendix C. The �gure reports BlinkML’s both
speedups and training time savings compared to training the full
model. The full model training times were 1,040 seconds for (LR,
HIGGS), 1,176 seconds for (ME, Yelp), and 61 seconds for (PPCA,
MNIST). Full models were all trained using Spark (except for PPCA,
as explained in Section 6.1). The use of Apache Spark made the
training of the full model 1.5×–6.5× faster.

Three patterns were observed. First, as expected, BlinkML took
relatively longer for training a more accurate approximate model.
This is because BlinkML’s Sample Size Estimator correctly esti-
mated that a larger sample was needed to satisfy the requested
accuracy. Second, the relative training times were longer for com-
plex models (ME took longer than LR). This is because multi-class
classi�cation (by ME) involved more possible class labels; thus,
even a small error in parameter values could lead to misclassi�-
cation. Thus, a larger sample was needed to su�ciently upper
bound the chances of a misclassi�cation. Nevertheless, training
95% accurate ME models on Yelp still took only 8.25% of the time
needed for training a full model. In other words, even in this case,
we observed a 12.12× speedup, or equivalently, 91.75% savings in
training time. Third, the speedups for training PPCA models were
signi�cantly larger than those for LR and ME. This was because of
the fact that, unlike LR and ME, PPCA does not involve any hard
6m5.4xlarge instances had 16 CPU cores and 64 GB memory. m5.2xlarge instances
had 8 CPU cores and 32 GB memory.
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(a) Logistic Regression (LR), HIGGS
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(c) Probabilistic PCA (PPCA), MNIST

Figure 6: BlinkML’s speedups in comparison to full model training (the actual accuracies of the trained models are studied in Figure 7).

85% 90% 95% 99%
99.5%

85%

90%

95%

100%

Requested Accuracy ((1 − ε ) × 100%)

A
ct

ua
lA

cc
ur

ac
y

Actual Accuracy Mean Actual Accuracy 5th Percentile Requested Accuracy

(a) LR, HIGGS

85% 90% 95% 99%
99.5%

85%

90%

95%

100%

Requested Accuracy ((1 − ε ) × 100%)

A
ct

ua
lA

cc
ur

ac
y

(b) ME, Yelp

95% 99%
99.5%

99.9%
99.95%

99.99%
95%
96%
97%
98%
99%

100%

Requested Accuracy ((1 − ε ) × 100%)

A
ct

ua
lA

cc
ur

ac
y

(c) PPCA, HIGGS

Figure 7: The correctness of BlinkML’s AccContract operations. The requested model accuracies were compared to the actual model
accuracies. In most cases, 95% of the actual model accuracies were (or equivalently, the 5th percentile of the actual accuracies was) higher
than the requested accuracies. The raw data of this �gures are in Table 5.

decision boundaries; thus, the minimum sample sizes estimated
by BlinkML’s Sample Size Estimator were much smaller (see Sec-
tion 6.4 for details). As a result, the relative training times were
lower than LR and ME. In all cases, BlinkML’s ability to automat-
ically infer appropriate sample sizes and train approximate mod-
els on those samples led to signi�cant training time savings. In
the subsequent section, we analyze the actual accuracies of those
approximate models.

6.3 Accuracy Guarantees

As stated in Equation (8) in Section 5, the actual accuracy of BlinkML’s
approximate model is guaranteed to never be less than the re-
quested accuracy, with probability at least 1−δ . In this section, we
also empirically validate BlinkML’s accuracy guarantees. Specif-
ically, we ran an experiment to compare the requested accuracies
and the actual accuracies of the approximate models returned by
BlinkML.

We varied the requested accuracy from 85% to 99.5% and re-
quested a con�dence level of 95%, i.e., δ = 0.05. The results are
shown in Figure 7 for the same combinations of models and datasets
used in the previous section. (The raw numbers can be found in
Table 5.)

In each case, 5th percentile of the actual accuracies was higher
than the requested accuracy. In other words, in 95% of the cases,
the delivered accuracy was higher than the requested one, con-
�rming that BlinkML’s probabilistic accuracy guarantees were
satis�ed.

