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Performance Predictability in Today’s DBMS

By focusing too much on raw performance
we have neglected predictability



Why Does Predictability Matter?
•  Latency-sensitive applications

•  Provisioning 

•  SLA guarantees

•  Tuning

•  Interactive applications

•  User-experience
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What is Performance Predictability?
•  Performance Variance:

1.  Inherent (External): varying amounts of work, 
network problems, …

2.  Avoidable (Internal): due to internal artifacts of 
the DBMS (algorithms, data structures, …)



Two Approaches to Achieve Predictability
•  Bottom-up: build a new DBMS from scratch

•  Once an academic prototype, always an academic prototype

•  Sacrifice performance for predictability

•  Top-down: identify root causes of unpredictability and mitigate 
them 

•  Goal: do not compromise performance

•  Benefit: adoption is “no-brainer”

•  Challenge: today’s DBMSs are extremely complex



Key Questions
1.  How to identify sources of variance?

2.  What makes today’s DBMSs 
unpredictable?

3.  How to achieve perf. predictability?

4.  How effective are our techniques?
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Identifying Root Causes of Performance Variance

•  Profiling tools: critical for diagnosing perf. problems in 
modern software

•  Existing profilers focus on average performance 

•  DTrace, gprof, perf, etc.

•  Breakdown of avg.  performance of DBs done before
•  “OLTP through the looking glass, and what we found there” [SIGMOD’08]

•  Need a new profiler capable of breaking down perf. 
variance → TProfiler



TProfiler
•  Goal: Pinpoint root causes of performance variance in large 

and complex codebases of today’s DBMS

770K lines of code

1.5M lines of code

1.9M lines of code

Q: How to find the 
root causes of

performance variance 
efficiently and accurately?



Our Solution: Variance Trees

process_query

execute_queryparse_query send_result

Call Graph

T(process_query)

T(execute_query)T(parse_query) T(send_result)

≡ Overall Latency

T(f): Execution time of function f

Latency Break Down

+ +



Our Solution: Variance Trees
•  If                  , then:



Our Solution: Variance Trees

T(process_query)

T(execute_query)T(parse_query) T(send_result)

Var(process_query)

Var(execute_query)Var(parse_query) Var(send_result)

Cov(parse_query,
execute_query)

Cov(parse_query,
send_result)

Cov(execute_query,
send_result)

Latency Break Down

Variance Break Down

Variance Tree

≡ Overall Latency Variance



Efficiency
•  Observation: most nodes are actually insignificant

•  Do not build a complete variance tree!

•  Build variance tree iteratively and selectively

1.  Tree expansion: break down variance of selected functions 
(process_query at the beginning)

2.  Node selection: select significant* nodes from the tree

3.  User inspection: users inspect selected functions, and 
decide whether to further investigate

* See paper for details
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Case Studies
•  Used TProfiler to analyze 3 popular (both 

traditional and modern) DBMSs



Setup
•  Application: MySQL 5.6.23 

•  Hardware: Intel Xeon E5 2.1GHz

•  Workload: TPC-C

•  128 Warehouses, 30GB Buffer Pool



Root Causes of Performance 
Unpredictability in MySQL

•  With 37 iterations, 6 mins manual inspection time each, 
out of 30K functions

Function Name Contribution to 
Overall Latency 

Variance

os_event_wait[A] 37.5%

os_event_wait[B] 21.7%

buf_pool_mutex_enter 32.92%

Transactions waiting for locks on 
data objects
Same function, different call sites

    Waiting for lock on the
→ buffer pool before updating 
    the list of buffer pages
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Mitigating Performance Variance
1.  Changing the implementation

•  Parallel Logging

2.  Changing the algorithm
•  VATS, LLU

3.  Changing the tuning parameters
•  Buffer pool size, redo log flush policy, etc.
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Latency Variance Caused by Queuing

Min Queueing Time
Max Queueing Time

Average Queueing Time

L T1 T2 T3 T4 T5



Our Insight: Look at the Big Picture

L1 T1 T2

L2

T1T2L3

T1T2T4

T4



VATS: Variance Aware Transaction 
Scheduling Algorithm

L1 T1 T2

L2

T1T2L3

T1T2T4

T4

VATS grants locks according to transactions’ arrival time in 
the system, not in the queue (earliest first)



