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Abstract—Organizations have a variety of options to help their software developers become their most productive selves, from

modifying office layouts, to investing in better tools, to cleaning up the source code. But which options will have the biggest impact?

Drawing from the literature in software engineering and industrial/organizational psychology to identify factors that correlate with

productivity, we designed a survey that asked 622 developers across 3 companies about these productivity factors and about self-rated

productivity. Our results suggest that the factors that most strongly correlate with self-rated productivity were non-technical factors,

such as job enthusiasm, peer support for new ideas, and receiving useful feedback about job performance. Compared to other

knowledge workers, our results also suggest that software developers’ self-rated productivity is more strongly related to task variety

and ability to work remotely.

Index Terms—Productivity factors, software engineers, knowledge workers

Ç

1 INTRODUCTION

IMPROVING productivity of software developers is impor-
tant. By definition, developers who have completed their

tasks can spend their freed-up time on other useful tasks,
such as implementing new features or on new verification
and validation activities. But what causes developers to be
more productive?

Organizations such as ours demand empirical guidance
on which factors to try to manipulate in order to best
improve productivity. For example, should an individual
developer (1a) spend time seeking out the best tools and
practices, or (1b) shut down email notifications during the
day?1 Should a manager (2a) invest in refactoring to reduce
code complexity, or (2b) give developers more autonomy

over their work? Should executives (3a) invest in better soft-
ware development tools, or (3b) should they invest in less
distracting office space? In an ideal world, we would invest
in a variety of productivity-improving factors, but time and
money are limited, so we must make selective investments.

This paper contributes the broadest study to date to
investigate what predicts software developers’ productiv-
ity. As we detail in Section 3.1, productivity can be mea-
sured objectively (e.g., lines of code written per month) or
subjectively (e.g., a developer’s self-assessment); while nei-
ther is universally preferable, in this paper we seek to
achieve breadth by measuring productivity subjectively to
answer three research questions:

1) What factors most strongly predict developers’ self-
rated productivity?

2) How do these factors differ across companies?
3) What predicts developer self-rated productivity, in

particular, compared to other knowledge workers?
To answer the first research question, we created a survey
and deployed it at a large software company. To answer the
second question, which helps establish to what extent our
results generalize and do not generalize, we adapted and
deployed the survey at two other companies in different
industries. To answer the third question, which helps
explain what differentiates software developers from other
groups, we adapted and deployed the survey with non-
developer knowledge workers, and compared the results to
that of software developers.

Our results suggest that the factors that strongly correlate
with self-rated productivity across the companies we stud-
ied were job enthusiasm, peer support for new ideas, and
receiving useful feedback about job performance. Com-
pared to other knowledge workers, our results also suggest

1. To guard against confirmation bias [1], we encourage the reader
to circle (a) or (b) for each of the three options that they would recom-
mend investing in. Readers who can confidently answer each question
correctly can make a reasonable claim that the results of our study are
predictable or unsurprising. Answers provided in Section 6.
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that software developers’ self-rated productivity is more
strongly related to task variety and ability to work remotely.
Our results can be used by companies to prioritize produc-
tivity initiatives, such as by increasing job enthusiasm
through recognition of individuals’ work (Section 4.7).

We next describe the three companies we studied in
Section 2, describe and justify the methodology we used in
Section 3, explain and discuss our results in Section 4, and
finally describe related work in the area in Section 5.

2 COMPANIES STUDIED

Before discussing our methodology, we next present
descriptions of each company we studied. The descriptions
are summarized in Table 1.

2.1 Google

Google has tens of thousands of developers spread across 40
offices worldwide. This software-centric company values
co-locating teams, and offices typically have open-plan lay-
outs where developers on the same team work in close
proximity. Google is relatively young (founded in the late
90s), and has a relatively flat organizational structure where
individual developers have a lot of autonomy. The promo-
tion process incorporates peer review feedback, and devel-
opers do not have to move into management roles to
advance. Developers are free to schedule their time, and cal-
endars are uniformly visible across the company. The soft-
ware development process used by developers at Google
(e.g., agile) is flexible and typically determined on a per-
team basis.