Notice that, in the case of (LR, HIGGS), the actual accuracies re-
mained identical even though the requested accuracies were dif-
ferent. This was due to BlinkML’s design. Recall that BlinkML
�rst trains an initial modelm0 and then trains a subsequent model
only when the estimated model di�erence ε0 of m0 is higher than

the requested error ε . In the aforementioned cases, the initial mod-
els were already accurate enough; therefore, no additional models
needed to be trained. Consequently, the actual accuracies did not
vary in those cases. In other words, the actual accuracies of those
initial models were higher than the requested accuracies.

6.4 Sample Size Estimation

Sample Size Estimator (SSE) is responsible for estimating the min-
imum sample size, which is a crucial operation in BlinkML. Too
large a sample eliminates the training time savings; likewise, too
small a sample can violate the accuracy guarantees. In this sec-
tion, we examine SSE’s operations in BlinkML. Our examination
consists of two parts. First, we analyze the optimality of the esti-
mated minimum sample sizes. Then, we study the implication of
the estimated sample sizes, namely the optimality of BlinkML’s
training time.
Sample Size Optimality To analyze the optimality of the sam-
ple sizes, we additionally implemented IncEstimator, another algo-
rithm that estimates the minimum sample size, but much more ac-
curately. Speci�cally, to calculate the minimum sample size, IncEs-
timator gradually increases the sample size until the approximate
model trained on that sample satis�es the requested accuracy. The
sample size is set to k2×1, 000, where k is the iteration count start-
ing from 1. Since IncEstimator repeatedly trains and measures the
accuracy of multiple approximate models, its estimated minimum
sample size is much more accurate than SSE; however, its runtime
is also signi�cantly slower.

Figure 8 compares the minimum sample sizes estimated by SSE
(BlinkML’s technique) and IncEstimator for three di�erent model
and dataset combinations, i.e., (LR, HIGGS), (ME, Yelp), and (PPCA,
MNIST). Needless to mention, IncEstimator was too slow. In one
case (ME, 99.5% accuracy), it did not �nish within 24 hours, and
we had to terminate it. For PPCA, IncEstimator and SSE found
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Figure 8: Goodness of BlinkML’s estimated minimum sample sizes. BlinkML’s estimated minimum sample sizes were compared to the
minimum sample sizes determined by IncEstimator. The minimum sample sizes estimated by BlinkML were close to the ones determined
by IncEstimator, a slow incremental searching technique.
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Figure 9: Optimality of BlinkML’s end-to-end performance. BlinkML’s training time was compared to OracleML. OracleML is assumed
to be able to predict the minimum sample size without any runtime overhead.

nearly identical sample sizes. For LR and ME, however, IncEstima-
tor found a sample that was 2.3×–2.7× smaller than that of SSE.
We show shortly that these relatively small di�erences in the es-
timated minimum sample sizes lead to only marginal di�erences
in terms of the end-to-end training time. Overall, this experiment
con�rmed that the minimum sample sizes returned by SSE were
quite close to optimal.
Training Time Optimality To study the impact of the di�er-
ent sample sizes, we also measured the training times. Given a
requested accuracy, we compared the training time on BlinkML’s
estimated minimum sample size to the training time on the opti-
mal sample size (as found by IncEstimator). We refer to the latter
as OracleML, since it cannot be used in practice. This is because
computing the exact sample size using IncEstimator is too costly,
due to its iterative process. Nonetheless, comparing BlinkML’s
training time to that of OracleML helps in understanding how far
BlinkML’s performance is from optimal.

Figure 9 shows the results. Here, for BlinkML, we included its
overhead of estimating the minimum sample size, whereas we ex-
cluded IncEstimator’s overhead from OracleML’s runtime. In most
cases, the overall training time of BlinkML was quite close to that
of OracleML, showing that BlinkML’s SSE is both e�cient and ac-
curate. (We separately analyze SSE’s overhead in Section 6.5).

6.5 Overhead Analysis

This section analyzes BlinkML’s runtime overhead, i.e., the time
spent on its internal operations other than model training. Specif-
ically, for AccContract, we measured the time taken by com-
puting statistics (Section 4.3) and searching the sample size (Sec-
tion 5.2). For ScaleContract, we measured the time taken by
computing statistics (Section 4.3) and estimating accuracy (Sec-
tion 4.2). Recall that AccContract always involves the accuracy

estimation of the initial model; in our measurements, we included
this latency as part of the search for determining the sample size.

