
K*SQL: A Unifying Engine for Sequence Patterns and XML

Barzan Mozafari Kai Zeng Carlo Zaniolo
Computer Science Department

UCLA
California, USA

{barzan, kzeng, zaniolo}@cs.ucla.edu

ABSTRACT
A strong interest is emerging in SQL extensions for sequence pat-
terns using Kleene-closure expressions. This burst of interest from
both the research community and the commercial world is due to
the many database and data stream applications made possible by
these extensions, including financial services, RFID-based inven-
tory management, and electronic health systems. In this demo, we
will present the K*SQL system that represents a major step forward
in this area. K*SQL supports a more expressive language that al-
lows for generalized Kleene-closure queries and also achieves the
expressive power of the nested word model, which greatly expands
the application domain to include XML queries, software trace
analysis, and genomics. In this demo, we first introduce the core
features of our language in expressing complex pattern queries over
both relational and XML data. We overview the architecture of our
unifying engine and its user-friendly interfaces. We also present
several K*SQL queries from stock market, XML, software trace
analysis and genomic applications.

Categories and Subject Descriptors
H.2.4 [DATABASE MANAGEMENT]: Systems—query process-
ing, relational databases

General Terms
Languages, Performance, Standardization

Keywords
XPath, SQL, Sequence Queries, Kleene-closure, Pattern Matching

1. INTRODUCTION
There has been much research interest in developing new tools

and languages for querying massive collections of data, in order
to discover useful patterns in online-user behavior, RFID data pro-
cessing, asset tracking, weather forecast, fraud detection, and fi-
nancial data analysis. Several CEP (Complex Event Processing)
systems and patterns languages have been proposed [6, 2, 3, 4].
Most pattern languages provide some constructs at least for certain

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

subsets of regular expressions. Several attempts have been made
towards supporting pattern expressions in SQL, due to (i) standard-
ization and integration, (ii) appealing characteristics of SQL, e.g.
the inherent benefits that come with a relational framework, includ-
ing its efficiency and amenability to optimization. In this direction,
the first proposal, SQL-TS [8], has recently led to the SQL:2003
extension proposal put forth by DBMS vendors and DSMS venture
companies, called SQL-MR (SQL Match-Recognize[11]) or Pat-
tern SQL. While this recent SQL change proposal will enable many
advanced applications, including temporal queries [10], we argue
that by a few minor modifications of the Kstar constructs for SQL,
the language will become far more expressive and effective. In fact,
we have shown [7] that by simple extensions to SQL, our K*SQL
language is at least as expressive as visibly pushdown languages
(VPL) and nested words [1]. Nested words and VPLs are recently
proposed generalizations of words and tree. These models general-
ize regular expressions while retaining many of their desirable deci-
sion complexity and closure properties [1]. Moreover, the K*SQL
language remains highly amenable to efficient implementation for
which we have developed special optimization techniques. Nested
words have been shown effective also in supporting the search for
and the management of data with dual linear-hierarchical structure,
such as software programs, genomics, and XML. In particular, we
have designed an algorithm to automatically translate all XPath ex-
pressions into equivalent K*SQL queries in time linear to the query
definition length.

Next, after a brief overview of the K*SQL language, we present
an outline of the architecture of K*SQL engine. In Section 4, we
provide several examples of advanced application domains of in-
terest that will be used in our demonstration. Finally, we conclude
by mentioning the goals and the possible difficulties.

2. A POWERFUL LANGUAGE
Our pattern extensions are meant to be effective on both DB ta-

bles and data streams. So, as our first example, let us consider an
input stream of RFID readings for parts at certain locations, which
can be defined as follows, where along with the ID of the sensor,
we store its current temperature, and the type of location the sensor
is monitoring, along with the timestamp of the reading.

EXAMPLE 1. RFID-based monitoring of parts on conveyor belts

CREATE STREAM conbelt (ItemNo Integer, SensorID Integer,
Temp Integer, LocType char(20), atTime Timestamp)

ORDER BY atTime, SOURCE ‘port4446‘;

In this example SOURCE ‘port4446‘ declares the port at
which the input data is arriving; ORDER BY atTime declares
that tuples in our stream are ordered according to their timestamp
atTime. Thus, the following K*SQL query

EXAMPLE 2. Identifying Cycles

SELECT A.ItemNo, A.SensorID,
last(B.atTime) - A.atTime, count(B.*)

FROM conbelt
PARTITION BY ItemNo
ORDER BY atTime
AS PATTERN (A B+ C)
WHERE B.SensorID <> A.SensorID AND maximal(B)

detects items that go around in cycles several times, and reports the
location and the length of such cycles.