LRU Ordering of Buffer Pages

P1 P2 P3 P4 P5

List of buffer pages



LRU Ordering of Buffer Pages

P1 P2 P3 P4 P5

P4 is accessed



LRU Ordering of Buffer Pages

P1 P2 P3 P4 P5

The whole list is locked

Place where variance occurs



LRU Ordering of Buffer Pages

P4 P1 P2 P3 P5

P4 is moved to the head



LRU Ordering of Buffer Pages

P4 P1 P2 P3 P5

Solution: Use a lazy page update algorithm (LLU)

Lock is released



Variance-aware Tuning
•  buf_pool_mutex_enter – buffer pool size

•  33%

•  66%

•  100%
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VATS Improvement
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LLU Improvement

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Variance Mean Latency

Im
pr

ov
em

en
t (

x)

•  46 lines of code changed in MySQL



Buffer Pool Size Tuning

0
1
2
3
4
5
6
7
8
9

10

Variance Mean Latency

Im
pr

ov
em

en
t (

33
%

 /
Bu

ffe
r P

oo
l S

ize
)

66% 100%



Real-world Adoption
•  TProfiler open-sourced

•  VATS has been merged into MySQL distributions 
(default in MariaDB and staged in Oracle MySQL)

•  2M+ installations in the world

•  Our buffer pool problem independently 
discovered and fixed in MySQL 5.8.0



Conclusion
•  Predictability is an increasingly critical dimension of modern 

software overlooked in today’s DBMSs

•  TProfiler identifies root causes of perf. variance in a principled 
fashion

•  Enable local and surgical changes to complex DBMS codebases 

•  Lock waiting is major source of perf. variance in today’s DBMSs

•  Variance-aware scheduling, lazy optimizations, and tuning 
strategies dramatically improve predictability w/o sacrificing raw 
performance



Backup Slides



Definition of Predictability
•  Many ways to capture perf. predictability

•  Minimize latency variance or tail latencies

•  Bound latency variance or tail latencies

•  Minimize the (stdev / mean) ratio

•  Our focus: identifying source of latency variance

•  Reducing variance without sacrificing mean latency



Node Selection Example

Var(write_logs)

Var(write_to_buffer)

80%· Var(Latency)

10%· Var(Latency)

Larger 
contribution

Var(lock_buffer) Var(unlock_buffer)

2%· Var(Latency)60%· Var(Latency)



Node Selection Example

Var(write_logs)

Var(write_to_buffer)

80%· Var(Latency)

10%· Var(Latency)

The lower in the variance tree, the more specific

Var(lock_buffer) Var(unlock_buffer)

2%· Var(Latency)60%· Var(Latency)
↑

More specific



Manual Efforts

Application Semantic
Interval

Annotation

# of
TProfiler 

Runs

Avg. Manual
Inspection Time 

per Run

Modified 
Lines

of Code

MySQL 9 lines of code 37 6 minutes 235
Postgres 7 lines of code 16 10 minutes 355
Httpd 4 lines of code 17 12 minutes 45



Related Work: DARC
•  Uses multiple runs to produce latency histograms

•  Can find man contributors of latency in each execution 
time range

≠ Main contributors of latency variance in a semantic interval

write_logs

write unlocklock

write_logs

write unlocklock

write_logs

write unlocklock

write_logs

write unlocklock

write_logs

write unlocklock

write_logs

write unlocklock

write_logs

write unlocklock

write_logs

write unlocklock

write_logs

write unlocklock

write_logs

write unlocklock

write_logs

write unlocklock

write_logs

write unlocklock

0-1sec 1-10sec 10-20sec



1. Tree Expansion
Var(process_query)

Set the root to the variance of the top
level function for query processing

Root Creation



Var(process_query)

Var(execute_query)Var(parse_query) Cov(parse_query,
execute_query)

…

Break down the root and expand the variance tree

1. Tree Expansion



Var(process_query)

Var(execute_query)Var(parse_query) Cov(parse_query,
execute_query)

…

Select the most “informative” nodes from the tree

informative = large-enough value + deep-enough in the tree

2. Node Selection

Variance
Contribution

Specificity



Var(process_query)

Var(execute_query)Var(parse_query) Cov(parse_query,
execute_query)

…

User Inspection

3. User Inspection

•  Ask for user inspection when:

1.  Cov terms are large

•  Study how to de-correlate the two functions

2.  Var terms are both large and deep

•  If cause is still unclear, repeat the expand-select-inspect process