For AccContract, we requested 95% accurate models for dif-
ferent combinations of models and datasets. The results are re-
ported in Figure 10a, where we only show (LR, Yelp) and (ME,
MNIST) due to the lack of space. Here, the gray and black bars are
the times spent for model training, while the red and green bars
are BlinkML’s overhead. The majority of BlinkML’s overhead
was for sample size searching. However, the overall overhead was
still a small proportion of the entire training. For LR and ME, for
instance, BlinkML’s overhead was only 5.2% and 4.0% of the over-
all training, respectively.

To analyze the overhead of ScaleContract, we requested ap-
proximate models using samples of size 10,000. As shown in Fig-
ure 10b, when the entire training time was short (i.e., 2.25 secs for
LR, Yelp), BlinkML’s overhead was a more considerable portion
(i.e., 22.4%); however, its absolute time was still very short (0.50
secs). When the entire training time was longer (i.e., 54.6 secs
for ME, MNIST), BlinkML’s overhead was only 3.0% of the entire
training time (i.e., 1.64 secs).

6.6 Statistics Computation

In Section 4.3, we presented two general methods—InverseGradients
and ObservedFisher—for computing important statistics, i.e., H
and J . In this section, we compare them in terms of both e�ciency
and accuracy. This analysis serves as an empirical justi�cation of
why ObservedFisher is BlinkML’s default choice.

In this experiment, we used two combinations (LR, HIGGS) and
(ME, MNIST). Recall from Table 2 that HIGGS is a low-dimensional
dataset (d = 28) while MNIST is high-dimensional (d = 784). This
di�erence in number of dimensions reveals interesting properties
regarding InverseGradients versus ObservedFisher. We used each
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Figure 10: BlinkML’s training time decomposition for both AccContract and ScaleContract. BlinkML’s runtime overhead for com-
puting necessary statistics, searching minimum sample sizes, and estimating con�dence were small compared to the overall training time.

Model, Metric
Method

Dataset InverseGradients ObservedFisher

LR, HIGGS Runtime (sec) 1.88 1.18
Accuracy (‖ · ‖F ) 0.00332 0.0039

ME, MNIST Runtime (sec) 357.0 3.23
Accuracy (‖ · ‖F ) 0.01298 0.00847

Table 3: Comparison of statistics computation techniques: In-
verseGradients and ObservedFisher. The accuracies of computed
statistics were measured using the mean Frobenius norm of the
di�erence between the true statistics and the estimated statistics.
ObservedFisher was faster for MNIST, a high-dimensional dataset,
while maintaining comparable accuracy to InverseGradients.

method to compute the covariance matrix H−1 JH−1 (which deter-
mines the parameter distribution in Theorem 1, Section 4). We
measured the runtime of each method and calculated the accu-
racy of its estimated covariance matrix. To measure the accuracy,
we calculated the average Frobenius norm, i.e., (1/d2) ‖Ct −Ce ‖F ,
whereCt was the true covariance matrix andCe was the estimated
covariance matrix.

Table 2 summarizes the results of this experiment. For the low-
dimensional data (HIGGS), the runtimes and the accuracies of the
two methods were comparable. However, their performance dif-
fered much for the high-dimensional data (MNIST). Since InverseG-
radients had to invoke the grads function repeatedly (i.e.,d times),
its runtime increased signi�cantly. In contrast, ObservedFisher
had to call the grads function only once. However, their accu-
racies remained comparable even for the high-dimensional data.

7 Related Work

In this section, we discuss the related work under three categories:
ML systems inspired by familiar database techniques (DBMS-Inspired
Optimization), ML systems employing di�erent forms of approxi-
mation (Approximate ML Systems), and the recent advances in sta-
tistical optimization methods (Faster Optimization Algorithms).
The developments in the last category are mostly orthogonal to
BlinkML (or ML systems in general). However, ML systems can
still bene�t from employing these developments.
DBMS-Inspired Optimization A salient feature of database
systems is their declarative interface (SQL) and the resulting opti-
mization opportunities. These ideas have been applied to speed up
ML workloads. SystemML [17,30] optimizes linear algebra expres-
sions by converting them into alternative expressions that enable
a more e�cient evaluation. They also propose new compression
algorithms for array data [27]. ScalOps [63], Pig latin [49], and
KeystoneML [59] propose high-level ML languages for automatic

parallelization and materialization, as well as easier programming.
MADLib [20, 35] proposes a declarative language for ML and ex-
ploits existing database engines, hence moves the computation
closer to the data than external ML libraries. Similarly, RIOT [70]
is an R interface that exploits in-database computing.