The semantics are based on ‘immediately follows’ relationship
between ordered tuples. Thus, the syntax is very similar to SQL,
except that we have sequential semantics:

• The PARTITION BY clause splits the tuples according to
their ItemNo value, as if they were separate streams.

• The ORDER BY clause defines how the tuples in each par-
tition should be ordered, e.g., in the example above we or-
der the tuples by their chronological order. Similar to SQL,
the DESC keyword can be added for descending order. This
clause is required for stored tables, while for continuous queries
over data streams the ORDER BY clause will be omitted in
where the order follows from the very declaration of the stream,
such as that in Example 1.

• The AS PATTERN clause defines the sequential pattern that
we are searching for. In Example 2, A, B and C refer to
consecutive tuples. Variable B is said to be a group variable,
i.e., it can match with more than one tuple, while A, C are
called singleton. These variable names can be used in the
WHERE predicates to express the relationships between the
matched tuples.

Here, maximal(B) denotes that we will remain in the B+ state until
this fails–i.e., until the input satisfies the condition that its SensorID
is the same as the SensorID of A. C.SensorID = A.SensorID. In the
absence of the maximal predicate, the default behavior is to return
all the matches, namely any number of occurrence for any of the
stars in the pattern as long as all the given predicates are satisfied.

Running Aggregates. In addition to the actual columns in the
tuples, K*SQL provides virtual columns containing the value of
continuous (cumulative) aggregates for group variables. Thus, in
Example 1, B.avg(Temp), and B.max(Temp) would denote the cur-
rent running average value and max value of Temp for the B+ tu-
ples, up and including the current one. Moreover, B.count() is the
running count of the tuples in B+; so, if the current tuple is the jth

tuple, then B.count() = j.
Final/Blocking Aggregates. In addition to continuous running

aggregates, the more traditional blocking aggregates of SQL are
available on group variables. Thus, avg(B.Temp) and max(B.Temp)
denote the average and max computed on all the tuples in B+, while
count(B.∗) denote total count of these tuples. It is important to ob-
serve that a function such as avg(B.Temp) is blocking, with respect
to the input sequence, while B.avg(Temp) is nonblocking. More-
over, in this second function, B is a free variable (as per λ Calcu-
lus), while there is no free variable in count(B.∗). The differences
between these two kinds of aggregates are clear from a syntactic
viewpoint, and significant in terms of semantics, implementation
and optimization of our patterns.

The WHERE Clause. The WHERE clause contains simple pred-
icates, possibly combined by logical connectives . While singleton
variables can be used freely, simple predicates can at most con-
tain one free group variable (multiple occurrences of the same free
group variable are fine). The reason for this restriction becomes
obvious once we search for a pattern such as . . . A+ . . . B∗ . . . in a

<familyroot id="31602">
<son name="John">

<son name="Bob">
<son name="Paul"> </son>

</son>
<daughter name="Alice"> </daughter>
<son name="Brian"> </son>

</son>
</familyroot>

Figure 1: Sample XML document for ancestry information.

sequence of tuples containing the numeric attribute myatt. Then,
the simple predicate A.myatt < B.myatt is ambiguous since it is
not clear whether this inequality is to be satisfied for all pairs of
tuples in A and B, or for some pairs of tuples in A and B, or for some
tuple in A and all tuples in B, or vice-versa. To avoid these problems
at most one free group variable is allowed in any simple predicate,
and this limitation extends to the continuous virtual aggregates as-
sociated with the group variables. Thus, A.count() < B.count(),
A.avg(myatt) < B.sum(myatt) or A.sum(myatt) < B.myatt are
all disallowed. On the other hand, A.avg(myatt) < B.myatt or
B.first(myatt) <= A.myatt each contains only one free group
variable and are therefore fine.

Traditional blocking aggregates produce no free variables, and
therefore predicates such as sum(A.myatt) < sum(B.myatt),
count(A.∗) < count(B.∗), sum(A.myatt) < B.sum(myatt), and
last(A.myatt) < B.myatt) are all allowed (the first two have no
free group variables, while the third and the fourth have one each).

The formal syntax and semantics of K*SQL can be found in [7].

2.1 Querying XML in K*SQL
Consider the tiny ancestry XML in Figure 1, in which, for exam-

ple, sons can contain other sons to an arbitrary depth. In K*SQL
system, we use any relational pre-order traversal of the XML tree,
such as the SAX-3 [5] representation which is a slightly modified
version of the famous SAX API: every XML is processed as a
stream of SAX events represented by triplets (type, token, value).
The order in which these triplets appear in the sequence reflects
their pre-order traversal position in the document. The following is
a portion of an XML document, within a stream that consists of the
XML documents for several ancestries:

...
106: (’open’, ’son’, -),
107: (’attribute’, ’name’, ’Bob’),
108: (’open’, ’son’, -),
109: (’attribute’, ’name’, ’Paul’),
110: (’close’, ’son’, -),

...

