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ABSTRACT
A fundamental problem in database systems is choosing the best
physical design, i.e., a small set of auxiliary structures that en-
able the fastest execution of future queries. Almost all commer-
cial databases come with designer tools that create a number of
indices or materialized views (together comprising the physical de-
sign) that they exploit during query processing. Existing designers
are what we call nominal; that is, they assume that their input pa-
rameters are precisely known and equal to some nominal values.
For instance, since future workload is often not known a priori, it
is common for these tools to optimize for past workloads in hopes
that future queries and data will be similar. In practice, however,
these parameters are often noisy or missing. Since nominal design-
ers do not take the influence of such uncertainties into account, they
find designs that are sub-optimal and remarkably brittle. Often, as
soon as the future workload deviates from the past, their overall per-
formance falls off a cliff. Thus, we propose a new type of database
designer that is robust against parameter uncertainties, so that over-
all performance degrades more gracefully when future workloads
deviate from the past. Users express their risk tolerance by decid-
ing on how much nominal optimality they are willing to trade for
attaining their desired level of robustness against uncertain situa-
tions. To the best of our knowledge, this paper is the first to adopt
the recent breakthroughs in robust optimization theory to build a
practical framework for solving one of the most fundamental prob-
lems in databases, replacing today’s brittle designs with robust de-
signs that guarantee a predictable and consistent performance.

1. INTRODUCTION
Database management systems are among the most critical soft-

ware components in our world today. Many important applications
across enterprise, science, and government depend on database tech-
nology to derive insight from their data and make timely decisions.
To fulfill this crucial role, a database (or its administrator) must
make many important decisions on how to provision and tune the
system in order to deliver the best performance possible, such as
which materialized views, indices, or samples to build. While
these auxiliary structures can significantly improve performance,
they also incur storage and maintenance overheads. In fact, most
practical budgets only allow for building a handful of indices and a
dozen materialized views out of an exponential number of possible
structures. For instance, for a data-warehouse with 100 columns,
there are at least Ω(3100) sorted projections to choose from (each
column can be either absent, or in ascending/ descending order).
Thus, a fundamental database problem is finding the best physical
design; that is, finding a set of indices and/or materialized views
that optimizes the performance of future queries.

Modern databases come with designer tools (a.k.a. auto-tuning
tools) that take certain parameters of a target workload (e.g., queries,
∗A 16-page version of this manuscript has appeared in proceedings
of ACM SIGMOD, 2015 [70]

data distribution, and various cost estimates) as input, and then use
different heuristics to search the design space and find an optimal
design (e.g., a set of indices or materialized views) within their
time and storage budgets. However, these designs are only optimal
for the input parameters provided to the designer. Unfortunately,
in practice, these parameters are subject to many sources of uncer-
tainty, such as noisy environments, approximation errors (e.g., in
the query optimizer’s cost or cardinality estimates [16]), and miss-
ing or time-varying parameters. Most notably, since future queries
are unknown, these tools usually optimize for past queries in hopes
that future ones will be similar.

Existing designer tools (e.g., Index Tuning Wizard [10] and Tun-
ing Advisor in Microsoft SQL Server [8, 32], Teradata’s Index Wiz-
ard [26], IBM DB2’s Design Advisor [89], Oracle’s SQL Tuning
Adviser [38], Vertica’s DBD [57, 75, 83], and Parinda for Postgres
[64]) do not take into account the influence of such uncertainties
on the optimality of their design, and therefore, produce designs
that are sub-optimal and remarkably brittle. We call all these ex-
isting designers nominal. That is, all these tools assume that their
input parameters are precisely known and equal to some nominal
values. As a result, overall performance often plummets as soon
as future workload deviates from the past (say, due to the arrival of
new data or a shift in day-to-day queries). These dramatic perfor-
mance decays are severely disruptive for time-critical applications.
They also waste critical human and computational resources, as
dissatisfied customers request vendor inspections, often resulting
in re-tuning/re-designing the database to restore the required level
of performance.

Our Goal — To overcome the shortcomings of nominal designers,
we propose a new type of designers that are immune to parame-
ter uncertainties as much as desired; that is, they are robust. Our
robust designer gives database administrators a knob to decide ex-
actly how much nominal optimality to trade for a desired level of
robustness. For instance, users may demand a set of optimal materi-
alized views with an assurance that they must remain robust against
change in their workload of up to 30%. A more conservative user
may demand a higher degree of robustness, say 60%, at the expense
of less nominal optimality. Robust designs are highly superior to
nominal ones, as:

(a) Nominal designs are inherently brittle and subject to perfor-
mance cliffs, while the performance of a robust design will de-
grade more gracefully.

(b) By taking uncertainties into account, robust designs can guard
against worst-case scenarios, delivering a more consistent and
predictable performance to time-sensitive applications.

(c) Given the highly non-linear and complex (and possibly non-
convex) nature of database systems, a workload may have more
than one optimal design. Thus, it is completely conceivable
that a robust design may be nominally optimal as well (see [21,
22] for such examples in other domains).
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(d) A robust design can significantly reduce operational costs by
requiring less frequent database re-designs.

Previous Approaches — There has been some pioneering work on
incorporating parameter uncertainties in databases [16, 31, 37, 42,
66, 74]. These techniques are specific to run-time query optimiza-
tion and do not easily extend to physical designs. Other heuristics
have been proposed for improving physical designs through work-
load compression (i.e., omitting workload details) [30, 55] or mod-
ifying the query optimizer to return richer statistics [44]. Unfortu-
nately, these approaches are not principled and thus do not neces-
sarily guarantee robustness. (In Section 6.4, we compare against
commercial databases that use such heuristics.)

To avoid these limitations, adaptive indexing schemes such as
Database Cracking [48, 52] take the other extreme by completely
ignoring the past workload in deciding which indices to build; in-
stead of an offline design, they incrementally create and refine in-
dices as queries arrive, on demand. However, even these techniques
need to decide which subsets of columns to build an incremental in-
dex on.1 Instead of completely relying on past workloads or aban-
doning the offline physical design, in this paper we present a princi-
pled framework for directly maximizing robustness, which enables
users to decide on the extent to which they want to rely on past
information, and the extent of uncertainty they want to be robust
against. (We discuss the merits of previous work in Section 7.)

Our Approach — Recent breakthroughs in Operations Research
on robust optimization (RO) theory have created new hopes for
achieving robustness and optimality in a principled and tractable
fashion [21, 22, 36, 88]. In this paper, we present the first attempt
at applying RO theory to building a practical framework for solving
one of the most fundamental problems in databases, namely find-
ing the best physical design. In particular, we study the effects of
workload changes on query latency. Since OLTP workloads tend
to be more predictable (e.g., transactions are often instances of a
few templates [68, 69]), we focus on OLAP workloads where ex-
ploratory and ad-hoc queries are quite common. Developing this
robust framework is a departure from the traditional way of design-
ing and tuning databases: from today’s brittle designs to a princi-
pled world of robust designs that guarantee a predictable and con-
sistent performance.

RO Theory — The field of RO has taken many strides over the
past decade [21]. In particular, the seminal work of Bertsimas et al.
[22] has been successfully applied to a number of drastically differ-
ent domains, from nano-photonic design of telescopes [22] to thin-
film manufacturing [24] and system-on-chip architectures [71]. To
the best of our knowledge, developing a principled framework for
applying RO theory to physical design problems is the first appli-
cation of these techniques in a database context, which involves a
number of unique challenges not previously faced in any of these
other applications of RO theory (discussed in Section 4.2).

A common misconception about the RO framework is that it re-
quires knowledge of the extent of uncertainty, e.g., in our case, an
upper bound on how much the future workload will deviate from
the past one.2 To the contrary, the power of the RO formulation
1Moreover, on-demand and continuous physical re-organizations
are not acceptable in many applications, which is why nearly all
commercial databases still rely on their offline designers.
2This misconception is caused by differing terminology used in
other disciplines, such as mechanical engineering (ME) where “ro-
bust optimization” refers to a different type of optimization which
requires some knowledge of the uncertainty of the physical envi-
ronment [39]. The Operations Research notion of RO used in this
paper is called reliability optimization in the ME literature [80].
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Figure 1: The CliffGuard architecture.

is that it allows users to freely request any degree of robustness
that they wish, say Γ, purely based on their own risk tolerance and
preferences [19, 23]. Regardless of whether the actual amount of
uncertainty exceeds or stays lower than Γ, the RO framework guar-
antees will remain valid; that is, the delivered design is promised to
remain optimal as long as the uncertainty remains below the user-
requested threshold Γ, and beyond that (i.e., if uncertainty exceeds
Γ) is in accordance to user’s accepted degree of risk [23]. In other
words, the beauty of RO theory is that it provides a framework
for expressing and delivering reliability guarantees by decoupling
them from the actual uncertainty in the environment (here, the fu-
ture workload).

Contributions — In this paper, we make these contributions:

• We formulate the problem of robust physical design using
RO theory (Section 3).

• We design a principled algorithm, called CliffGuard, by adapt-
ing the state-of-the-art framework for solving non-convex
RO problems. CliffGuard’s design is generic and can poten-
tially work with any existing designers and databases without
modifying their internals (Section 4).

• We implement and evaluate CliffGuard using two major com-
mercial databases (HP Vertica and DBMS-X3) on two syn-
thetic workloads as well as a real workload of 430+K OLAP
queries issued by one of Vertica’s major customers over a
1-year period (Section 6).

In summary, compared to Vertica’s state-of-the-art commercial de-
signer [57, 83], our robust designer reduces the average and max-
imum latency of queries on average by 7× and 18× (and up to
14× and 40×), respectively. Similarly, CliffGuard improves over
DBMS-X by 3–5×. CliffGuard is currently available as an open-
source, third-party tool [1].

2. SYSTEM OVERVIEW
Physical Database Designs — A physical design in a database is
a set of auxiliary structures, often built offline, which are used to
speed up future queries as they arrive. The type of auxiliary struc-
tures used often depend on the specific database architecture. Most
databases use both materialized views and indices in their physical
designs. Materialized views are typically more common in analyt-
ical workloads. Approximate databases use small samples of the
data (rather than its entirety) to speed up query processing at the
cost of accuracy [3, 4, 5, 29, 85, 86]. Physical designs in these
systems consist of different types of samples (e.g., stratified on dif-
ferent columns [6, 29]). Some modern columnar databases, such as
Vertica [78, 83], build a number of column projections, each sorted
differently. Instead of traditional indices, Vertica chooses a projec-
tion with the appropriate sort order (depending on the columns in
3DBMS-X is a major database system, which we cannot reveal due
to the vendor’s restrictions on publishing performance results.

2



the query) in order to locate relevant tuples quickly. In all these
examples, the space of these auxiliary structures is extremely large
if not infinite, e.g., there are O(2N · N !) possible projections or
indices for a table of N columns (i.e., different subsets and orders
of columns). Thus, the physical design problem is choosing a small
number of these structures using a fixed budget (in terms of time,
space, or maintenance overhead) such that the overall performance
is optimized for a target workload.

Design Principles — A major goal in the design of our CliffGuard
algorithm is compatibility with almost any existing database in or-
der to facilitate its adoption in the commercial world. Thus, we
have made two key decisions in our design. First, CliffGuard should
operate alongside an existing (nominal) designer rather than replac-
ing it. Despite their lack of robustness, existing designers are highly
sophisticated tools hand-tuned over the years to find the best phys-
ical designs efficiently, given their input parameters. Because of
this heavy investment, most vendors are reluctant to abandon these
tools completely. However, some vendors have expressed inter-
est in CliffGuard as long as it can operate alongside their existing
designer and improve its output. Second, CliffGuard is designed to
treat existing designers as a black-box (i.e., without modifying their
internal implementations). This is to conform to the proprietary
nature of commercial designers and also to widen the applicabil-
ity of CliffGuard to different databases. By delegating the nominal
designs to existing designers, CliffGuard remains a genetic frame-
work agnostic to the specific details of the design objects (e.g., they
can be materialized views, samples, indices, or projections).

These design principles have already allowed us to evaluate Cliff-
Guard for two database products with drastically different design
problems (i.e., Vertica and DBMS-X). Without requiring any changes
to their internal implementations, CliffGuard significantly improves
on the sophisticated designers of these leading databases (see Sec-
tion 6). Thus, we believe that CliffGuard can be easily used to
speed up other database systems as well.

Architecture — Figure 1 depicts the high-level workflow of how
CliffGuard is to be used alongside a database system. The database
administrator states her desired degree of robustness Γ to CliffGuard,
which is located outside the DBMS. CliffGuard in turn invokes
the existing physical designer via its public API. After evaluating
the output (nominal) design sent back from the existing designer,
CliffGuard may decide to manipulate the existing designer’s output
by merely modifying some of its input parameters (in a principled
manner) and invoking its API again. CliffGuard repeats this pro-
cess, until it is satisfied with the robustness of the design produced
by the nominal designer. The final (robust) design is then sent back
to the administrator, who may decide to deploy it in the DBMS.