The database community has also developed array-based database
systems, which can train a model even when the data does not �t
in memory [37, 60]. Database researchers have also shown that
certain ML models can be trained directly on the normalized data
without the need for a join [41, 56].

Another line of work automatically chooses an optimal plan for
a given ML workload, e.g., Hemingway [51], MLBase [39], and
TuPAQ [58]. Likewise, Kumar et al. [40] use a model selection
management system to unify feature engineering [13], algorithm
selection, and parameter tuning.

ApproximateMLSystems BlinkML is the �rst sampling-based
ML system, applicable to any MLE-based (maximum likelihood es-
timation) algorithm. However, other forms of approximation have
been previously explored in the database community for speeding
up ML workloads. Hamlet [42] avoids expensive denormalizations
if the quality gain of performing a join is estimated to be low. Per-
haps the most related to BlinkML is Columbus [67], which trains
approximate models on a coreset, a representative subset of the
training data. Although Columbus also uses a sample of the data
to speed up training, they can only provide an accuracy guarantee
for ordinary least squares methods. In contrast, BlinkML supports
a much wider class of problems; in fact, the classi�cation methods
and the factor analysis technique used in our experiments include
any non-linear objective functions, none of which can be approx-
imated with guarantees by Columbus. Likewise, Zombie [14] em-
ploys a clustering-based active learning technique for training ap-
proximate models, but does not o�er any quality guarantees.

There are other methods that speed up the prediction time at
the cost of increased preprocessing. NoScope [36] �rst trains mul-
tiple deep neural networks and then composes a di�erent cascade
depending on the target accuracy. tKDC [29] �rst builds a k-d
tree and then conducts early pruning at the prediction stage of
a kernel-density classi�er. BlinkML di�ers from these methods
by focusing on speeding up the training phase, which is a crucial
bottleneck in early stages of model tuning.

Faster Optimization Algorithms Advances in optimization
algorithms are largely orthogonal to ML systems; however, un-
derstanding their bene�ts is necessary for developing faster ML
systems. Recent advances can be categorized into software- and
hardware-based approaches.

Software-based methods are mostly focused on improving gra-
dient descent variants (e.g., SGD), where a key question is how
to adjust the step size in order to accelerate the convergence rate
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towards the optimal solution. Recent advances include adaptive
rules for accelerating this rate, e.g., Adagrad [25], Adadelta [66],
RMSprop [61], and Adam [38]. Hogwild! [55] and related tech-
niques [31,32,69] disable locks to speed up SGD via asynchronous
updates. There is also recent work on rediscovering the bene�ts of
quasi-Newton optimization methods, e.g., showing that minibatch
variants of quasi-Newton methods (such as L-BFGS or CG) can be
superior to SGD due to their higher parallelism [43].

Hardware-based techniques speed up training by relaxing strict
precision requirements, e.g., DimmWitted [68] and BuckWild! [23].

8 Conclusion

In this work, we have developed BlinkML, a novel approximate
machine learning system with probabilistic guarantees. BlinkML
uses sampling to quickly trains an approximate ML model in ac-
cordance to user’s error tolerance, to dramatically reduce time
and computational costs during the early stages of model tuning.
BlinkML’s techniques are applicable to a wide class of ML models,
i.e., any algorithm that relies on maximum likelihood estimation
for their training. This includes Generalized Linear Models (e.g.,
linear regression, logistic regression (LR), max entropy classi�er
(ME), Poisson regression, etc.) and Probabilistic Principal Compo-
nent Analysis (PPCA). Through an extensive set of experiments on
several large-scale, real-world datasets, we showed that BlinkML
produced 99% accurate models of LR, ME, and PPCA while using
only 0.31%–64.97% of the time needed for training the full model.
Our future plan is to extend BlinkML’s capabilities beyond max-
imum likelihood estimation models, such as decision trees, Gaus-
sian Process regression, and Naïve Bayes classi�ers. We also plan
to open-source BlinkML, with wrappers for various popular ML
libraries, including scikit-learn (Python), glm (R), and MLlib.
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APPENDIX