Here, the numbers represent the relative position of each tag
within the stream of XML tags. Now given and ancestry in XML
format, we have the following XPath query:

EXAMPLE 3. Return the names of all the sons of ‘John’

//son[name = "John"]/son/@name

While these queries are easily expressed in XPath, current se-
quence languages, such as SQL-TS or SQL-MR, cannot express (i)
how many intermediate sons should skipped before reaching the
son or its parent, and (ii) match a closing tag with its correspond-
ing open one. To overcome these limitations for recursive struc-
tures, K*SQL supports a simple but powerful new constructs called
isElement, whereby the previous query can now be expressed as
follows:

Figure 2: Architecture Overview.

SELECT Y.value as sonNames
FROM AncestryRelation
AS PATTERN (A X N* B Y N* C N* D)
WHERE

A = open(’son’)
AND X.type = ’attribute’ AND X.token = ’name’
AND X.value = ’John’ AND isElement(N)
AND B = open(’son’)
AND Y.type = ’attribute’ AND Y.token = ’name’
AND C = close(’son’)
AND D = close(’son’)

In K*SQL, isElement() is a built-in function that is internally
implemented using a stack which evaluates to true on every tuple,
until a violation of well-nestedness occurs, at which point, it evalu-
ates to false. We will shortly explain how in K*SQL isElement()
is implemented in a generic form, and is not limited to XML or its
specific SAX representation.

Query explanation. Here, each time a 〈son〉 tag is found (A),
the X element checks its name attribute, the N∗ elements skip the
well-nested elements to ignore the intermediate children of the cur-
rent node. Since the default setting is non-deterministic, at some
point, the automaton will follow the C element instead of N , and if
it is another 〈son〉 tag, the automaton will proceed with the rest of
the pattern. Once all possible traces of this automaton are explored
(either success or failure), the first element (i.e., A) will be moved
forward until the next 〈son〉 is found, and so on.

3. ARCHITECTURE OVERVIEW
The high-level architecture of K*SQL system is depicted in Fig-

ure 2. The K*SQL users can submit their queries via three differ-
ent interfaces: (i) a web-based client that automatically translates
XPath queries into equivalent K*SQL ones, and submits the trans-
lated queries to the server, shown in Figure 3. (ii) K*SQL queries
can also come in through our client shell, or (iii) through the SMM
interface that allows users to write high-level workflows using a
library of stored procedures, as shown in Figure 5.

Our K*SQL server has three major modules that have integrated
into an extensible DSMS, called Stream Mill Miner (SMM [9]).
K*SQL queries once parsed, are turned into raw query plans which
are further optimized using our K*SQL query optimizer (we have
generalized search optimization techniques such as KMP and OPS
to cope with nested-hierarchical data model). The final query plan
is an automaton which is executed by the K*SQL automaton man-
ager. K*SQL relies on SMM (which in turn uses Berkely DB)
which provides I/O methods for both stored and streaming data.

Figure 3: Web-based client for translation of XPath queries
into K*SQL.

Stream Mill can handle several data streams at a time, including
XML stream. Both stored and streaming XML documents are rep-
resented in SAX3 format, both for efficiency and simplicity.

4. DEMONSTRATION DETAILS

4.1 Advanced Applications

Stored Financial Data Analysis.
We will use stored NASDAQ data to allow our demonstration

audience to issue their queries to find patterns of their interest. For
instance, the following query can detect the so-called ‘downward
wedge pattern’1, which is a well-known trend in finance and is often
interpreted as a bullish implication for future.

EXAMPLE 4. Downward Wedge Pattern

SELECT first(first(X).A).price AS startPrice,
last(last(X).B).price AS endPrice

FROM NasDaqLogs
PARTITION BY ticker
ORDER BY date
AS PATTERN ((X: A B+)+)

WHERE
A.price <= B.price AND maximal(A) AND
X.first(A.price) > prev(X).first(A.price) AND
B.price >= B.price AND
X.first(B.price) > prev(X).first(B.price) AND
X.max(A maximal(X) AND
X.first(A.price) - X.first(B.price) >
prev(X).first(B.price) - prev(X).first(A.price)

XML Queries.
All XPath queries can be translated into equivalent K*SQL queries

and benefit from our efficient sequence query optimization, as briefly
explained in Section 2. K*SQL can also express complex sequence
queries over XML. In this demonstration, users will experience
simplicity and power of K*SQL via the first-hand experience of
writing both set and sequence queries over XML data.