3. PROBLEM FORMULATION
In this section, we present a simple but powerful formulation of

robustness in the context of physical database design. This formu-
lation will allow us to employ recently proposed ideas in the theory
of robust optimization (RO) and develop a principled and effective
algorithm for finding robust database designs, which will be pre-
sented in Section 4. First, we define some notations.

Notations — For a given database, the design space S is the set of
all possible structures of interest, such as indices on different sub-
sets of columns, materialized views, different samples of the data,
or a combination of these. For example, Vertica’s designer [78, 83]
materializes a number of projections, each sorted differently:

CREATE PROJECTION projection name
AS SELECT col1, col2, ..., colN
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Figure 2: Design D1 is nominally optimal at µ0 while designs
D2 and D3 are robust against an uncertainty of±Γ and±Γ′ in
our parameter µ0, respectively.

FROM anchor table
ORDER BY col1’, col2’, ..., colK’;

Here, S is extremely large due to the exponential number of possi-
ble projections. Similarly, for decisions about building materialized
views or (secondary) indices, S will contain all such possible struc-
tures. Existing database designers solve the following optimization
problem (or aim to4):

Dnom = D(W0, B) = ArgMin
D⊆S , price(D)≤B

f(W0, D) (1)

where W0 is the target workload (e.g., the set of user queries), B
is a given budget (in terms of storage or maintenance overhead),
D is a nominal designer that takes a workload and budget as input
parameters, price(D) is the price of choosing D (e.g., the total
size of the projections in D), and f(W0, D) is our cost function
for executing workloadW0 using designD (e.g., f can be the query
latency). We call such designs nominal as they are optimal for the
nominal value of the given parameters (e.g., the target workload).
All existing designers [10, 38, 64, 75, 89] are nominal: they either
minimize the expression above directly, or follow other heuristics
aimed at approximate minimization. Despite several heuristics to
avoid over-fitting a given workload (e.g., omitting query details [30,
55]), nominal designers suffer from many shortcomings in practice;
see Sections 1 and 6.4.

Robust Designs — This paper’s goal is finding designs that are
robust against worst-case scenarios that can arise from uncertain
situations. This concept of robustness can be illustrated using the
toy example of Figure 2, which features a design space with only
three possible designs and a toy workload that is represented by
a single real-value parameter µ. When our current estimate of µ
is µ0, a nominal designer will pick design D1 since it minimizes
the cost at µ0. But if we want a design that remains optimal even
if our parameter changes by up to Γ, then a robust designer will
pick design D2 instead of D1, even though the latter has a lower
cost at µ0. This is because the worst-case cost of D2 over the
[µ0 − Γ, µ0 + Γ] is lower than that of D1; that is, D2 is robust
against uncertainty of up to Γ. Similarly, if we decide to guard
against a still greater degree of uncertainty, say for an estimation
error as high as Γ′ > Γ, a robust designer would this time pick
D3 instead of D2, as the former has a lower worst-case cost in
[µ0 − Γ′, µ0 + Γ′] than the other designs.

Formally, a robust design Drob can be defined as:

Drob = D̃(W0, B,U) = ArgMin
D⊆S , price(D)≤B

Max
W∈U(W0)

f(W,D)

whereU(W0) defines an uncertainty region around our target work-
load W0. Here, D̃ is a robust designer that will search for a de-
sign that minimizes the cost function regardless of where the target

4Existing designers often use heuristics or greedy strategies [65],
which lead to approximations of the nominal optima.
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workload lands in this uncertainty region. In other words, this Min-
iMax formulation of robustness defines a robust design as one with
the best worst-case performance.

Although the uncertainty region U(W0) does not have to be cir-
cular, for ease of presentation in this paper we always defineU(W0)
as a circular region of radius Γ ≥ 0 centered at W0, which we
call the Γ-neighborhood ofW0. For instance, the Γ-neighborhood
will be an interval when W0 ∈ R (see Figure 2) and a circle when
Γ ∈ R2. Since database workloads are not easily represented as
real numbers, we need to use a distance function to define the Γ-
neighborhood of a database workload W0, namely:

Drob = D̃(W0, B,Γ) = ArgMin
D⊆S , price(D)≤B

Max
δ(W,W0)≤Γ

f(W,D)

(2)
Here, δ(.) is a user-defined distance function that takes a pair

of workloads and returns a non-negative real number as their dis-
tance. Formulation (2) allows users to express their desired level
of robustness by choosing the value of Γ ≥ 0, where the larger the
Γ, the more robust their design is. Note that a nominal design is
a special case of a robust design where Γ = 0. In the rest of this
paper, we will not explicitly mention the price(D) ≤ B constraint
in our notations, but it will always be implied in both nominal and
robust designs. (Appropriate choices of Γ and δ are discussed later
in this section and in Section 5, respectively.)

We have chosen this formulation of robustness for several rea-
sons. First, (2) is the standard notion of robust optimization in
Operations Research [21], which enables us to adopt recently pro-
posed RO algorithms that are highly tractable and effective (see
Section 4). Second, formulation (2) requires no knowledge of the
uncertainty distribution. (We will discuss the role of Γ shortly.)
This is in contrast to an alternative formulation seeking to minimize
the expected or 99%-quantile latency (rather than its worst-case).
However, such a formulation would be a different type of optimiza-
tion, called stochastic optimization [36], requiring a probability dis-
tribution on every possible workload (which is impossible to obtain
in most real-world scenarios). Finally, despite their MiniMax (i.e.,
worst-case) formulation, the RO solutions may not be overly con-
servative; surprisingly, they are often similar to those produced by
stochastic optimization, which is substantially less tractable (see
[21]). In fact, in our database context, RO solutions are also nomi-
nally superior, thanks to databases’ non-convex cost functions and
complex design spaces (see Section 6.4).

A Knob for Robustness — As mentioned in Section 1, the role
of Γ in RO formulation (2) is sometimes misunderstood to be an
upper bound on the degree of uncertainty, i.e., Γ should be chosen
such that the future workload W will lie in W0’s Γ-neighborhood.
To the contrary, the beauty of formulation (2) is that it allows users
to choose any Γ value based purely on their own business needs
and risk tolerance, regardless of the actual amount of uncertainty in
the future. In other words, Γ is not an upper bound on the actual
uncertainty in the environment, but rather the amount of actual un-
certainty that the user decides to guard against. This is a subtle but
important distinction, because robustness comes at the price of re-
duced nominal optimality. In the example of Figure 2, D2 is robust
against a greater degree of uncertainty than D2 but is nominally
more expensive at µ = µ0. Therefore, it is important to interpret Γ
as a robustness knob and not a prediction of future uncertainty.

The choice of Γ depends completely on the end users’ risk toler-
ance and is not the focus of this paper. Our paper’s contribution is a
framework that will deliver a design that guarantees the requested
level of robustness for any value of Γ chosen by the user. For in-

stance, a user may take the simplest approach and use the sequence
of workload changes over the past N windows of queries, say

δ(W0,W1), δ(W1,W2), · · · , δ(WN−1,WN )

and take their average, max, or k×max (for some constant k>1) as
a reasonable choice of Γ when finding a robust design for WN+1

using WN . Alternatively, a user may employ more sophisticated
techniques (e.g., timeseries forecasting [28]) to obtain a more ac-
curate prediction for δ(WN ,WN + 1). Regardless of the strat-
egy, the actual uncertainty can always exceed a user’s predictions.
However, this problem is no different from any other provisioning
problem. For instance, many customers provision their database re-
sources according to, say, 3× their current peak load. This means
that according to their business needs, they accept the risk of their
future workload suddenly increasing by 4×. This is analogous to
the user’s choice of Γ here. Also, note that even if users magically
knew the exact value of δ(WN ,WN+1) in advance, the existing
nominal designers’ performance would remain the same since they
have no mechanism for incorporating a bounded uncertainty into
their analysis. (A nominal designer would only perform better if
we knew the actual WN+1 and not just its distance from WN .) As
previously explained, while our proposed designer does not require
any prior knowledge of the uncertainty in order to deliver the user’s
robustness requirements, it can naturally incorporate additional of
the future workload if made available by the user.

In Section 6.5, we study the effects of different Γ choices and
show that, in practice, our algorithm performs no worse than the
nominal designer even when presented with poor (i.e., extremely
low or extremely high) Γ choices.

4. OUR ALGORITHM
In the previous section, we provided the RO formulation of the

physical design for databases. Over the past decade, there have
been many advances in the theory of RO for solving problems with
similar formulations as (2), for many different classes of cost func-
tions and uncertainty sets (see [21] for a recent survey). Here,
the most relevant to our problem is the seminal work of Bertsimas
et al. [22], hereon referred to as the BNT algorithm. Unlike most
RO algorithms, BNT does not require the cost function to have a
closed-form. This makes BNT an ideal match for our database
context: our cost function is often the query latency, which does
not have an explicit closed-form, i.e., latency can only be measured
by executing the query itself or approximated using the query opti-
mizer’s cost estimates. BNT’s second strength is that it does not re-
quire convexity: BNT guarantees a global robust solution when the
cost function is convex, and convergence to a local robust solution
even when it is not convex. Given the complex nature of modern
databases, establishing convexity for query latencies can be diffi-
cult (e.g., in some situations, additional load can reduce latency by
improving the cache hit rate [68]).5

First, we provide background on the BNT framework in Section
4.1. Then, in Section 4.2, we identify the unique challenges that
arise in applying BNT to database problems. Finally, in Section
4.3, we propose our BNT-based CliffGuard algorithm, which over-
comes these challenges.

4.1 The BNT Algorithm
In this section, we offer a geometric interpretation of the BNT

algorithm for an easier understanding of the main ideas behind the

5When the cost function is non-convex, the output of existing nom-
inal designers is also only locally optimal. Thus, even in these
cases, finding a local robust optimum is still a worthwhile endeavor.
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(a) (b)

Figure 3: (a) A descent direction d∗ is one that moves away
from all the worst-neighbors (θmax≥90°); (b) here, due to the
location of the worst-neighbors, no descent direction exists.

algorithm. (Interested readers can find a more formal discussion of
the algorithm in the Operations Research literature [22].)

We use Figure 3(a) to illustrate how the BNT algorithm works.
Here, imagine a simplified world in which each decision is a 2-
dimensional point in Euclidean space. Since the environment is
noisy or unpredictable, the user demands a decision x∗ that comes
with some reliability guarantees. For example, instead of asking
for a decision x∗ that simply minimizes f(x), the user requires an
x∗ whose worst-case cost is minimized for arbitrary noise vectors
∆x within a radius of Γ, namely:

x∗ = ArgMin
x

Max
||∆x||2≤Γ

f(x+ ∆x) (3)

Here, ||∆x||2 is the length (L2-norm) of the noise vectors. This
means that the user expresses his/her reliability requirement as an
uncertainty region, here a circle of radius Γ, and demands that our
f(x∗+ ∆x) still be minimized no matter where the noisy environ-
ment moves our initial decision within this region. This uncertainty
region (i.e., the Γ-neighborhood) is shown as a shaded disc in Fig-
ure 3(a).

To meet the user’s reliability requirement, the BNT algorithm
takes a starting point, say x̂, and performs a number of iterations
as follows. In each iteration, BNT first identifies all the points
within the Γ-neighborhood of x̂ that have the highest cost, called
the worst-neighbors of x̂. In Figure 3(a), there are four worst-
neighbors, shown as u1, · · · , u4. Let ∆x1, · · · ,∆x4 be the vec-
tors that connect x̂ to each of these worst-neighbors, namely ui =
x̂+ ∆xi for i=1, 2, 3, 4.

Once the worst-neighbors of x̂ are identified, the BNT algorithm
finds a direction that moves away from all of them. This direction
is called the descent direction. In our geometric interpretation, a
descent direction ~d∗ is one that maximizes the angle θ in Figure
3(a) by halving the reflex angle between the vectors connecting x̂
to u1 and u4. The BNT algorithm then takes a small step along
this descent direction to reach a new decision point, say x̂′, which
will be at a greater distance from all of the worst-neighbors of x̂.
The algorithm repeats this process by looking for the new worst-
neighbors in the Γ-neighborhood of x̂′. (Bertsimas et al. prove
that taking an appropriately-sized step along the descent direction
reduces the worst-case cost at each iteration [22].) The algorithm
ends (i.e., a robust solution is found) when no descent direction can
be found. Figure 3(b) illustrates this situation, as any direction of
movement within the Γ-neighborhood will bring the solution closer
to at least one of the worst-neighbors. (Bertsimas et al. prove that
this situation can only happen when we reach a local robust mini-
mum, which will also be a global robust minimum when the cost
function is convex.)