A Model Abstraction Examples

This section shows that BlinkML-supported ML models can be
cast into the abstract form in Section 3.2, Section 3. For illustration,
we use logistic regression and PPCA.
Logistic Regression The objective function of logistic regres-
sion captures the di�erence between true class labels and the pred-
icative class labels. An optional regularization term may be placed
to prevent a model to be over�tted to a training set. For instance,
the objective function of L2-regularized logistic regression is ex-
pressed as follows:

fn (θ ) = −


1
n

n∑
i=1

ti logσ (θ>xi ) + (1 − ti ) logσ (1 − θ>xi )

+
β

2
‖θ ‖2

where σ (y) = 1/(1 + exp(y)) is a sigmoid function, and β is the
coe�cient that controls the strength of the regularization penalty.
The observed class labels, i.e., ti for i = 1, . . . ,n, are either 0 or 1.
The above expression is minimized when θ is set to the value at
which the gradient ∇fn (θ ) of fn (θ ) becomes a zero vector; that is,

∇fn (θ ) =


1
n

n∑
i=1

(σ (θ>xi ) − ti ) xi


+ β θ = 0

It is straightforward to cast the above expression into Equation (3).
That is, q(θ ;xi , ti ) = (σ (θ>xi ) − ti ) xi and r (θ ) = β θ .
PPCA The objective function of PPCA captures the di�erence
between the covariance matrix S of the training set and the covari-
ance matrix C = ΘΘ> + σ 2I reconstructed from the q number of
extracted factors Θ, as follows:

fn (Θ) =
1
2

(
d log 2π + log |C | + tr(C−1S )

)
where d is the dimension of feature vectors. Θ is d-by-q matrix
in which each column represents a factor, and σ is a real-valued
scalar that represents the noise in data not explained by those fac-
tors. The optimal value for σ can be obtained once the values for
Θ are determined. The value of q, or the number of the factors to
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extract, is a user parameter. The above expression fn (Θ) is mini-
mized when its gradient ∇Θ fn (Θ) becomes a zero vector; that is,

∇Θ f (Θ) = C
−1 (Θ − S C−1Θ) = 0

The above expression can be cast into the form in Equation (3)
by observing S = (1/n)

∑n
i=1 xix

>
i .7 That is, q(Θ;xi ) = C−1Θ −

C−1xix>i C
−1Θ and r (Θ) = 0. ti is omitted on purpose since PPCA

does not need observations (e.g., class labels). Although we used
a matrix form Θ in the above expression for simplicity, BlinkML
internally uses a vector θ when passing parameters among com-
ponents. The vector is simply �attened and un�attened as needed.

B Deferred Proofs

B.1 Model Parameter Distribution

Proof of Theorem 1. We �rst derive the distribution of θ̂n − θ∞,
which will then be used to derive the distribution of θ̂n − θ̂N . Our
derivation is the generalization of the result in [48]. The general-
ization is required since the original result does not include r (θ ).

Let θ∞ be the parameter values at which д∞ (θ ) becomes zero.
Since the size of the training set is only N , θ∞ exists only con-
ceptually. Since θn is the optimal parameter values, it satis�es
дn (θn ) = 0. According to the mean-value theorem, there exists
θ̄ between θn and θ∞ that satis�es:

H (θ̄ ) (θn − θ∞) = дn (θn ) − дn (θ∞) = −дn (θ∞)

where H (θ̄ ) is the Jacobian of дn (θ ) evaluated at θ̄ . Note that
дn (θn ) is zero since θn is obtained by �nding the parameter at
which дn (θ ) becomes zero.

Applying the multidimensional central limit theorem to the above
equation produces the following:
√
n

(
θ̂n − θ∞

)
= −H (θ̄ )−1 √n дn (θ∞)

= −H (θ̄ )−1 1
√
n

n∑
i=1

(q(θ∞;xi ,yi ) + r (θ∞)) (9)

n→∞
−−−−−→ N (0, H−1 JH−1) (10)

where H is a shorthand notation of H (θ̄ ). To make a transition
from Equation (9) to Equation (10), an important relationship called
the information matrix equality is used. According to the informa-
tion matrix equality, the covariance of q(θ ;xi ,yi ) is equal to the
Hessian of the negative log-likelihood expression, which is equal
to J .