Google values openness; most developers at Google
work in a shared monolithic codebase, and developers are
empowered to change code in projects they don’t own.
There is a strong testing and code review culture; commit-
ted code has been reviewed by another developer and typi-
cally includes tests. Most developers at Google work on
server code: code is typically released frequently, and it is
relatively easy to push bug fixes. The set of developer tools
used is largely uniform (with the exception of editors) and
developed in-house, including the code review tool and the
continuous integration and release infrastructure.

2.2 ABB

ABB has well over 100,000 employees worldwide. Because it
is an engineering conglomerate, it employees a wide variety
of workers. It has approximately 4,000 traditional software
developers and over 10,000 application developers who pro-
gram industrial systems using a variety of industry-specific
visual and textual languages. Additionally, to run its large IT

infrastructure, it has a significant staff whose duties include
scripting and lightweight coding.

While ABB has acquired and incorporated smaller com-
panies, it has had a central organization dedicated to ensur-
ing a uniform software development processes. Thus, while
variations occur across departments, much of the overall
tooling and underlying approach to software development
are similar. Similarly, while small variations occur across
departments, most career development tracks are quite sim-
ilar, progressing from junior to senior developers on the
technical track and from group leader to department and
finally center manager on the management track.

2.3 National Instruments

National Instruments was founded in the 1970s. Most soft-
ware development takes place in four international research
and development offices. Calendars are globally visible,
and anyone can schedule meetings with anyone else.

Business commitments drive development activities. Devel-
opers don’t have the autonomy to determine their project
scope, but have input into specific tasks or features to work on.
The majority of developers work in a shared monolithic code-
base with clearly defined ownership between logical areas.
Code submissions are expected to have received approval by a
“code owner” before being allowed in. Code review from tech-
nical leads is also expected; this policy is not enforced but is
widely followed.

There is a lot of freedom in terms of developer tools;
developers are not consolidated onto common tooling
unless it has immediate benefit. For example, the IDE used
is heavily dependent on the kind of work being done, there
is a mix of in-house tooling for build/test, and different por-
tions of the company have standardized on different source
control systems or code review tools. Software updates are
typically released on a quarterly to yearly basis, with the
exception of rare ad-hoc critical patch releases.

3 METHODOLOGY

Our goal is to comparatively understand the factors that pre-
dict software developers’ productivity. To reach this goal, we
designed a survey, consisting of a set of productivity ques-
tions, a set of productivity factors, and a set of demographic
variables.

3.1 Self-Rated Productivity

The first step is to define how we will measure productivity.
Ram�ırez and Nembhard provide a taxonomy of techniques
used in the literature tomeasure productivity, including func-
tion point analysis, self-ratings, peer evaluations, outcome-

TABLE 1
Profiles of the Three Companies Studied

Google ABB National Instruments

Company Size Large Large Small
Office layout Open offices Open and closed offices Open offices
Tooling style Mostly uniform developer tooling Similar tooling Flexible tooling
Development type Mostly server and mobile code Mix of web, embedded, desktop Mostly embedded and desktop
Code repository Monolithic repository Separate repositories Monolithic repository
Focus Software-centric Engineering conglomerate Software/hardware-centric
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input ratio, and professional time utilization [2]. These techni-
ques can largely be divided into objective measurements (like
lines of code written per week) and subjective measurements
(like self-ratings and peer evaluations).

Neither objective nor subjective productivity measure-
ments are universally preferable; both have drawbacks.
Objective measurements suffer from inflexibility and gam-
ing. For instance, consider lines of code written per week. A
productive developer can write a one-line fix to a hard-to-
find bug. At the same time, an unproductive developer can
easily inflate the number of lines of code he writes. On the
other hand, subjective measurements can suffer from inac-
curacies due to cognitive biases. Consider peer evaluations.
A productive developer may be disliked by her peers, who
may in turn give her poor evaluations even if they try to
remain objective.

Similar to Meyer and colleagues’ recent investigation into
software developer productivity [3], we have chosen to use
survey questions as a subjective measurement of productiv-
ity, for two main reasons. First, as Ram�ırez and Nembhard
note, surveys are a “straightforward and commonly used
method to measure [knowledge worker] productivity” [2].
Second, surveys are flexible enough to allow responses
from developers in a variety of roles and to allow the
respondent to incorporate a variety of information into a
self-rating of productivity.