To visually demonstrate this convergence, we again use a geo-
metric interpretation of the algorithm, as depicted in Figure 4.1.

Figure 4: Geometric interpretation of the iterations in BNT.

In this figure, the decision space consists of two-dimensional real
vectors (x1, x2) ∈ R2 and the f(x1, x2) surface corresponds to
the cost of different points in this decision space. Here, the Γ-
neighborhood in each iteration of BNT is shown as a transparent
disc of radius Γ. Geometrically, to move away from the worst-
neighbors at each step is equivalent to sliding down this disc along
the steepest direction such that the disc always remains within the
cost surface and parallel to the (x1, x2) plane. The algorithm ends
when this disc’s boundary touches the cost surface and cannot be
sliced down any further without breaking through the cost surface—
this is the case with the bottom-most disc in Figure 4.1; when this
condition is met, the center of this disc represents a locally robust
solution of the problem (marked as x∗) and its worst-neighbors lie
on the boundary of its disc (marked as ×). The goal of BNT is to
quickly find such discs and converge to the locally robust optimum.

The pseudo of BNT is presented in Algorithm 1. Here, xk is
the current decision at the k’th iteration. As explained above, each
iteration consists of two main steps: finding the worst-neighbors
(neighborhood exploration, Line 5) and moving away from those
neighbors if possible (local robust move, Lines 7–16). In Section
4.2, we discuss some of the challenges posed by these steps when
applied to physical design problems in databases.

Theoretical Guarantees — When f(x) is continuously differen-
tiable with a bounded set of minimum points, Bertsimas et al. [22]
show that their algorithm converges to the local optimum of the ro-
bust optimization problem (3), as long as the steps sizes tk (Line
14 in Algorithm 1) are chosen such that tk > 0, limk→∞ tk = 0,
and

∑∞
k=1 tk = ∞. For convex cost surfaces, this solution is also

the global optimum. (With non-convex surfaces, BNT needs to be
repeated from different starting points to find multiple local optima
and choose one that is more globally optimal.6)

4.2 Challenges of Applying BNT to Database
Problems

As mentioned earlier, since BNT does not require a closed-form
cost function (or even convexity), it presents itself as the most ap-
propriate technique in the RO literature for solving our physical de-
sign problems, especially since we want to avoid modifying the in-
ternals of the existing designers (due to their proprietary nature, see
Section 2). However, BNT still hinges on certain key assumptions
that prevent it from being directly applicable to our design prob-
lem. Next, we discuss each of these requirements and the unique
challenges that they pose in a database context.

Proper distance metric — BNT requires a proper distance metric
over the decision space, i.e., one that is symmetric and satisfies the
triangle property. E.g., the L2-norm ||x||2 is a proper distance over
6When f(x) is non-convex, the output of existing designers is also
a local optimum. Thus, even in this case, finding local robust op-
tima is still preferable (to a local nominal optimum).
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Algorithm 1: Generic robust optimization via gradient descent.
Inputs: Γ: the radius of the uncertainty region,

f(x): the cost of design x
Output: x∗: a robust design, i.e.,

x∗ = ArgMin
x

Max
||∆x||2≤Γ

f(x+ ∆x)

1 x1← pick an arbitrary vector // the initial decision
2 k ← 1 // k is the number of iterations so far
3 while true do

// Neighborhood Exploration:
5 U ← Find the set of worst-neighbors of xk within its

Γ-neighborhood

// Robust Local Move:
7 ~d∗ ← FindDescentDirection(xk, U )

// See Fig 3(a) for FindDescentDirection’s geometric
intuition and Appendix B for its formal definition

9 if there is no such direction ~d∗ pointing away from all u ∈ U
then

11 x∗ ← xk // found a local robust solution
12 return x∗

else
14 tk ← choose an appropriate step size
15 xk+1 ← xk+tk·~d∗ // move along the descent direction
16 k ← k + 1 // go to next iteration

end
end

the m-dimensional Euclidean space, since ||x1 − x2||2 + ||x2 −
x3||2 ≥ ||x1 − x3||2 = ||x3 − x1||2 for any x1, x2, x3 ∈ Rm.

Challenge C1. To define an analogous notion of uncertainty in a
database context, we need to have a distance metric δ(W1,W2) for
any two sets of SQL queries, say W1 and W2, in order to express
the uncertainty set of an existing workloadW0 as {W | δ(W0,W ) ≤
Γ}. Note that δ must be symmetric, triangular, and also capable of
capturing the user’s notion of a workload change. To the best of
our knowledge, such a distance metric does not currently exist for
database workloads.7

Finding the worst-neighbors — BNT relies on our ability to find
the worst-neighborsU (Algorithm 1, Line 5) in each iteration, which
equates to finding all global maxima of the following optimization
problem:

ArgMax
||∆x||2≤Γ

f(xk + ∆x) (4)

In other words, the worst-neighbors are defined as:

U = {xk + ∆x | f(xk + ∆x) = g(xk), ||∆x||2 ≤ Γ}

where g(x) represents our worst-case cost function, defined as:

g(x) = Max
||∆x||2≤Γ

f(x+ ∆x)

When g(x) is differentiable, finding its global maxima is straight-
forward, as one can simply take its derivative and solve the follow-
ing equation:

g′(x) = 0 (5)

All previous applications of the BNT framework have either in-
volved a closed form cost function f(x) with a differentiable worst-
7While workload drift is well-observed in the database community
[49, 50, 76], quantifying it has received surprisingly little attention.

case cost function g(x), where the worst-neighbors can be found by
solving (5) (e.g., in industrial engineering [21] or chip design [71]),
or a black-box cost function guaranteed to be continuously differ-
entiable (e.g., in designing nano-photonic telescopes [22]).

Challenge C2. Unfortunately, most cost functions of interest in
databases are not closed-form, differentiable, or even continuous.
For instance, when f is the query latency, it does not have a closed-
form; it is measured either via actual execution or by consulting the
query optimizer’s cost estimates. Also, even a small modification
in the design or the query can cause a drastically different latency,
e.g., when a query references a column that is omitted from a ma-
terialized view.

Finding a descent direction — BNT relies on our ability to effi-
ciently find the (steepest) descent direction via a second-order cone
program (SOCP) (see Appendix B), which requires a continuous
domain.8

Challenge C3. We cannot use the same SOCP formulation be-
cause the space of physical designs is not continuous. A physical
design, say a set of projections, can be easily encoded as a binary
vector. For instance, each projection can be represented as a vector
in {0, 1}m where the i’th coordinate represents the presence or ab-
sence of the i’th column in the database. Different column-orders
and a set of such structures can also be encoded using more dimen-
sions. However, this and other possible encodings of a database
design are inherently discrete. For instance, one cannot construct
a conventional projection with only 0.3 of a column—a column is
either included in the projection or not.

Moving along a descent direction — BNT assumes that the deci-
sion space (i.e., the domain of x) is continuous and hence, moving
along a descent direction is trivial (Algorithm 1, Line 15). In other
words, if xk is a valid decision, then xk + tk · ~d∗ is also a valid
decision for any given d∗ and tk > 0.

Challenge C4. Even when a descent direction is found in the
database design space, moving along that direction does not have
any database equivalence. In other words, even when our vectors
xk and ~d∗ correspond to legitimate physical designs, xk + tk ·
~d∗ may no longer be meaningful since it may not correspond to
any legitimate design, e.g., it may involve fractional coordinates for
some of the columns depending on the value of tk. Thus, we need
to establish a different notion of moving along a descent direction
for database designs.

In summary, in order to use BNT’s principled framework, we
need to develop analogous techniques in our database context for
expressing distance and finding the worst-neighbors; we also need
to define equivalent notions for finding and moving along a descent
direction. Next, we explain how our CliffGuard algorithm over-
comes challenges C1–C4 and uses BNT’s framework to find robust
physical database designs.

4.3 Our Algorithm: CliffGuard
In this section, we propose our novel algorithm, called CliffGuard,

which builds upon BNT’s principled framework by tailoring it to
the problem of physical database design.

Before presenting our algorithm, we need to clarify a few no-
tional differences. Unlike BNT, where the cost function f(x) takes
a single parameter x, the cost in CliffGuard is denoted as a two-
parameter function f(W,D) where W is a given workload and D
is a given physical design. In other words, each point x in our space
is a pair of elements (W,D). However, unlike BNT where vector

8SOCPs can be solved efficiently via interior point methods [25].
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x can be updated in its entirety, in CliffGuard (or any database de-
signer) we only update the design element D; this is because the
database designer can propose a new physical design to the user,
but cannot impose a new workload on her as a means to improve
robustness.

Algorithm 2 presents the pseudo code for CliffGuard. Like Al-
gorithm 1, Algorithm 2 iteratively explores a neighborhood to find
the worst-neighbors, then moves farther away from these neigh-
bors in each iteration using an appropriate direction and step size.
However, to apply these ideas in a database context (i.e., address-
ing challenges C1–C4 from Section 4.2), Algorithm 2 differs from
Algorithm 1 in the following important ways.

Initialization (Algorithm 2, Lines 1–2) — CliffGuard starts by
invoking the existing designer D to find a nominal design D for
the initial workload W0. (Later, D will be repeatedly replaced by
designs that are more robust.) CliffGuard also creates a finite set of
perturbed workloads P = {W1, · · · ,Wn} by sampling the work-
load space in the Γ-neighborhood of W0. In other words, given
a distance metric δ, we find n workloads W1, · · · ,Wn such that
δ(Wi,W0) ≤ Γ for i = 1, 2, · · · , n. (Section 5 discusses how to
define δ for database workloads, how to choose n, and how to sam-
ple the workload space efficiently.) Next, as in BNT, CliffGuard
starts an iterative search with a neighborhood exploration and a ro-
bust local move in each iteration.

Neighborhood Exploration (Algorithm 2, Line 6) — To find the
worst-neighbors, in CliffGuard we need to also take the current de-
signD into account (i.e., the set of worst-case neighbors ofW0 will
depend on the physical design that we choose). Given that we can-
not rely on the differentiability (or even continuity) of our worst-
case cost function (Challenge C2), we use the worst-case costs on
our sampled workloads P a proxy; instead of solving

Max
δ(W,W0)≤Γ

f(W,D) (6)

we solve

Max
W∈P

f(W,D) (7)

Note that (7) cannot provide an unbiased approximation for (6) sim-
ply because P is a finite sample, and finite samples lead to biased
estimates for extreme statistics such as min and max [82]. Thus,
we do not rely on the nominal value of (7) to evaluate the quality
of our design. Rather, we use the solutions to (7) as a proxy to
guide our search in moving away from highly (though not neces-
sarily the most) expensive neighbors. In our implementation, we
further mitigate this sampling bias by loosening our selection cri-
terion to include all neighbors that have a high-enough cost (e.g.,
top-K or top 20%) instead of only those that have the maximum
cost. To implement this step, we simply enumerate each workload
in P and measure its latency on the given design.

Robust Local Move (Algorithm 2, Lines 8–15) — To find equiva-
lent database notions for finding and moving along a descent direc-
tion (C3 and C4), we use the following idea. The ultimate goal of
finding and moving along a descent direction is to reduce the worst-
case cost of the current design. In CliffGuard, we can achieve this
goal directly by manipulating the existing designer by feeding it a
mixture of the existing workload and its worst-neighbors as a sin-
gle workload.9 The intuition is that since nominal designers (by
definition) produce designs that minimize the cost of their input
workload, the cost of our previous worst-neighbors will no longer

9Remember that existing designers only take a single workload as
their input parameter.

be as high, which is equivalent to moving our design farther away
from those worst-neighbors. The questions then are (i) how do we
mix these workloads, and (ii) what if the designer’s output leads to
a higher worst-case cost?

The answer to question (i) is a weighted union, where we take
the union of all the queries in the original workload as well as those
in the worst-neighbors, after weighting the latter queries according
to a scaling factor α, their individual frequencies of occurrence in
their workload, and their latencies against the current design. Tak-
ing latencies and frequencies into account encourages the nominal
designer to seek designs that reduce the cost of more expensive
and/or popular queries. Scaling factor α, which serves the same
purpose as step-size in BNT, allows CliffGuard to control the dis-
tance of movement away from the worst-neighbors.