Now, we derive the distribution of θ̂n − θ̂N . We use the fact
that θ̂N is the optimal parameter for DN which is a union of Dn
and DN −Dn , where θ̂n is the optimal parameter for Dn . To sepa-
rately capture the randomness stemming from Dn and DN − Dn ,
we introduce two random variablesX1,X2 that independently fol-
low N (0, H−1 JH−1). From Equation (10), θ̂n − θ∞ = (1/

√
n)X1.

Also, let qi = q(θ∞;xi ,yi ) for simplicity; then,

√
N

(
θ̂N − θ∞

)
= −H−1 1

√
N
(
n∑
i=1

qi +
N−n∑
i=1

qi )

= −H−1


√
n
√
N

1
√
n

n∑
i=1

qi +

√
N − n
√
N

1
√
N − n

N−n∑
i=1

qi


n→∞
−−−−−→

√
n
√
N
X1 +

√
N − n
√
N

X2

7This sample covariance expression assumes that the training set is zero-centered.

Since θ̂n − θ̂N = (θ̂n − θ∞) − (θ̂N − θ∞),

θ̂n − θ̂N =
1
√
n
X1 −

√
n

N
X1 −

√
N − n

N
X2

=

(
1
√
n
−

√
n

N

)
X1 −

√
N − n

N
X2

Note that θ̂n − θ̂N follows a normal distribution since it is a linear
combination of two random variables that independently follow
normal distributions. Thus,

θ̂n − θ̂N
n→∞
−−−−−→

N
*.
,
0,

(
1
√
n
−

√
n

N

)2
H−1 JH−1 + *

,

√
N − n

N
+
-

2

H−1 JH−1+/
-

= N

(
0,

( 1
n
−

1
N

)
H−1 JH−1

)
Proof of Corollary 1. Observe that θ̂n − θ̂N and θ̂N − θ∞ are in-
dependent because they are jointly normally distributed and the
covariance between them is zero as shown below:

Cov(θ̂n − θ̂N , θ̂N − θ∞)

=
1
2

(
Var(θ̂n − θ̂N + θ̂N − θ∞) − Var(θ̂n − θ̂N ) − Var(θ̂N − θ∞)

)
=

1
2

( 1
n
−

( 1
n
−

1
N

)
−

1
N

)
H−1 JH−1 = 0

Thus, Var(θ̂n − θN ) = Var(θ̂n − θ̂N | θN ) = α H−1 JH−1, which
implies

θ̂n ∼
(
θN , α H

−1 JH−1) (11)
Using Bayes’ theorem,

Pr(θN | θn ) = (1/Z ) Pr(θn | θN ) Pr(θN )

for some normalization constant Z . Since there is no preference
on Pr(θN ), we set a constant to Pr(θN ). Then, from Equation (11),
θ̂N | θn ∼ N (θn ,α H

−1 JH−1).

B.2 Sample Size Estimation

Proof of Theorem 2. Without loss of generality, we prove Theo-
rem 2 for the case where the dimension of training examples, d , is
2. It is straightforward to generalize our proof for the case with an
arbitrary d . Also, without loss of generality, we assume B is the
box area bounded by (−1,−1) and (1, 1). Then, pv (γ ) is expressed
as ∫ (1,1)

(−1,−1)

1√
(2π )2 |γC |

exp
(
−θ> (γC )−1θ

)
dθ

To prove the theorem, it su�ces to show thatγ1 < γ2 ⇒ pv (γ1) >
pv (γ2) for arbitrary γ1 and γ2. By de�nition,

pv (γ1) =

∫ (1,1)

−(1,1)

1√
(2π )2 |γ1C |

exp
(
−θ> (γ1C )

−1 θ
)
dθ

By substituting
√
γ1/γ2 θ for θ ,

pv (γ1) =

∫ √γ2/γ1 (1,1)

−
√
γ2/γ1 (1,1)

1√
(2π )2 |γ2C |

exp
(
−θ> (γ2C )

−1 θ
)
dθ

>

∫ (1,1)

−(1,1)

1√
(2π )2 |γ2C |

exp
(
−θ> (γ2C )

−1 θ
)
dθ = pv (γ2)
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because the integration range for pv (γ1) is larger.

