

Approximate Query Engines

Commercial Challenges and Research Opportunities

Barzan MozafariUniversity of Michigan, Ann ArborSnappyData Inc.

© SIGMOD 2017

100011100 010110111 111000010

1/0

Computation

Exact Result

100011100 010110 11⁻⁻

Less 1/0

Less Computation

Approximate Result

Why Approximation?

Numerous studies : A latency >2 seconds is no longer interactive and negatively affects creativity!

2. Money (Time + Resources)

Human time : Money

Machine time : No one loves their EC2 bill!

Massive Market for Interactive-speed Analytics!

Q : What about in-memory & columnar DBs?

A : Try running a few OLAP queries concurrently on 100GB of data partitioned across a few nodes!

Data	Software	Hardware	Shared
Explosion	Inefficiencies	Limitations	Infrastructures
faster than Moore's law	excessive copying/ serialization in modern apps	memory wall	higher concurrency

Approximation seems to be a viable path to interactivity

Commercial Challenges

AQP: Where Are We Now?

OLAP Workloads	ТРС-Н	TPC-DS	Facebook	Conviva Inc.	Customer
System	ABM [1]	QuickR [2]	BlinkDB [3]	[1] + [3]	Verdict [5]
Unsupported Queries	See paper	Full outer joins	Joins of multiple fact tables	Joins of multiple fact tables	Multiple fact joins, nested, textual filters
Percentage of Supported Queries	68%	> 90%	> 96 %	91%	74%
Speedup	10x	2x	?	10-200x	2-20x

AQP: Academia vs. Industry

25 Years of Successful Research Zero Market Share*

* few exceptions : SnappyData, InfoBright

- **X** Deployment Challenges
- X Interface Challenges
- **X** Planning Challenges

1. AQP solutions typically require modifications of DBMS internals

- Error estimation : BlinkDB, G-OLA, ...
- Query evaluation : Online aggregation, synopses, ...
- Overriding relational operators : **ABS**, ...

2. Major vendors are slow in adopting ANYTHING, especially AQP

• Users won't abandon their existing DBMS just to use AQP

Possible Solution: Middleware-based AQP engines

Middleware-based AQP: Challenges & Opportunities

Verdict Architecture (http://verdictdb.org)

Advantage: Ultimate generality

- · Drop-in solution: No changes to underlying DBMS
- · Works with all DBMSs: Vertica, Impala, SparkSQL, Hive, ...

Challenge: Ensuring efficiency

· Bootstrap, online aggregation, co-partitioning, ...

Deployment Challenge 2: Incompatibility with BI Tools

select geo, avg(bid)
from adImpressions
group by geo having
avg(bid)>10

geo	avg(bid)
MI	21.5
WI	42.3
NY	65.6

select geo, avg(bid) from adImpressions group by geo having avg(bid)>10 with error 0.05 at confidence 95

geo	avg(bid)	error	prob_existence
MI	21.5	± 0.4	0.99
CA	18.3	± 5.1	0.80
MA	15.6	± 2.4	0.81

Predicting error is hard; Predicting latency is even harder!

Which sample type/size to choose?

- · Error Target: return a 99% accurate answer
 - **Bootstrap:** impossible to predict *a priori*
 - Analytical: limited (and expensive with joins)
 - Analytical bootstrap: requires changes to DBMS
- · Latency Target: return an answer within 2 secs
 - Performance prediction of DBMS still an open problem

We must invest in analytical approaches & perf. prediction

Planning Challenge 2: Offline Provisioning

typical

A nice database story: once upon a time there was a workload...

- The columnar DB speeds up queries by 100x!
 - · If you build the right projections
- DBMS-X speeds up queries by 100x!
 - · If you build the right indexes and materialized views
- BlinkDB speeds up queries by 100x!
 - · If you build the right stratified samples

Challenge: Exploratory workloads constantly change

Major Customers of a major OLAP DB	What percentage of previous	s column-sets change?
	After 1 week	After 1 month
Customer 1	71%	86%
Customer 2	90%	98%
Customer 3	80%	100%
Customer 4	85%	99%
Customer 5	69%	59%
Customer 6	75%	90%

What's optimal now becomes useless next week

ŀ

One Possible Direction: Robust Optimzation (RO) Theory

- Nominal Optimization
 - · Performance falls off of a cliff when target workload changes
- Robust Optimization
 - · Performance degrades more gracefully
 - · Robust against workload changes
- CliffGuard (http://cliffguard.org)
 - Open-source framework for finding robust physical designs for DBs [SIGMOD'15]