We also need to address question (ii) because unlike BNT, where
the step size tk could be computed to ensure a reduction in the
worst cost, here our α factor may in fact lead to a worse design
(e.g., by moving too far from the original workload). To solve
this problem, CliffGuard dynamically adjusts the step-size using
a common technique called backtracking line search [25], similar
to a binary-search. Each time the algorithm succeeds in moving
away from the worst-neighbors, we consider a larger step size (by
a factor λsuccess >1) to speed up the search towards the robust so-
lution, and each time we fail, we reduce the step size (by a factor
0< λfailure <1) as we may have moved past the robust solution
(hence observing a higher worst-case cost).

Termination (Algorithm 2, Lines 17–20) — We repeat this pro-
cess until we find a local robust optimum (or reach the maximum
number of steps, when under a time constraint).

5. EXPRESSING ROBUSTNESS GUARAN-
TEES

In this section, we define a database-specific distance metric δ
so that users can express their robustness requirements by specify-
ing a Γ-neighborhood (as an uncertainty set, described in Section 3)
around a given workloadW0, and demanding that their design must
be robust for any future workload W as long as δ(W0,W ) ≤ Γ.
Thus, users can demand arbitrary degrees of robustness according
to their performance requirements. For mission-critical applica-
tions more sensitive to sudden performance drops, users can be
more conservative (specifying a larger Γ). At the other extreme,
users expecting no change (or less sensitive to it) can fall back to
the nominal case (Γ = 0).

A distance metric δ must satisfy the following criteria to be ef-
fectively used in our BNT-based framework (Appendix D provides
the intuition behind these criteria):

(a) Soundness, which requires that the smaller the distance δ(W1,W2),
the better the performance of W2 on W1’s nominally optimal
design. Formally, we call a distance metric sound if it satisfies:

δ(W1,W2)≤δ(W1,W3)⇒f(W2,D(W1)) ≤ f(W3,D(W1))
(8)

(b) δ should account for intra-query similarities; that is, if r1
i > r2

i

and r1
j < r2

j , the distance δ(W1,W2) should become smaller
based on the similarity of the queries qi and qj , assuming the
same frequencies for the other queries.

(c) δ should be symmetric; that is, δ(W1,W2) = δ(W2,W1) for
any W1 and W2. (This is needed for the theoretical guarantees
of the BNT framework.)
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Algorithm 2: The CliffGuard algorithm.
Inputs: Γ: the desired degree of robustness,

δ: a distance metric defined over pairs of workloads,
W0: initial workload,
D: an existing (nominal) designer,
f : the cost function (or its estimate),

Output: D∗: a robust design, i.e., D∗ = ArgMin
D

Max
δ(W−W0)≤Γ

f(W,D)

1 D ← D(W0) // Invoke the existing designer to find a nominal design for W0

2 P ← {Wi | 1 ≤ i ≤ n, δ(Wi,W ) ≤ Γ} // Sample some perturbed workloads in the Γ-neighbor of W0

3 Pick some α > 0 // some initial size for the descending steps
4 while true do

// Neighborhood Exploration:
6 U ← {W̃1, · · · , W̃m} where W̃i∈P and f (W̃i, D)= Max

W∈P
f (W ,D) // Pick perturbed workloads with the worst performance onD

// Robust Local Move:
8 Wmoved ←MoveWorkload(W0, {W̃1, · · · , W̃m}, f,D, α) //Build a new workload by moving closer to W0’s worst-neighbors

(see Alg. 3)
9 D′ ← D(Wmoved) // consider the nominal design for Wmoved as an alternative design

10 if Max
W∈P

f(W,D′) < Max
W∈P

f(W,D) // Does D′ improve on the existing design in terms of the worst-case performance?

then
12 D ← D′ // Take D′ as your new design
13 α← α ∗ λsuccess (for some λsuccess > 1) // increase the step size for the next move along the descent direction

else
15 α← α ∗ λfailure (for some λfailure < 1) // consider a smaller step next time

end
17 if your time budget is exhausted or many iterations have gone with no improvements

then
D∗ ← D // the current design is robust

20 return D∗

end
end

(d) δ must satisfy the triangular property; that is, δ(W1,W2) ≤
δ(W1,W3) + δ(W3,W2) for any W1,W2,W3. (This is an
implicit assumption in almost all gradient-based optimization
techniques, including BNT.)

Before introducing a distance metric fulfilling these criteria, we
need to introduce some notations. Let us represent each query as
the union of all the columns that appear in it (e.g., unioning all the
columns in the select, where, group by, and order by clauses).
With this over-simplification, two queries will be considered iden-
tical as long as they reference the same set of columns, even if their
SQL expressions, query plans, or latencies are substantially differ-
ent. Using this representation, there will be only 2n − 1 possible
queries where n is the total number of columns in the database
(including all the tables). (Here, we ignore queries that do not ref-
erence any columns.) Thus, we can represent a workload W with
a (2n − 1)-dimensional vector VW = 〈r1, · · · , r2n−1〉 where ri
represents the normalized frequency of queries that are represented
by the i’th subset of the columns for i = 1, · · · , 2n − 1. With this
notation, we can now introduce our Euclidean distance for database
workloads as:

δeuclidean(W1,W2) = |VW1 − VW2 | × S × |VW1 − VW2 |
T (9)

Here, S is a (2n − 1) × (2n − 1) similarity matrix, and thus
δeuclidean is always a real-valued number (i.e., 1×1 matrix). Each
Si,j entry is defined as the total number of columns that are present
only in qi or qj (but not in both), divided by 2 · n. In other words,
Si,j is the Hamming distance between the binary representations of

i and j, divided by 2 ·n. Hamming distances are divided by 2 ·n to
ensure a normalized distance, i.e., 0 ≤ δeuclidean(W1,W2) ≤ 1.

One can easily verify that δeuclidean satisfies criteria (b), (c), and
(d). In Section 6.3, we empirically show that this distance metric
also satisfies criterion (a) quite well. Finally, even though VW is
exponential in the number of columns n, it is merely a conceptual
model; since VW is an extremely sparse matrix, most of the com-
putation in (9) can be avoided. In fact, δeuclidean can be computed
in O(T 2 · n) time and memory complexity, where T is the number
of input queries (e.g., in a given query log).

Limitations — δeuclidean has a few limitations. First, it does not
factor in the clause in which a column appears. For instance, for
fast filtering, it is more important for a materialized view to cover
a column appearing in the where clause than one appearing only in
the select clause. This limitation, however, can be easily resolved
by representing each query as a 4-tuple 〈v1, v2, v3, v4〉 where v1 is
the set of columns in the select clause and so on. We refer to this
distance as δseparate, as we keep columns appearing in different
clauses separate. δseparate differs from δeuclidean only in that it
creates 4-tuple vectors, but it is still computed using Equation (9).

The second (and more important) limitation is that δeuclidean
may ignore important aspects of the SQL expression if they do not
change the column sets. For example, presence of a join operator
or using a different query plan can heavily impact the execution
time, but are not captured by δeuclidean. In fact, as a stricter version
of requirement (8), a better distance metric will be one that for all
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workloads W1,W2,W3 and arbitrary design D satisfies:

δ(W1,W2) ≤ δ(W1,W3) ⇒ (10)
|f(W2, D)− f(W1, D)| ≤ |f(W3, D)− f(W1, D)|

In other words, the distance functions should directly match the
performance characteristics of the workloads (the lower their dis-
tance, the more similar their performance). In Appendix D, we in-
troduce a more advanced metric that aims to satisfy (11). However,
in our experiments, we still use δeuclidean for three reasons.

First, requirement (11) is unnecessary for our purposes. CliffGuard
only relies on this distance metric during the neighborhood explo-
ration and feeds actual SQL queries (and not just their column
sets) into the existing designer. Internally, the existing designer
compares the actual latency of different SQL queries, accounting
for their different plans, joins, and all other details of every input
query. For example, the designer ignores the less expensive queries
to spend its budget on the more expensive ones.

Second, we must be able to efficiently sample the Γ-neighborhood
of a given workload (see Algorithm 2, Line 2), which we can do
when our cost function is δeuclidean. The sampling algorithm (which
can be found in Appendix C) becomes computationally prohibitive
when our distance metric involves computing the latency of differ-
ent queries. In Section 6, we thoroughly evaluate our CliffGuard

algorithm overall, and our distance function in particular.
The third, and final, reason is that the sole goal of our distance

metric is to provide users a means to express and receive their de-
sired degree of robustness. We show that despite its simplistic na-
ture, δeuclidean is still quite effective in satisfying (8) (see Section
6.3), and most importantly in enabling CliffGuard to achieve deci-
sive superiority over existing designers (see Section 6.4).

In the end, we note that quantifying the amount of change in
SQL workloads is a research direction that will likely find many
other applications beyond robust physical designs, e.g., in workload
monitoring [49, 76], auto-tuning [38], or simply studying database
usage patterns. We believe that δeuclidean is merely a starting point
in the development of more advanced and application-specific dis-
tance metrics for database workloads.

Algorithm 3: The subroutine for moving a workload.
Inputs: W0: an initial workload,

{W̃1, · · · , W̃m}: workloads to merge with W0,
f : the cost function (or its estimate),
D: a given design,
α: a scaling factor for the weight (α > 0)

Output: Wmoved: a new (merged) workload which is closer to
{W̃1, · · · , W̃N} than W0, i.e.,
Σiδ(W̃i,Wmoved) < Σiδ(W̃i,W0)

Subroutine MoveWorkload (W0, {W̃1, · · · , W̃m}, f,D, α)

2 Wmoved ← {}
3 Q← the set of all queries in W0 and W̃1, · · · , W̃m

workloads
4 foreach query q ∈ Q do
5 fq ← f({q}, D) // the cost of query q using design

D

6 ωq ← (fq ·
∑m
i=1 weight(q, W̃i))

α + weight(q,W0)
7 Wmoved ←Wmoved ∪ {(q, ωq)}

end
9 return Wmoved

end

6. EXPERIMENTAL RESULTS
The purpose of our experiments in this section is to demonstrate

that (i) real world workloads can vary over time and be subject to
a great deal of uncertainty (Section 6.2), (ii) despite its simplic-
ity, our distance metric δeuclidean can reasonably capture the per-
formance implications of a changing workload (Section 6.3), and
most importantly (iii) our robust design formulation and algorithm
improve the performance of the state-of-the-art industrial design-
ers by up to an order of magnitude, without having to modify the
internal implementations of these commercial tools (Section 6.4).
We also study different degrees of robustness (Section 6.5). Addi-
tional experiments are deferred to Appendix A, where we evaluate
the effects of different distance functions and other parameters on
CliffGuard’s performance, and show that CliffGuard’s processing
overhead is negligible compared to that of the deployment phase.

6.1 Experimental Setup
We have implemented CliffGuard in Java. We tested our algo-

rithm against Vertica’s database designer (called DBD [75, 83]) and
DBMS-X’s designer as two of the most heavily-used state-of-the-
art commercial designers, as well as two other baseline algorithms
(introduced later in this section). For Vertica experiments, we used
its community edition and invoked its DBD and query optimizer
via a JDBC driver. Similarly, we used DBMS-X’s latest API. We
ran each experiment on two machines: a server and a client. The
server ran a copy of the database and was used for testing different
designs. The client was used for invoking the designer and sending
queries to the server. We ran the Vertica experiments on two Dell
machines running Red Hat Enterprise Linux 6.5, each with two
quad-core Intel Xeon 2.10GHz processors. One of the machines
had 128GB memory and 8×4TB 7.2K RPM disks (used as server)
and the other had 64GB memory and 4 × 4TB 7.2K RPM disks.
For DBMS-X experiments, we used two Azure Standard Tier A3
instances, each with a quad-core AMD Opteron 4171 HE 2.10GHz
processor, 7GB memory, and 126GB virtual disks. In this section,
when not specified, we refer to our Vertica experiments.

Workloads10 — We conducted our experiments on a real-world
(R1) workload and two synthetic ones (S1 and S2). R1 belongs
to one of the largest customers of the Vertica database, composed
of 310 tables and 430+K time-stamped queries issued between
March 2011 and April 2012 out of which 15.5K queries conform
to their latest schema (i.e., can be parsed). We did not have access
to their original dataset but we did have access to their data distri-
bution, which we used to generate a 151GB dataset for our Vertica
experiments. Since we did not have access to any real workloads
from DBMS-X’s customers, we used the same query log but on a
smaller dataset (20GB) given the smaller memory capacity of our
Azure instances (compared to our Dell servers). We also created
two synthetic workloads, called S1 and S2, as follows. We used
the same schema and dataset as R1, but chose different subsets
and relative ordering of R1 queries to artificially cause different
degrees of workload change. Table 1 reports basic statistics on the
amount workload changes (in terms of δeuclidean) between consec-
utive windows of queries where each window was 28 days (differ-
ent window sizes are studied in Section 6.2). S1 queries were cho-
sen to mimic a workload with minimal change over time (between
0.1m and m, where m is the minimum change observed in R1).
S2 queries were chosen to exhibit the same range of δeuclidean as
R1 but more uniformly. More detailed analysis of these workloads
will be presented in the subsequent sections.