C Raw Experiment Data

Fine the tables in the following pages.
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LR, HIGGS LR, Yelp
Requested Accuracy Training Time Ratio Requested Accuracy Training Time Ratio

80.0% 0.30 secs 0.01% 80.0% 1.1 secs 0.27%
85.0% 0.30 secs 0.01% 85.0% 1.08 secs 0.27%
90.0% 0.30 secs 0.01% 90.0% 13.41 secs 3.32%
95.0% 2.44 secs 0.05% 95.0% 30.25 secs 7.49%
99.0% 122.00 secs 2.43% 99.0% 138.00 secs 34.16%
99.5% 403.00 secs 8.02% 99.5% 269.00 secs 66.58%

ME, MNIST ME, Yelp
Requested Accuracy Training Time Ratio Requested Accuracy Training Time Ratio

80.0% 54.38 secs 1.26% 80.0% 7.01 secs 0.60%
85.0% 54.71 secs 1.27% 85.0% 45.72 secs 3.89%
90.0% 53.17 secs 1.24% 90.0% 104.5 secs 8.89%
95.0% 480.2 secs 11.16% 95.0% 97.00 secs 8.25%
99.0% 2,578 secs 59.90% 99.0% 764 secs 64.97%
99.5% 3,457 secs 80.32% 99.5% 1,045 secs 88.86%

PPCA, HIGGS PPCA, MNIST
Requested Accuracy Training Time Ratio Requested Accuracy Training Time Ratio

0.9 0.189 secs 0.35% 0.9 2.764 4.53%
0.95 0.165 secs 0.31% 0.95 2.457 4.03%
0.99 0.168 secs 0.31% 0.99 2.266 3.72%

0.995 0.172 secs 0.32% 0.995 2.419 3.97%
0.999 0.208 secs 0.38% 0.999 3.540 5.80%

0.9995 0.309 secs 0.57% 0.9995 4.894 8.02%
0.9999 0.632 secs 1.17% 0.9999 18.087 29.65%

Table 4: Training time savings. This is the raw data for Figure 6.

LR, HIGGS LR, Yelp

Requested
Actual Accuracy

Requested
Actual Accuracy

Accuracy Mean 5th Percentile 95th Percentile Accuracy Mean 5th Percentile 95th Percentile

80.0% 94.09% 93.35% 95.13% 80.0% 94.23% 93.73% 94.68%
85.0% 94.09% 93.35% 95.13% 85.0% 94.23% 93.73% 94.68%
90.0% 94.09% 93.35% 95.13% 90.0% 96.03% 94.09% 97.39%
95.0% 96.11% 95.45% 96.72% 95.0% 98.06% 96.97% 98.65%
99.0% 99.37% 98.80% 99.63% 99.0% 99.67% 99.61% 99.78%
99.5% 99.70% 99.61% 99.82% 99.5% 99.82% 99.79% 99.87%

ME, MNIST ME, Yelp

Requested
Actual Accuracy

Requested
Actual Accuracy

Accuracy Mean 5th Percentile 95th Percentile Accuracy Mean 5th Percentile 95th Percentile

80.0% 95.94% 95.73% 96.18% 80.0% 78.56% 76.96% 83.01%
85.0% 95.94% 95.73% 96.18% 85.0% 89.60% 89.00% 90.17%
90.0% 95.94% 95.73% 96.18% 90.0% 93.10% 92.53% 93.41%
95.0% 98.62% 98.49% 98.76% 95.0% 96.61% 96.27% 96.90%
99.0% 99.76% 99.70% 99.81% 99.0% 99.32% 99.22% 99.41%
99.5% 99.90% 99.87% 99.93% 99.5% 99.69% 99.65% 99.75%

PPCA, HIGGS PPCA, MNIST

Requested
Actual Accuracy

Requested
Actual Accuracy

Accuracy Mean 5th Percentile 95th Percentile Accuracy Mean 5th Percentile 95th Percentile