Other Planning Challenges

- Approximation quality (e.g., error) adds a new dimension to our search space
- Need for:
 - · Approximation-aware query scheduling
 - · Approximation-aware query optimization
 - · Approximation-aware dynamic code generation

Interface Challenges

select geo, avg(bid)
from adImpressions
group by geo
having avg(bid)>10

× v

Specifying and interpreting complex error statistics can overwhelm an average DB user

Possible Workaround I: High-level Accuracy Contracts (HAC)

- User picks a single number p, where $0 \le p \le 1$ (default p=0.95)
- Engine guarantees that user only sees rows & values that:
 - 1. are at least p% accurate with p% probability; and
 - 2. exist with p% probability
- Can be set at the JDBC/ODBC connection level
- Bl Compatability!

No extra columns are returned

geo	avg(bid)	error	existence_prob
MI	9.5	± 0.4	0.99
WI	40.8	± 5.1	1.00
NY	70.5	± 2.4	1.00
IL	10.2	± 1.1	0.90

geo	avg(bid)
MI	NULL
WI	40.8
NY	70.5

Possible Workaround II: Visualization

• A tuple is important ONLY insofar as it affects a visible pixel! [Viz-Aware Sampling '16]

Time required to execute query : 27120 millis.

Time required to execute query : 230 millis.

Explicit error no longer needed if two plots are reasonably similar

Possible Workaround III: Early Result

- Show approx results instantly while full query is running
- Allows user to terminate full query
- Tremendous savings!

Try the full demo online: http://snappydata.io/isight

Research Opportunity 1: Database Learning

Main limitation of traditional DBs:

 They cannot reuse work: I/O and computation done for a query is wasted afterwards

Users Query Database Answer

Observation in an AQP setting:

• Every query reveals a bit of information about the unknown underlying distribution

Research Opportunity 1: Database Learning

A DB that becomes smarter and faster every time it is queried...

* See Yongjoo's talk (Wed 11am)

Active Learning: The model actively decides which items should be labeled & added to its training data

Active Database Learning: Why wait for queries?

Flexible Criteria: Uncertainty, Informativeness, ...
 Overcomes limitations of Materialized Views

Traditional databases

- Limit themselves to only correct and equivalent plans
- Choose a single plan ("the best plan")

New opportunity in an AQP setting

- Plans do not have to be equivalent (better if they're not!)
- Deliberately pursue multiple plans in parallel to obtain multiple estimates
 - Various sample types, synopses, histograms, correlations, regression models,...
- Caliberate and combine into a single, more accurate approximation

Conclusion

Conclusion

- Traditional optimization: Access all relevant tuples efficiently while skipping irrelevant tuples
 - · better parallelism, indexing, materialization, compression, columnar formats, in-memory and in-situ processing.
- AQP: Access only a tiny fraction of relevant tuples
 - orthogonal and complementary to traditional opt.
 can solve some of traditional limitations of DBs..

 - · more viable in the long term
- Lots of real-world challenges; lots of rich research problems
- Commercialization opportunities are improving
 - · Need for educational efforts focused on end-user experience

References

[1] Kai Zeng, Shi Gao, Barzan Mozafari and Carlo Zaniolo. The Analytical Bootstrap: a New Method for Fast Error Estimation in Approximate Query, SIGMOD 2014

[2] Srikanth Kandula, Anil Shanbhag, Aleksandar Vitorovic, Matthaios Olma, Robert Grandl, Surajit Chaudhuri, Bolin Ding. Quickr: Lazily Approximating Complex Ad-Hoc Queries in Big Data Clusters, SIGMOD 2016

[3] Sameer Agarwal, Henry Milner, Ariel Kleiner, Ameet Talwalkar, Michael Jordan, Samuel Madden, Barzan Mozafari and Ion Stoica, Knowing When You're Wrong: Building Fast and Reliable Approximate Query Processing Systems, SIGMOD 2014

[4] Barzan Mozafari, Jags Ramnarayan, Sudhir Menon, Yogesh Mahajan, Soubhik Chakraborty, Hemant Bhanawat, Kishor Bachhav. SnappyData: A Unified Cluster for Streaming, Transactions and Interactice Analytics, CIDR 2017

[5] Yongjoo Park, Ahmad Shahab Tajik, Michael Cafarella, Barzan Mozafari. Database Learning: Toward a Database that Becomes Smarter Every Time, SIGMOD 2017