10Common benchmarks (e.g., TPC-H) are not applicable here as
they only contain a few queries, and do not change over time.
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Work-
load

Min
δ(Wi,Wi+1)

Max
δ(Wi,Wi+1)

Avg
δ(Wi,Wi+1)

Std
δ(Wi,Wi+1)

R1 m=0.00016 M=0.00311 0.00120 0.00122
S1 0.1m m 0.00006 0.00003
S2 m M 0.00178 0.00063

Table 1: Summary of our real-world and synthetic workloads.

Algorithms Compared — We divided the queries according to
their timestamps into 4-week windows,W0,W1, · · · . We re-designed
the database at the end of each month to simulate a tuning fre-
quency of a month (a common practice, based on our oral con-
versations). In other words, we fed Wi queries into each of the
following designers and used the produced design to processWi+1

(except for FutureKnowingDesigner; see below).

1. NoDesign: A dummy designer that returns an empty design (i.e.,
no projections). Using NoDesign all queries simply scan the default
super-projections (which contain all the columns), providing an up-
per limit on each query’s latency.

2. ExistingDesigner: The nominal designer shipped with com-
mercial databases. For instance, Vertica’s DBD [83] recommends
a set of projections while DBMS-X’s designer finds various types
of indices and materialized views. We used these state-of-the-art
designers as our main baselines.

3. FutureKnowingDesigner: The same designer as ExistingDesigner,
except that instead of feeding queries fromWi and testing onWi+1,
we both feed and test it on Wi+1. This designer signifies the best
performance achievable where the designer knows exactly which
queries to expect in the future and optimize for.

4. MajorityVoteDesigner: A designer that uses sensitivity analysis
to identify elements of the nominal design that are brittle against
changes of workload. This designer uses the same technique as
CliffGuard to explore the local neighborhood of the current Wi,
and generate a set of perturbed workloads W 1

i , · · · ,Wn
i . Then, it

invokes the ExistingDesigner to suggest an optimal design for each
W j
i . Finally, for each structure (e.g., index, materialized view, pro-

jection) s, MajorityVoteDesigner counts the number of times that
s has appeared in the nominal design of the neighbors, and selects
those structures that have appeared in different designs most fre-
quently. The idea behind this heuristic is that structures that appear
in the optimal design of fewer neighbors (have fewer votes) are less
likely to remain beneficial when the future workload changes.

5. OptimalLocalSearchDesigner: Similar to MajorityVoteDesigner,
this designer starts by searching the local neighborhood of the given
workload and generating perturbed workloads. However, instead
of selecting structures that have been voted for by the most number
of neighbors, this designer takes the union of the queries in the
neighboring workloads as the expectation (i.e., representative) of
the future workload, say W̄ . This algorithm then solves an Integer
Linear Program to find an optimal set of structures that fit in the
budget and minimize the cost of W̄ .11

7. CliffGuard: Our robust database designer from Section 4.

Note that DBD and DBMS-X’s designer (ExistingDesigner) are
our goal standards as the state-of-the-art designers currently used in
the industry. However, we also aim to answer the following ques-
tion. How much of CliffGuard’s overall improvement over nomi-
nal designers is due to its exploration of the initial workload’s local
neighborhood, and how much is due to its carefully selected de-

11A greedy version of this algorithm and a detailed description of
the other baselines can be found in Appendix F.
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Figure 5: Many workloads drift over time (15.5K queries, 6 months).

scent direction and step sizes in moving away from the worst neigh-
bors? Since MajorityVoteDesigner and OptimalLocalSearchDesigner

use the same neighborhood sampling strategy as CliffGuard but
employ greedy and local search heuristics, we will be able to break
down the contribution of CliffGuard’s various components to its
overall performance.

Since Vertica automatically decides on the storage budget (50GB
in our case), we used the same budget for the other algorithms too.
For DBMS-X experiments, we used a maximum budget of 10GB
(since the dataset was smaller). Also, unless otherwise specified,
we used n=20 samples in all algorithms involving sampling, and 5
iterations, λsuccess = 5, and λsuccess = 0.5 in CliffGuard.

6.2 Workloads Change Over Time
First, we studied if and how much our real workload has changed

over time. While OLTP and reporting queries tend to be more
repetitive (often instantiated from a few templates with different
parameters), analytical and exploratory workloads tend to be less
predictable (e.g., Hive queries at Facebook are reported to access
over 200–450 different subsets of columns [6]). Likewise, in our
analytical workload R1, we observed that queries issued by users
have constantly drifted over time, perhaps due to the changing na-
ture of their company’s business needs.

Figure 6.1 shows the percentage of queries that belonged to tem-
plates that were shared among each pair of windows as the time lag
grew between the two windows. Here, we have defined templates
by stripping away the query details except for the sets of columns
used in the select, where, group by, and order by clauses. This
is an overly optimistic analysis assuming that queries with the same
column sets in their respective clauses will exhibit a similar perfor-
mance. However, even with this optimistic assumption, we ob-
served that for a window size of one week, on average only 51% of
the queries had a similar counterpart between consecutive weeks.
This percentage was only 35% when our window was 4 weeks.
Regardless of the window size, this commonality drops quickly as
the time lag increases, e.g., after 2.5 months less than 10% of the
queries had similar templates appearing in the past. The unpre-
dictability of analytical workloads underlines the important role of
a robust designer. We show in Section 6.4 that failing to take into
account this potential change (i.e., uncertainty) in our target work-
load has a severe impact on the performance of existing physical
designers — one that we aim to overcome via our robust designs.

6.3 Our Distance Metric Is Sound
In Section 5, we introduced our distance metric δeuclidean to

concisely quantify the dissimilarity of two SQL workloads. While
we do not claim that δeuclidean is an ideal one (see Section 5), here
we show that it is sound. That is, in general:

δ(W0,W ) ≤ δ(W0,W
′)⇒ f(W,D(W0)) ≤ f(W ′,D(W0))

which means that a design made for W0 is more suitable for W
than it is for W ′, i.e., W will experience a lower latency than W ′.
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Figure 6: Performance decay of a window W on a design made for
another window W0 is highly correlated with their distance.

Figure 6 reports an experiment where we chose 10 different start-
ing windows as our W0 and created a number of windows with
different distances from W0. The curve (error bar) shows the av-
erage (range) of the latencies of these different windows for each
distance. This plot indicates a strong correlation and monotonic
relationship between performance decay and δeuclidean. Later, in
Section 6.4, we show that even with this simplistic distance metric,
our CliffGuard algorithm can consistently improve on Vertica’s lat-
est designer by severalfold.

6.4 Quality of Robust vs. Nominal Designs
In this section, we turn to the most important questions of this

paper: is our robust designer superior to state-of-the-art designers?
And, if so, by what measure? We compared these designers us-
ing all 3 workloads. In R1, out of the 15.5K queries, only 515
could benefit from a physical design, i.e., the remaining queries
were either trivial (e.g., select version()) or returned an entire
table (e.g., ‘select * from T’ queries with no filtering used for
backup purposes) in which case they always took the same time as
they only used the super-projections in Vertica and table-scans in
DBMS-X. Thus, we only considered queries for which there ex-
isted an ideal design (no matter how expensive) that could improve
on their bare table-scan latency by at least a factor of 3×.

Figure 7 summarizes the results of our performance compari-
son on Vertica, showing the average and maximum latencies (both
averaged over all windows) for all three workloads. On average,
MajorityVoteDesigner improved on the existing designer by 13%,
while OptimalLocalSearchDesigner’s performance was slightly worse
than Vertica’s DBD. However, CliffGuard was superior to the ex-
isting designer by an astonishing margin: on average, it cut down
the maximum latency of each window by 39.7× and 13.7× for R1
and S2, respectively. Interestingly, for these workloads, even Cliff-
Guard’s average-case performance was 14.3× and 5.3× faster than
ExistingDesigner. The last result is surprising because our CliffGuard
is designed to protect against worst-case scenarios and ensure a
predictable performance. However, improvement even on the av-
erage case indicates that the design space of a database is highly
non-convex — and as such can easily delude a designer into a lo-
cal optimum. Thus, by avoiding the proximity of bad neighbors,
CliffGuard seems to find designs that are also more globally opti-
mal. In fact, for S2, Figure 7(c) shows that CliffGuard is only 30%
worse than a hypothetical, ideal world where future queries are
precisely known in advance (i.e., the FutureKnowingDesigner). For
S1, however, CliffGuard’s improvement over ExistingDesigner is
more modest: 1.5× improvement for worst-case latency and 1.2×
for average latency. This is completely expected since S1 is de-
signed to exhibit no or little change between different windows
(refer to Table 1). This is the ideal case for a nominal designer
since the amount of uncertainty across workloads is so negligible
that even our hypothetical FutureKnowingDesigner cannot improve
much on the nominal designer. Thus, averaging over all three work-
loads, compared to ExistingDesigner, CliffGuard improves the av-
erage and worst-case latencies by 6.9× and 18.3×, respectively.

Figure 10 reports a similar experiment for workload R1 but for
DBMS-X. (DBMS-X experiments on workloads S1 and S2 can be
found in Appendix A.3.) Even though DBMS-X’s designer has
been fine-tuned and optimized over the years, CliffGuard still im-
proves its worst-case and average-case performances by 2.5–5.2×
and 2–3.2×, respectively. This is quite encouraging given that
CliffGuard is still in its infancy stage of development and treats the
database as a black-box. While still significant, the improvements
here are smaller than those observed with Vertica. This is due to
several heuristics used in DBMS-X’s designer (such as omitting
workload details) that prevent it from overfitting its input work-
load. However, this also shows that dealing with such uncertainties
in a principled framework can be much more effective.

These experiments confirm our hypothesis that failing to account
for workload uncertainty can have significant consequences. For
example, for R1 on Vertica, ExistingDesigner is on average only
25% better than NoDesign (with no advantage for the worst-case).
Note that here the database was re-designed every month, which
means even this slight advantage of ExistingDesigner over NoDesign
would quickly fade away if the database were to be re-designed
less frequently (as the distance between windows often increases
with time; see Figure 6.1). These experiments show the ample im-
portance of re-thinking and re-architecting the existing designers
currently shipped and used in our database systems.

6.5 Effect of Robustness Knob on Performance
To study the effect of different levels of robustness, we varied

the Γ parameter in our algorithm and measured the average and
worst-case performances in each case. The results of this experi-
ment for workloads R1 and S2 are shown in Figures 8 and 9, respec-
tively. (As reported in Section 6.4, workload S1 contains minimal
uncertainty and thus is ruled out from this experiment, i.e., the per-
formance difference between ExistingDesigner and CliffGuard re-
mains small for S1). Here, experiments on both workloads confirm
that requesting a large level of robustness will force CliffGuard

to be overly conservative, eliminating its margin of improvement
over ExistingDesigner. Note that in either case CliffGuard still
performs no worse than ExistingDesigner, which is due to two
reasons. First, ExistingDesigner is only marginally better than
NoDesign (refer to Section 6.4) and as Γ increases, its relevance
for the actual workload (which has a much lower δeuclidean) de-
grades. As a result, both designers approach NoDesign’s perfor-
mance, which serves an upper bound on latency (i.e., unlike theory,
latencies are always bounded in practice, due to the finite cost of the
worst query plan). The second reason is that, during each iteration
of CliffGuard (unlike BNT), our new workload always contains
the original workload which ensures that even when Γ is large, the
designer will not completely ignore the original workload (see Al-
gorithm 3). Also, as expected, as Γ approaches zero, CliffGuard’s
performance again approaches that of a nominal designer.

7. RELATED WORK
There has been much research on physical database design prob-

lems, such as the automatic selection of materialized views [10,
14, 18, 43, 61, 67, 77, 84, 87], indices [33, 34, 47, 64, 72, 81],
or both [9, 13, 38, 56, 89]. Also, most modern databases come
with designer tools, e.g., Tuning Wizard in Microsoft SQL Server
[10], IBM DB2’s Design Advisor [89], Teradata’s Index Wizard
[26], and Oracle’s SQL Tuning Adviser [38]. Other types of design
problems include project selection in columnar databases [40, 57,
83] and stratified sample selection in approximate databases [4, 6,
17, 29]. All these designers are nominal and assume that their tar-
get workload is precisely known. Since future queries are often not
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(b) Synthetic static workload S1 on Vertica.
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(c) Synthetic drifting workload S2 on Vertica.