Genomic Data.
Another appealing area for nested words is genomics. For in-

stance, RNA sequences are not simply long strands of nucleotides.
Rather, intra-strand base pairing leads to structures such as the one
depicted in Figure 4. The covalent chemical bonds between subse-
quent nucleotides in each strand can be seen as the primary struc-
ture, while the hydrogen bonds between the bases form a secondary
structure. Since these bonds do not cross, each RNA sequence can

1http://www.chartpatterns.com/

Figure 4: Tiny examples of nested words in different domains:
XML, genomics and software analysis.

be modelled as a nested word, e.g. n2 in the tiny example of Fig-
ure 4. In our demonstration we will provide both human and bacte-
rial RNA sequences (from the famous Noncoding RNA database)
to allow our audience to interact with K*SQL and visualize the re-
sult of their RNA queries to further appreciate the importance of
K*SQL for yet another application domain.

Software Analysis.
The initial motivation for nested words has come from the soft-

ware verification literature [1]. A procedural program consists of
several nested function calls and returns, while other instructions
(internal positions) form the sequential execution. For instance,
given a large corpus of C++ code, with function calls and return
positions (or read and write instructions), the programmer can ver-
ify several pre and post conditions on function parameters upon
calling a function or on their return, and ensure many invariants,
such as maximum stack depth at any time, code reachability, and
many others,

4.2 Ease-of-Use and Performance
We will allow our audience to write their own sequence and

XML queries, using our several user-friendly interfaces that pro-
vide code assistance. First, for users who are more familiar with
XPath than with a sequence query language, we will allow them
to use our web-based client (see Fig. 3) that translates arbitrary
XPath queries into equivalent K*SQL that can be efficiently ex-
ecuted on our server. Second, our more experienced audience can
use the K*SQL client shell to directly write K*SQL queries and see
the visualization of the query output. Finally, our third interface is
the SMM [9] GUI that allows users to write high level work-flows,
which will use our built-in library of stored procedures, as shown in
Fig. 5. Moreover, we will have other native XPath engines so that
our visitors can compare the performance of K*SQL on their trans-
lated queries with those run on ad-hoc XML databases. Thus, they
can experience first-hand that using K*SQL, as a unifying engine
with more powerful queries does not come at the price of efficiency.

5. CONCLUSION
The K*SQL system presented here supports a powerful and uni-

fying new language for expressing complex sequence patterns over
both relational and XML; K*SQL is effective on both stored and

Figure 5: Defining SMM work-flows with K*SQL queries.

streaming data. Since it is highly amenable to optimization, K*SQL
not only serves as a unifying framework for all these combina-
tions, but can be also used as an efficient query execution backend,
whereby XPath queries can be translated and run in K*SQL. We
have devised several user-friendly interfaces including a tool for
automatic translation of XPath queries into our K*SQL language,
so that the users can gain first-hand experience at writing queries in
K*SQL. We will present several real-world examples drawn from
different applications, such as genomics, XML, stocks, and soft-
ware analysis.

Acknowledgements: We would like to thank Yijian Bai and
Hetal Thakkar for the Stream Mill system, Vincenzo Russo for the
GUI, Nikolay Laptev and Hamid Mousavi for their invaluable help
in extending Stream Mill for K*SQL. This work was supported by
NSF-IIS award 0742267.

6. REFERENCES
[1] R. Alur and P. Madhusudan. Adding nesting structure to

words. In Developments in Language Theory, 2006.
[2] A. J. Demers, J. Gehrke, B. Panda, M. Riedewald,

V. Sharma, and W. M. White. Cayuga: A general purpose
event monitoring system. In CIDR, 2007.

[3] M. H. A. et. al. Microsoft cep server and online behavioral
targeting. PVLDB, 2009.

[4] N. D. et. al. Dejavu: declarative pattern matching over live
and archived streams of events. In SIGMOD, 2009.

[5] X. Z. et. al. Unifying the processing of xml streams and
relational data streams. In ICDE, 2006.

[6] D. Gyllstrom, J. Agrawal, Y. Diao, and N. Immerman. On
supporting kleene closure over event streams. In ICDE, 2008.

[7] B. Mozafari and C. Zaniolo. K*sql reference: Syntax,
semantics and optimizations (ucla technical report), 2009.

[8] R. Sadri, C. Zaniolo, A. M. Zarkesh, and J. Adibi.
Optimization of sequence queries in database systems. In
PODS, 2001.

[9] H. Thakkar, B. Mozafari, and C. Zaniolo. A data stream
mining system. In ICDM, 2008.

[10] C. Zaniolo. Event-oriented data models and query languages
in transaction-time databases. In TIME, 2009.

[11] F. Zemke, A. Witkowski, M. Cherniak, and L. Colby. Pattern
matching in sequences of rows. In [sql change proposal,
march 2007], http://asktom.oracle.com/tkyte/row-
patternrecogniton-11-public.pdf
http://www.sqlsnippets.com/en/topic-12162.html, 2007.