0.9 0.98146 0.96499 0.99312 0.9 0.94874 0.91582 0.97298
0.95 0.98887 0.97428 0.99630 0.95 0.97668 0.96314 0.98660
0.99 0.99799 0.99569 0.99943 0.99 0.99556 0.99243 0.99729

0.995 0.99904 0.99758 0.99969 0.995 0.99756 0.99635 0.99866
0.999 0.99982 0.99967 0.99994 0.999 0.99958 0.99935 0.99979

0.9995 0.99991 0.99982 0.99996 0.9995 0.99977 0.99970 0.99985
0.9999 0.99998 0.99996 0.99999 0.9999 0.99995 0.99992 0.99998

Table 5: The comparison of requested model accuracies (in AccContract) to the the actual model accuracies. This is the raw data for
Figure 7.

17



LR, HIGGS ME, Yelp PPCA, MNIST
Requested QudraticSearch SSE Requested QudraticSearch SSE Requested QudraticSearch SSE

Accuracy Size Size Accuracy Size Size Accuracy Size Size

80.0% 1,000 10,000 80.0% 9,000 23,453 0.9 4,000 2,785
85.0% 4,000 10,000 85.0% 16,000 62,591 0.95 9,000 5,531
90.0% 4,000 10,000 90.0% 49,000 150,622 0.99 49,000 27,224
95.0% 16,000 33,529 95.0% 225,000 563,784 0.995 121,000 54,134
99.0% 324,000 1,073,803 99.0% 6,400,000 6,060,729 0.999 441,000 256,239
99.5% 1,296,000 4,515,812 99.5% 7,500,000 8,615,240 0.9995 676,000 484,703

0.9999 2,209,000 1,663,136

Table 6: The comparison of the sample sizes estimated by IncEstimator and BlinkML’s Sample Size Estimator (SSE). This is the raw data
for Figure 8.

LR, HIGGS ME, Yelp
Requested QudraticSearch SSE OracleML Requested QudraticSearch SSE OracleML

Accuracy Time Time Time Accuracy Time Time Time

80.0% 0.112 sec 0.06 sec 0.27 sec 80.0% 6.87 sec 7.01 sec 4.11 sec
85.0% 0.287 sec 0.98 sec 0.33 sec 85.0% 14.1 sec 45.7 sec 7.33 sec
90.0% 0.285 sec 1.05 sec 0.33 sec 90.0% 67.2 sec 104 sec 25.1 sec
95.0% 0.837 sec 1.72 sec 0.60 sec 95.0% 775.0 sec 137 sec 97.0 sec
99.0% 72.2 sec 56.9 sec 10.1 sec 99.0% 125,509 sec 804 sec 764 sec
99.5% 636 sec 173 sec 51.2 sec 99.5% N/A (timeout) 1,085 sec 1,045 sec

PPCA, MNIST
Requested QudraticSearch SSE OracleML

Accuracy Time Time Time

0.9 0.85 sec 2.76 sec 0.22 sec
0.95 1.00 sec 2.46 sec 0.31 sec
0.99 2.51 sec 2.27 sec 0.42 sec
0.995 5.28 sec 2.42 sec 0.79 sec
0.999 21.4 sec 3.54 sec 2.32 sec
0.9995 37.0 sec 4.89 sec 3.62 sec
0.9999 212 sec 18.09 sec 13.21 sec

Table 7: The comparison of the training time by QuadraticSearch, BlinkML, and OracleML. This is the raw data for Figure 9.

LR, Yelp ME, MNIST
Operation Runtime Operation Runtime

Initial Model Training 1.74 sec Initial Model Training 53.0 sec
Statistics Computation 0.22 sec Statistics Computation 1.09 sec
Sample Size Searching 1.35 sec Sample Size Searching 17.9 sec

Final Model Training 26.93 sec Final Model Training 408.2 sec

Total 30.25 sec Total 480.2 sec

(a) AccContract.

LR, Yelp ME, MNIST
Operation Runtime Operation Runtime

Initial Model Training 1.74 sec Initial Model Training 53.0 sec
Statistics Computation 0.22 sec Statistics Computation 1.09 sec

Accuracy Estimation 0.28 sec Sample Size Searching 0.55 sec

Total 2.25 sec Total 54.6 sec

(b) ScaleContract.

Table 8: Runtime analysis. This is the raw data for Figure 10.
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