Figure 7: Average and worst-case performances of designers for Vertica, averaged over all windows, for workloads R1, S1, and S2.
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Figure 8: Different degrees of robustness
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0"

5000"

10000"

15000"

20000"

&0.0
01" 0"

0.0
01"

0.0
02"

0.0
03"

0.0
04"

0.0
05"

0.0
06"

0.0
07"

0.0
08"

Q
ue

ry
"L
at
en

cy
"(m

s)
"

Robustness"knob"(Γ)"

CliffGuard's,Avg,Latency,

CliffGuard's,Max,Latency,

Exis9ngDesigner's,Avg,Latency,

Exis9ngDesigner's,Max,Latency,
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Figure 10: Performance of different design-
ers for DBMS-X on workload R1.

known in advance, these tools optimize for past queries as approxi-
mations of future ones. By failing to take into account the fact that a
portion of those queries will be different in the future, they produce
designs that are sub-optimal and brittle in practice. To mitigate
some of these problems, a few heuristics [35] have been proposed
to compress and summarize the workload [30, 55] or modify the
query optimizer to produce richer statistics [44]. However, these
approaches are not principled and thus, do not necessarily guaran-
tee robustness. In contract, CliffGuard takes the possible changes
of workload into account in a principled manner, and directly max-
imizes the robustness of the physical design.

To avoid these limitations, adaptive indexing schemes [45, 46,
48, 53, 76]) take the other extreme by avoiding the offline phys-
ical design, and instead, creating and adjusting indices incremen-
tally, on demand. Despite their many merits, these schemes do not
have a mechanism to incorporate prior knowledge under a bounded
amount of uncertainty. Also, one still needs to decide which sub-
sets of columns to build an adaptive index on. For these reasons,
most commercial databases still rely on their offline designers. In
contrast, CliffGuard uses RO theory to directly minimize the effect
of uncertainty on optimality, and guarantee robustness.

The effect of uncertainty (caused by cost and cardinality esti-
mates) has also been studied in the context of query optimization
[16, 31, 37, 42, 66, 74] and choosing query plans with a bounded
worst-case [15]. None of these studies have addressed uncertain-
ties caused by workload changes, or their impact on physical de-
signs. Also, while these approaches produce plans that are more
predictable, they are not principled in that they do not directly max-
imize robustness, i.e., they do not guarantee robustness even in the
context of query optimization. Finally, most of these heuristics are
specific to a particular problem and do not generalize to others.

Theory of robust optimization has taken many strides in recent
years [21, 22, 23, 36, 41, 58, 88] and has been applied to many other
disciplines, e.g., supply chain management [21], circuit [73] and
antenna [63] design, power control [51], control theory [20], thin-
film manufacturing [24], and microchip architecture [71]. How-
ever, to the best of our knowledge, this paper is the first application
of RO theory in a database context (see Section 4.2).

8. CONCLUSION AND FUTURE WORK
The state-of-the-art database designers rely on heuristics that do

not account for uncertainty, and hence produce sub-optimal and
brittle designs. On the other hand, the principled framework of ro-
bust optimization theory, which has witnessed remarkable advances
over the past few years, has largely dealt with problems that are
quite different in nature than those faced in databases. In this paper,
we presented CliffGuard to exploit these techniques in the context
of physical design problems in a columnar database. We compared
our algorithm to a state-of-the-art commercial designer using sev-
eral real-world and synthetic workloads. In summary, compared to
Vertica’s state-of-the-art designer, our robust designer reduces the
average and maximum latency of queries by up to 5× and 11×,
respectively. Similarly, CliffGuard improves upon DBMS-X’s de-
signer by 3–5×. Since CliffGuard treats the existing designer as
a block-box, with no modifications to the database internals, an
interesting future direction is to extend CliffGuard to other major
DBMSs with other types of design problems.
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Figure 11: The effect of different distance functions on CliffGuard’s
effectiveness (on workload R1).
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APPENDIX
The goal of this section is to provide the interested reader with addi-
tional details on various aspects of our approach. Several important
experiments are presented in Appendix A. Appendix B provides the
optimization formulation used in the BNT framework for finding
the (steepest) descent direction [22]. (As mentioned in Section 4.2,
this formulation cannot be directly used for finding robust database
designs.) Appendix C provides the detailed sampling strategy used
in CliffGuard, when the Γ-neighborhood is expressed using dis-
tance δeuclidean (introduced in Section 5). Appendix D provides
a few examples and a more detailed discussion on various alter-
natives for defining database-specific distance metric. Additional
related work on physical design is overviewed in Appendix E. Fi-
nally, in Section F, we provide a more formal description of the
baseline algorithms used in Section 6.

A. ADDITIONAL EXPERIMENTS
In this appendix, we study the effects of different distance met-

rics and other parameters on CliffGuard’s performance, in Sections
A.1 and A.2, respectively. We report additional experiments using
DBMS-X in Section A.3. Finally, the offline times for various de-
sign algorithms are presented in Section A.4.

A.1 The Distance Metric’s Effect on CliffGuard
To study the implications of our choice of distance function on

CliffGuard’s effectiveness, we have repeated our experiments on
R1 using various distance metrics. The results are shown in Fig-
ure 11. Here, Euc-union is our δeuclidean metric defined in Section
5, annotated by the clauses used in its binary vector. For instance,
in Euc-union (S), we only consider the set of columns appearing
in the select clause while in Euc-union (SWGO) represents our
default choice where we take the union of all columns appearing
in the select, where, group by, and order by clauses. Euc-
separate is our extension of δeuclidean, called δseparate, which was
defined in Section 5. Finally, Euc-latency is another extension of
our Euclidean distance that besides the intra-column similarities, it
also accounts for the actual latency of the queries to differentiate
queries that share the same set of columns but differ in their laten-
cies significantly. (The latency-aware metric is formally defined as
δlatency in Appendix D.)

As expected, CliffGuard’s reaches its best performance when
using Euc-latency since it can quantify the changes of the work-
load more accurately. Interestingly, despite using more bits, the
difference between Euc-separate and Euc-union (SWGO) is quite
negligible. When constrained to only consider the columns in one
of the clauses, the where and group by clauses seem to be the

most informative ones to the CliffGuard, as they inform the un-
derlying nominal designer which sets of columns will be filtered
on or grouped. Columns in the order by clause are only involved
in post-processing of the queries and hence, do not prove as use-
ful. The select clauses, however, seem suprisingly informative.
Upon closer examination, we have discovered that this is because
the majority of the columns referenced in the where and group by

clauses of our queries also appear in the select clause. Thus,
the select clause indirectly informs the designer about the filter-
ing and group columns. In summary, while Euc-latency appears
to the be the most effective in capturing the workload uncertainty,
CliffGuard’s default choice is still Euc-union (SWGO) since the
former cannot be efficiently computed and hence, is impractical.
However, we can compute δeuclidean much more efficiently; see
Section 5 and Appendix D).

A.2 Studying various Parameters in CliffGuard
Besides Γ, which is a user-provided parameter, there are two

other important parameters in CliffGuard. Figure 12 studies the
effect of varying the number of sampled workloads (i.e., n in Line
2 of Algorithm 2) on both average and worst-case performances,
indicating that with as few as 10 sampled workloads, CliffGuard
is able to infer a general direction of descent which will make it
farther from its worst-neighbors. We also varied the number of
iterations, shown in Figure 13. Surprisingly, CliffGuard is capable
of moving away from its worst-neighbors and quickly reaching a
local robust optimum within a few iterations. We believe this is
due to BNT’s principled framework, which by moving along the
(steepest) descent direction guarantees fast convergence in practice.
For this reason, the default number of iterations in CliffGuard is
currently 5, as we rarely observe any improvement after that (i.e.,
we reach a robust solution earlier).
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A.3 Additional Comparisons for DBMS-X
We have compared our various baselines for DBMS-X on all

three workloads. In Section 6.4, we reported the results for the real
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Figure 14: Offline-time taken by each designer compared to the de-
ployment time.

workload R1. The results for workloads S1 and S2 can be found in
Figure 15.

A.4 Offline Processing Time
The last question that we study is how expensive a robust de-

signer is compared a nominal one, and also compared to the de-
ployment phase (i.e., the actual creation of the selected projec-
tions). Figure 14 shows that our robust designer, CliffGuard, takes
2.3 hours to finish while ExistingDesigner takes about 30 minutes.
This is of course expected since CliffGuard is an iterative algorithm
that invokes ExistingDesigner in each iteration (refer to our design
principles in Section 2). As noted earlier, the maximum number
of iterations is CliffGuard is currently 5. The fastest baseline is
MajorityVoteDesigner, which only performs counting after the ini-
tial design.

Note that while finding a robust design takes 5× longer than
finding a nominal one, this is still an attractive price to pay for
robustness due to the following reasons. First, the superiority of
CliffGuard over ExistingDesigner is not due to the longer time that
the former takes, but rather the different type of design that it pro-
duces. In other words, we cannot provide ExistingDesigner with
more time to find a better design as it has already found the nominal
optimum after 30 minutes and will not search for a robust design
since it is not a robust designer (remember than ExistingDesigner

does not take a time budget and finishes when it has completed
its search). Second, finding a physical design is an offline process
that only occurs monthly or a few times a year. The reason why
databases are not re-designed more frequently is not because of the
cost of finding a new design, but rather due to the prohibitive cost
of creating and deploying a new design. For instance, our database
takes more than 15 hours to completely deploy a new design, i.e.,
the design time is negligible compared to the actual deployment
time. (Also, as a database grows in size, design time remains the
same but deployment cost grows linearly). Finally, many users will
be willing to pay a 5× penalty in offline processing time to win a
5–10× improvement in their online query processing latency (see
Section 6.4 for our latency comparison).

B. FINDING DESCENT DIRECTIONS
Bertsimas et al. [22] use a second-order cone program (SOCP) to

find the (steepest) descent direction, given all the worst-neighbors
of the current decision point. Their formulation is presented in Al-
gorithm 4. The descent direction must form the maximum angle
θmax with all the (ui)− x vectors. The intuition is that when such
a descent direction exists, θmax is always greater than 90°(refer to
Figure 3(a)) because of the ~d′(ui − x) ≤ β ≤ −ε < 0 constraint.
In this algorithm, β ≤ 0 is not used in place of β < 0 to exclude
the trivial solution which is the zero vector ~d∗ = 0. As noted

Algorithm 4: The subroutine for finding the descent direction.
Inputs: x: the initial point,

U : the set of all worst-neighbors of x
Output: ~d∗: a decent direction that moves away from all ~∆xi

vectors where ~∆xi = (ui − x) for every ui ∈ U

Subroutine FindDescentDirection (x, U )
// Solve the following second-order cone program (SOCP)

(~d∗, β∗) ← ArgMin
~d,β

β (11)

such that: ||~d||2 ≤ 1,

~d′(ui − x) ≤ β ∀ ui ∈ U
β ≤ −ε (ε is a small positive scalar)

if problem (11) is infeasible
then

return null // No descent direction exists
else

return ~d∗
end

end

earlier, SOCPs can be solved efficiently by most open-source and
commercial solvers (via the so-called interior point methods [25]).

C. SAMPLING THE WORKLOAD SPACE
To implement CliffGuard we must be able to efficiently sample

the workload space (Algorithm 2, Line 2). In other words, given a
workload W0 and a certain distance Γ we must find n > 1 neigh-
bors W1, · · · ,Wn such that δ(W0,Wi) ≤ Γ for i = 1, · · · , n. To
solve this problem, it suffices to solve the following sub-probem.
Given a workloadW0 and a certain distance α, find a workloadW1

such that δ(W0,W1) = α. Assuming we have a randomized algo-
rithm to solve the latter problem, we can achieve the former goal
by simply repeating this procedure n times, each time randomly
picking a new α ∈ [0,Γ].

We can perform this problem efficiently when our distance met-
ric is δeuclidean defined in Section 5. The pseudocode for this pro-
cedure is presented in Algorithm 5. Here, to implement Line 2,
one can construct different query sets Q by restricting oneself to
only pick queries that are not already contained in W0. One can
start with k = 1 and if unsuccessful, continue to increase k until
such a Q is found. Note that finding such a Q is much easier than
the original problem, since we are not searching for a particular
δeuclidean(W0, Q) distance. Rather, it suffices to find a Q that is
sufficiently different from Q. Once such a Q is found, Algorithm 5
is guaranteed to find a new workloadW1 where δeuclidean(W0,W1)=α.
This can be proved as follows:

First note that Q ∩W0 = ∅ implies that non-zero coordinates in
VW0 are zero in VQ and the non-zero coordinates in VQ are zero
VW0 . Thus, since W1←W0

⊎bcc
i=1 Q, we have:

VW1 =
n

n+ bcc · kVW0 +
bcc · k

n+ bcc · kVQ (12)
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Figure 15: Avg. and worst-case performances of designers for DBMS-X, averaged over all windows.

Algorithm 5: The subroutine for sampling the workload space
based on a given value of δeuclidean distance.

Inputs: W0: the initial workload,
α: the required distance

Output: W1: a new workload satisfying
δeuclidean(W0,W1) = α

// Find a set of queries not contained in W0

2 Find Q = {q1, · · · , qk} such that
Q ∩W0 = ∅ and δeuclidean(W0, Q) > α

4 β ← δeuclidean(W0, Q)

5 λ←
√

α
β

6 n← |W0| // n is the number of queries in W0 (including
duplicate queries)

8 c← n·λ
k·(1−λ)

// k is the number of iterations so far
9 W1←W0

⊎bcc
i=1 Q // take the original queries in W0 plus

bcc instances of every q ∈ Q without removing
duplicates

return W1

Therefore, we have the following:

δeuclidean(W0,W1) = |VW0 − VW1 | × S × |VW0 − VW1 |
T

= (
bcc · k

n+ bcc · k )2 · | − VW0 + VQ| × S×

| − VW0 + VQ|T

= (
bcc · k

n+ bcc · k )2δeuclidean(W0, Q)

= (
bcc · k

n+ bcc · k )2β ≈ (

n·λ
k·(1−λ)

· k
n+ n·λ

k·(1−λ)
· k

)2β

= λ2 · β =
α

β
· β = α (13)

In our experiments, we have typically found such Q with a few
trials for k ≤ 5. When c is not an integer, we use bcc instances
of Q to create a new workload with an integer number of different
SQL queries. Thus, when bcc 6= c, δeuclidean(W0,W1) ≈ α.

D. LATENCY-AWARE DISTANCE METRICS
As discussed in Section 3, a key notion in the theory of robust

optimization is incorporating uncertainty in the optimization prob-
lem formulation. Since we may not have distributional information
of the uncertainty in many practical situations,12 the uncertainty in

12In our case, we do not know which queries will be issued with
what probabilities in the future.

robust optimization is expressed via an uncertainty set, such as a
Γ-neighborhood. A major source of uncertainty in databases is that
queries that are often unknown a priori or are subject to change.13

Here, our parameter is our query workload, and its nominal value
can be our past workload W0. Analogously, we need to define a
database-specific distance metric δ so that users can express their
robustness requirements with a parameter Γ ≥ 0 by demanding
that their design must be robust for any future workload W as long
as δ(W0,W ) ≤ Γ.

The question then is how to define a suitable distance for a pair
of database workloads. To discover what makes a distance metric
suitable for our database design framework, let us start by investi-
gating the simplest choice. For ease of notation, let us assume that
there are only a finite number of unique SQL queries, say N , that
can be written, say q1, · · · , qN . Then, we can represent any given
workload W as W = {(qi, ri) | 1 ≤ i ≤ N}, where ri is the
normalized frequency of qi in W , namely the number of queries in
W that are identical to qi divided by the total number of queries in
W . Note that the same SQL query may appear several times in a
workload (ri > 0) and many queries may never occur in W (i.e.,
ri = 0), but we have

∑N
i=1 ri = 1.

Using this notation, the simplest notion of distance could be one
that captures the changes of the frequencies of different queries
between the two workloads, for instance:

δsimple(W1,W2) =
1

n

N∑
i=1

|r1
i − r2

i | (14)

where r1
i and r2

i are the frequencies of qi in W1 and W2, respec-
tively. Besides the obvious problem of N being too large (or infi-
nite in reality), there is a more important problem with this δsimple,
which we illustrate using a toy example.

EXAMPLE D.1. Consider a single-table database which only
has 3 columns c1, c2 and c3. Further assume that projection-only
queries are the only type allowed in this database, i.e., each query
simply projects a non-empty subset of these 3 columns without any
other clauses. Below are two examples out of the 23 − 1 = 7
possible query types:

SELECT c1, c3 FROM T;
SELECT c1, c2, c3 FROM T;

Thus, we can uniquely represent each query type as a binary string
q ∈ {0, 1}3, where the i’th bit in q is 1 when column ci is queried

13Note that there are other sources of uncertainty in a database such
as the error of our cost or resource estimates which make interest-
ing directions for future work. In Section 6, we show that even
considering workload uncertainty alone can yield substantial im-
provements in performance robustness.

17



!0.5%
0%

0.5%
1%

1.5%
2%

2.5%
3%

3.5%

0% 0.005% 0.01% 0.015% 0.02% 0.025% 0.03% 0.035%Av
er
ag
e%
Ra

0o
%o
f%W

1'
s%l
at
en

cy
%

to
%W

0'
s%L

at
en

cy
%(U

si
ng
%a
%

De
si
gn
%M

ad
e%
fo
r%W

0)
%%

W1's%distance%from%W0�

(a) The correlation of δlatency with actual performance, when ω = 0.1.

!0.2%

0%

0.2%

0.4%

0.6%

0.8%

1%

1.2%

1.4%

0" 0.01" 0.02" 0.03" 0.04" 0.05" 0.06" 0.07"

Av
er
ag
e"
Ra

2o
"o
f"W

1'
s"l
at
en

cy
"

to
"W

0'
s"L

at
en

cy
"(U

si
ng
"a
"

De
si
gn
"M

ad
e"
fo
r"W

0)
""

W1's"distance"from"W0�
(b) The correlation of δlatency with actual performance, when ω = 0.2.

Figure 16: Empirical evaluation of a latency-aware distance metric (compare to our δeuclidean in Figure 6).

Workloads All possible queries
001 010 011 100 101 110 111

W1 0.1 0 0 0.9 0 0 0
W2 0.15 0 0 0.85 0 0 0
W3 0.1 0 0.05 0.85 0 0 0
W4 0 0 0 0 0 0.5 0.5

Table 2: The frequency of different query types in four exam-
ple workloads. Here, each query only projects a subset of 3
columns, represented as a binary string.

and 0 otherwise. For example, 101 and 111 represent the two
queries above, respectively. Let us consider four example work-
loads W1–W4, shown in Table 2 where each row lists the normal-
ized frequencies of different query types in one of the workloads.
E.g., 10% of the queries in workloadW3 are instances of type 001,
5% are of type 011, and 85% are of type 100. Using Equation (14),
we have

δsimple(W1,W2) = δsimple(W2,W3) =
0.05 + 0.05

7
≈ 0.014

In other words, using δsimple, W2 is of the same distance from
both W1 and W3. However, on a closer look at these workloads,
one can see that W2 is more similar to W1 than it is to W3. This
is because W1 and W2 contain the exact same types of queries but
with different frequencies, while W1 and W2 have different types
of queries (W2 does not contain query 011 but W3 does). This
difference is quite important from a physical design perspective.
For instance, if the database builds two materialized views for W2

to cover both of its query types (i.e., 001 and 100), the same views
will cover all W1 queries as well, but that may not be the case for
W3 since it contains query types not present in W1.

The goal of this simplified example is to show that not every
distance metric is suitable for expressing the degree of robustness.
Ideally, we would like a metric δ that is correlated with the perfor-
mance of a physical design, namely for any workloadsW1,W2,W3:

δ(W1,W2) ≤ δ(W1,W3)⇒ f(W2,D(W1)) ≤ f(W3,D(W1))

This is soundness criterion, presented as (8) in Section 5. Intu-
itively, we call a distance metric sound, if the smaller δ(W1,W2)
(i.e., the more similar), the better the performance of W2 on a de-
sign that is nominally optimal for W1.

Note that Equation (14) can be improved by including an additive
term to penalize the distance based on the number and frequency of
query types that are not shared between the W1 and W2, i.e., they
have a positive frequency in one but a zero frequency in the other.
However, other limitations will remain.

For instance, the frequency differences in (14), (i.e., the |r1
i −r2

i |
terms) only consider the frequency changes for query types individ-

ually and cannot capture the impact of frequency changes in non-
identical but similar query types. In our Example D.1, the query
type 110 is more similar to query 100 than to query 001 because
a projection on columns c1 and c2 is likely to improve the perfor-
mance of a query that only accesses c1, but it will not help a query
that accesses c3.

Based on the assumptions and the implicit requirements of the
BNT framework, we have identified the different criteria for a prac-
tical distance metric for database workloads (as presented in Sec-
tion 5):

(a) The smaller the distance δ(W1,W2), the better the performance
ofW2 onW1’s nominally optimal design, as formally stated in
(8).

(b) δ should account for intra-query similarities; that is, if r1
i > r2

i

and r1
j < r2

j , the distance δ(W1,W2) should become smaller
based the similarity of the queries qi and qj , assuming the same
frequencies for the other queries.

(c) δ should be symmetric; that is, δ(W1,W2) = δ(W2,W1) for
any W1 and W2. (This is needed for the theoretical guarantees
of the BNT framework.)

(d) δ must satisfy the triangular property; that is, δ(W1,W2) ≤
δ(W1,W3) + δ(W3,W2) for any W1,W2,W3. (This is an
implicit assumption in almost all gradient-based optimization
techniques, including BNT.)

As explained in Section 5, δeuclidean can sufficiently capture the
workload change for our physical purposes. This distance has also
empirically proven both efficient and effective in our CliffGuard

algorithm. However, we have also explored the natural question
of whether incorporating performance-specific characteristics into
the distance of two SQL workloads would improve our distance
metric. Specifically, we have sought a more sophisticated distance
metric that can satisfy the stricter requirement introduced in Sec-
tion 5, namely (11), stating that for all workloads W1,W2,W3 and
arbitrary design D, δ must satisfy:

δ(W1,W2) ≤ δ(W1,W3) ⇒
|f(W2, D)− f(W1, D)| ≤ |f(W3, D)− f(W1, D)| (11)

In other words, the distance functions should directly match the
performance characteristics of the workloads (the lower their dis-
tance, the more similar their performance).

To directly capture the strict requirement of 11, we define as
latency-aware distance metric, as follows:

δlatency(W1,W2) = (1−ω)·δeuclidean(W1,W2)+ω·R(W1,W2)
(15)
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where 0 ≤ ω ≤ 1 is a constant and R(W1,W2) is a term cap-
turing the difference of latency between W1 and W2, defined as:

R(W1,W2) =
|f(W1, ∅)− f(W2, ∅)|
|f(W1, ∅) + f(W2, ∅)|

(16)

Remember that f(W,D) is the sum of the latencies of all queries
in W . However, since the distance metric should be independent
of a specific design, in this definition we use D = ∅, i.e., we
take their baseline latencies (using no designs). In the two extreme
cases, when the cost of either W1 or W2 is zero, R(W1,W2) = 1
and when the two windows exhibit identical latencies, we have
R(W1,W2) = 0. The constant ω acts as a penalty factor to tune
the behavior of δlatency , i.e., when latency difference is less impor-
tant than structural similarities, one can choose a smaller value of
ω (With ω = 0, this distance degenerates to δeuclidean).

Using the same testing scenario as Section 6.3, we have empir-
ically evaluated δlatency , as shown in Figure 16. Here, instead of
showing the absolute latency, we have reported the ratio of the la-
tencies of the two windows. Ideally, this ratio should be monotonic
with the value of δlatency . This is not the case in Figure 16(a)
where the penalty factor is ω = 0.1. However, increasing this
value to ω = 0.2 yields a relatively monotonic trend, as shown in
Figure 16(b). This underlines the importance of choosing an ap-
propriate value of ω for obtaining desirable results. Our simpler
distance metric δeuclidean, which provides a comparably reason-
able accuracy in capturing the performance requirements of SQL
workloads (as demonstrated in Section 6.3), does not need param-
eter tuning. For this and several other reasons discussed in Section
5, we currently use δeuclidean in CliffGuard.

E. ADDITIONAL RELATED WORK
There has been a significant body of research on finding physical

designs for database systems. Due to lack of space, we provide a
more detailed treatment of the related work in this appendix.

While most commercial designers are based on greedy search
algorithms, several academic solutions have proposed integer pro-
gramming for finding the best set of views/indices. These approaches,
unlike their greedy counterparts, are often guaranteed to find the
(nominally) optimal design for the given workload. Even though
integer programming is an NP-complete problem, most practical
problem can be solved quite efficiently using the state-of-the-art
solvers. By observing and characterizing various properties of the
views and indices that appear in an optimal solution, Talebi et al.
[79] prune the space of potentially beneficial views and indices
while keeping at least one globally optimal solution in the search
space. The authors also develop a heuristic procedure to further
reduce the size of the search space so that the algorithm can solve
larger instances of the problem. Integer programming has also been
used for finding an optimal set of stratified samples in approximate
databases [6, 7] and indices in PostgreSQL [64].

Lightstone et al. [62] describe Autonomic Computing (in the
context of DB2 Universal Database) and enumerate the technolog-
ical and manpower challenges that motivate the industrial push for
self-designing, self-administering and self-tuning systems. (Auto-
nomic computing has also been discussed in its broader context
[54].) AutoAdmin [27, 31, 60] is another major research project
(initiated at Microsoft over a decade ago) that focuses on automatic
database tuning, including automatic selection of indices and ma-
terialized views. Li et al. [60] aims to address lack of robustness
in previous approaches in resource estimation of SQL queries, by
combining knowledge of database query processing with statistical
models. The authors model resource usage at the level of individ-

ual operators, with different models and features for each operator
type, and explicitly model the asymptotic behavior of each opera-
tor. However, our focus in this paper was on minimizing the effect
of workload uncertainty on the database performance. Chaudhuri et
al. [31] discuss strategies for selecting a plan with a desired trade-
off between the average and variance of query cost for different
instances of parameterized queries.

LeFevre et al. [59] introduce the concept of opportunistic physi-
cal design, whereby materializing intermediate results in a MapRe-
duce environment can lead significant opportunities for speeding
up query processing (due to the overlap between revised instances
of the same query). Alagiannis et al. [11] propose an interactive
physical designer for PostgreSQL, which allows the DBA to sim-
ulate various physical design features and get immediate feedback
on their effectiveness. The H2O system [12] dynamically adapts
its data storage layout based on the incoming query workload. To
determine the optimal data layout for a given workload, H2O starts
with attributes accessed by the queries and progressively improves
the proposed solution by considering new groups of columns. The
new groups are generated by merging narrow groups with groups
generated in previous iterations.

F. BASELINE ALGORITHMS
In this section, for the interested reader, we explain the baseline

algorithms briefly described in Section 6.1 in further detail. As
discussed earlier, the primary goal of these baselines is to evalu-
ate the superiority of a principled approach to robust optimization
(used in CliffGuard) over greedy heuristics and local search alter-
natives. The secondary goal of these baselines is to break down
the contribution of various components of the CliffGuard algo-
rithm to the overall performance improvement. In other words,
how much of CliffGuard’s overall improvement over nominal de-
signers is due to its exploration of the local neighborhood (i.e., Γ-
neighborhood) of the initial workload W0? And how much of this
improvement is due to its carefully selected descent direction and
step sizes in moving away from the worst neighbors? To investigate
these questions, we have designed and implemented three baseline
algorithms: MajorityVoteDesigner, GreedyLocalSearchDesigner, and
OptimalLocalSearchDesigner. All three algorithms take advantage
of the same neighborhood exploration strategy used in CliffGuard

(described in Appendix C) to find perturbed workloads.
MajorityVoteDesigner performs sensitivity analysis to identify

the brittle elements of the current nominal design that are more
likely to be of limited benefit when the future workloads deviate
from past. Given that GreedyLocalSearchDesigner was always infe-
rior and significantly slower than OptimalLocalSearchDesigner (as
explained below), we have omitted it from our experiments in Sec-
tion 6. However, we still provide its detailed description for com-
pleteness.

MajorityVoteDesigner — The pseudo code of this baseline is pre-
sented in Algorithm 6. The idea behind this algorithm is to identify
those elements of the design that tend to stay in the optimal design,
recommended by the nominal designer, even when the workload
deviates form the past. In other words, by observing how the op-
timal design changes with the perturbations of the current work-
load, MajorityVoteDesigner identifies the most brittle elements of
the current nominal design and replaces them with structures that
are more resilient to workload changes.

In Algorithm 6, we first sample the neighborhood of W0 and
choose n perturbed windows of distance Γ fromW0, sayW1, · · · ,Wn

(Line 1). Subsequently, we invoke the existing nominal designer
(e.g., DBD in Vertica or DBMS-X’s designer) to find the optimal
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Algorithm 6: The MajorityVoteDesigner algorithm.
Inputs: Γ: the desired degree of robustness,

δ: a distance metric defined over pairs of workloads,
B: the (storage or maintenance) budget for building a design,
W0: initial workload,
D: an existing (nominal) designer,
f : the cost function (or its estimate),

Output: D∗: a design that is hopefully less sensitive to workload changes within W0’s Γ-neighborhood

1 P ← {Wi | 1 ≤ i ≤ n, δ(Wi,W ) ≤ Γ} // Sample some perturbed workloads in the Γ-neighbor of W0

2 for i← 1 to n do
3 Di ← D(Wi) // Find the nominal design for each sample neighbor

end
5 S ←

n
∪
i=1
Di // Take the union of all structures (indices, materialized views, etc.) used in any of the neighbors’ nominal design

6 for s ∈ S do
7 cs ←

∑n
i=1 1(s ∈ Di) // Count the number of designs that each structure s has appeared in

end
9 〈s1, s2, · · · , s|S|〉 ← sort structures in S in the decreasing order of cs values // s1 appears in the most number of Di’s while s|S|

appears the least.
10 D∗ ← {}
11 for i← 1 to n do
12 if price(D∗ ∪ {si}) ≤ B

then
14 D∗ ← D∗ ∪ {si}

end
end

17 return D∗

Algorithm 7: The GreedyLocalSearchDesigner algorithm.
Inputs: Same as in Algorithm 6
Output: D∗: a design greedily found to minimize the cost over the entire Γ-neighborhood of W0

1 P ← {Wi | 1 ≤ i ≤ n, δ(Wi,W ) ≤ Γ} // Sample some perturbed workloads in the Γ-neighbor of W0

2 for i← 1 to n do
3 Di ← D(Wi) // Find the nominal design for each sample neighbor

end
5 S ←

n
∪
i=1
Di // Take the union of all structures (indices, materialized views, etc.) used in any of the neighbors’ nominal design

6 W̄ ←
n⊎
i=1

Wi // Take the union of all queries from neighbors (without removing duplicates) as a representative workload

7 D∗ ← {}
8 while S 6= {}

do
10 s∗ = ArgMin

s∈S
f(W̄ ,D∗ ∪ {s}) // Find the next best structure, given the other structures that have already been added to D∗

11 S ← S\{s} // Remove s from S so we do not re-consider it in the future
12 if price(D∗ ∪ {s∗}) ≤ B // fits within the given budget then
13 D∗ ← D∗ ∪ {s∗}

end
end

16 return D∗

design for each Wi, say Di (Lines 2–3). Next, we consider the
union of all physical structures (e.g., indices, materialized views)
found in any of the nominal designs as our design space, called S
(Line 5). This black-box treatment of the underlying nominal de-
signer ensures that our designer remains general to arbitrary databases
and physical design problems, as it does not have to construct phys-
ical structures from scratch. Rather, we simply take any structure
produced by the underlying nominal designer (whether it be an in-

dex or a materialized view or a projection).14

To choose a subset of S, in MajorityVoteDesigner we count how
many times each physical structure has appeared in the nominal
designs of the perturbed windows (Line 6–7). We include those
structures in our design that have appeared in the most number of

14The limitation here is that our robust designer cannot consider any
structure that does not appear in the nominal designer’s output for
any of the perturbed windows. However, our goal is to improve on
the nominal designer even without considering such structures.
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Algorithm 8: The OptimalLocalSearchDesigner algorithm.
Inputs: Same as in Algorithm 6
Output: D∗: a design that minimizes the cost over the entire Γ-neighborhood of W0

1 P ← {Wi | 1 ≤ i ≤ n, δ(Wi,W ) ≤ Γ} // Sample some perturbed workloads in the Γ-neighbor of W0

2 for i← 1 to n do
3 Di ← D(Wi) // Find the nominal design for each sample neighbor

end
5 S ←

n
∪
i=1
Di // Take the union of all structures (indices, materialized views, etc.) used in any of the neighbors’ nominal design

6 W̄ ←
n⊎
i=1

Wi // Take the union of all neighbors’ queries (without removing duplicates) as a representative workload

7 D∗ ← ArgMin
D⊆S,price(D)≤B

f(W̄ ,D) // Find the best subset of the structures (e.g., using an Integer Linear Program formulation)

8 return D∗

nominal designs. We start from the most popular structures (i.e.,
with the highest frequency count) in a greedy fashion, skipping
those structures whose come exceeds our remaining (storage) bud-
get. Thus, our strategy in MajorityVoteDesigner is to perform sen-
sitivity analysis and identify those structures that are most resilient
against workload changes. In other words, by counting how many
times each structure appears in the neighbors’ optimal designs, we
select those structures that are most voted for. Structures that ap-
pear in only a few neighbors’ designs are discarded as brittle. The
idea is that such structures are less likely to be of any benefit for
future workloads as they were not part of the optimal designs for
most of the neighbors.

The time complexity of MajorityVoteDesigner isO(n ·T1 + |S|)
where T1 is the (average) time taken by each invocation of the nom-
inal designer.

GreedyLocalSearchDesigner — The pseudo code for this base-
line is presented in Algorithm 7. The initial steps of this baseline
are identical to MajorityVoteDesigner, where the Γ-neighborhood
of the initial workload is sampled to find n perturbed windows
W1, · · · ,Wn, and the union of the structures found in their nomi-
nal designs is then taken as the new design space (Lines 1–5). How-
ever, rather than taking the majority vote to choose the most fre-
quently useful structures, GreedyLocalSearchDesigner usesW1,· · · ,
Wn as a representative workload to evaluate the best structures.
In other words, given W1, · · · ,Wn as randomly chosen neigh-
bors, GreedyLocalSearchDesigner treats their combination as the
expected future workload. To form an expected future workload
W̄ , GreedyLocalSearchDesigner takes the union of all the queries
from Wi neighbors but preserves duplicate queries in order to rep-
resent the weight of common queries in W̄ (Line 6).

Once W̄ is formed, GreedyLocalSearchDesigner starts from an
empty design, and iteratively finds the best structure to add to this
design until it consumes its budget (Lines 7–13). At each step,
GreedyLocalSearchDesigner considers all pairs of the remaining struc-
tures s, s′ ∈ S and greedily decides which one is more benefi-
cial by comparing f(W̄ ,D∗ ∪ {s}) and f(W̄ ,D∗ ∪ {s′}) (Line
13). This is a greedy strategy as we do not consider all subsets of
structures. For instance, we may observe that f(W̄ ,D∗ ∪ {s}) <
f(W̄ ,D∗ ∪ {s′}) but there may exist a different choice of D∗,
say D′, where f(W̄ ,D∗) < f(W̄ ,D′) but f(W̄ ,D∗ ∪ {s}) <
f(W̄ ,D′ ∪ {s′}). In a greedy search, we would never discover
that D′ ∪ {s′} is superior to D∗ ∪ {s}. The next baseline (called
OptimalLocalSearchDesigner) addresses this limitation at the cost
of considering all subsets of structures.

The time complexity of GreedyLocalSearchDesigner isO(n·T1+
|S|2 ·T2) where T1 and T2 are is the (average) times taken by each

invocation of the nominal designer and each evaluation/estimation
of the cost function f on workload W̄ , respectively. In practice,
however, OptimalLocalSearchDesigner is significantly faster than
GreedyLocalSearchDesigner, due to the efficiency of Integer Linear
Program solvers. Moreover, the quality of GreedyLocalSearchDesigner’s
design is by definition inferior to that of OptimalLocalSearchDesigner.
Thus, in this paper, we have excluded GreedyLocalSearchDesigner

from our experiments, as it is dominated by OptimalLocalSearchDesigner.

OptimalLocalSearchDesigner — This baseline (presented in Al-
gorithm 8) is identical to GreedyLocalSearchDesigner except that
instead of iteratively evaluating structures one at a time, it consid-
ers all possible subsets of the structures found in S to find a de-
sign (within budgetB) which minimizes the cost over the expected
workload W̄ . Since there are an exponential number of possible
subsets of S, the worst-case complexity of OptimalLocalSearchDesigner
is O(2|S|). However, one can easily formulate such subset se-
lection optimizations as an integer linear program (ILP) (e.g., see
[6, 64]) and use the existing ILP solvers which often tend to be
quite efficient in practice. For example, in all our experiments the
actual time taken by GLPK (an open-source ILP solver [2]) was
less than 5 seconds, even though the problem is in general NP-
complete. However, before invoking the ILP solver, we need to
pre-compute the cost of each query q ∈ W̄ using each structure
s ∈ S, namely f({q}, s) (which is defined as + inf if s alone
is insufficient for evaluating q), leading to O(|W̄ | · |S|) invoca-
tions of the cost function. Thus, the overall time-complexity for
OptimalLocalSearchDesigner is O(n · T1 + |W̄ | · |S| · T2 + T3)
where T1 and T2 are as defined above and T3 is the time taken
by the ILP solver. In practice, due to the efficiency of current
ILP solvers, OptimalLocalSearchDesigner tends to be more efficient
than GreedyLocalSearchDesigner (see Appendix A.4).
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