We asked respondents about their productivity by rating
their agreement with the following statement:

I regularly reach a high level of productivity.
Through this statement, we aimed to measure productiv-

ity in the broadestway possible.We began by designing eight
candidate questions, then narrowed them to this one by infor-
mally interviewing five developers at Google about their
interpretation of the question (Fig. 1, bottom left). For the
question we included the qualifiers “high” and “regularly”
in the question is a design choice, for three reasons. First, we
wanted to establish a fixed point to which they could com-
pare themselves. Second, we wanted that point to be a high

benchmark, as a way of avoiding ceiling effects in responses.
Third, we wanted to focus responses on two specific dimen-
sions of productivity, namely intensity and frequency. Future
researchers could obtain a more granular productivity mea-
surement by disaggregating intensity and frequency in two
separate questions.

We field tested the question by asking three managers at
Google to send this question to their software development
teams, along with the question “What did you consider when
answering this productivity question?” Twenty-three devel-
opers responded (Fig. 1, bottom center).We deemed the ques-
tion acceptable for our purposes because the respondents’
considerationswhen answering the questionswere congruent
with our expectations about the meaning of productivity,
encompassing issues regarding workflow, work output,
being in the zone or flow, happiness, goals achieved, coding
efficiency, progress, and minimizing waste. Although we do
not analyze them in this paper, the survey also included four
additional, narrower measures of productivity, drawn from
prior work [2], [4], [5].

To provide some objective data to contextualize our self-
rated productivity measure, we chose two convenient objec-
tive measures of productivity, then correlated them with
self-rated productivity within Google. The first objective
measure is lines of code changed per unit time by a devel-
oper, a commonly used but fraught measure of software
engineering productivity [6], [7]. The second is number of
changelists merged into Google’s main codebase per unit
time by a developer, a measure essentially equivalent to
Vasilescu and colleagues’ measure of pull requests accepted
per month [8]. For self-reported productivity, in this analy-
sis we use responses to a similar survey at Google (n ¼ 3344
responses); we could not use the data from our survey in
this analysis because the original responses did not include
participant identifiers that we could use to then link with
objective productivity measures. This similar survey ques-
tion asked, “How often do you feel you reach a high level of
productivity at work?”; participants could answer Rarely or
never, Sometimes, About half the time, Most of the time,

Fig. 1. Methodology used to create survey.
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and All or almost all the time. We then create a linear
regression with self-rated productivity as an ordinal depen-
dent variable (coded 1, 2, 3, 4, and 5, respectively).2 As inde-
pendent variables, we use each objective measure, log
scaled since they are both positively skewed. For control
variables, we included job code (e.g., software engineer,
research engineer, etc.) as a categorical variable and senior-
ity as a numeric level (e.g., level 3 is an entry level software
engineer at Google). Job code was statistically significant for
two job roles in each linear model. We ran three models;
two with each objective productivity measure in isolation,
and one with both objective measures.

The results of this contextualization are shown in Fig. 2.
Each model shows that level is statistically significant, with a
negative estimate, which we interpret to mean more senior
developers tend to rate themselves slightly less productive.
This provides a strong rationale for us to control for seniority
(Section 3.7). The first twomodels indicate significant positive
correlations between each objective measure of productivity
and subjective productivity; this suggests that the more lines
of code modified and changelists submitted, the more pro-
ductive an engineer self-rates. The final unifiedmodel, aswell
as the estimates on the first twomodels, suggests that number
of changelists submitted is a stronger predictor of self-rated
productivity than lines of code submitted. However, on each
model, notice that theR2, which represents the percent of var-
iance explained, is quite low at less than 3 percent for each
model. Overall, these results suggest that the number of lines
of code and changelists submitted are part of engineers’ self-
estimate of their productivity, but only a small part.

3.2 Productivity Factors

Next on our survey, we asked participants about factors that
prior literature suggests correlate with productivity. We
drew these questions from four sources, as illustrated at the
center left of Fig. 1. We chose these sources because, to our
knowledge, they represent the most comprehensive reviews
of individual productivity factors in the software engineer-
ing and knowledge work research literature.

The first source we used was Pavalin and colleagues’
instrument, which the authors derived from a literature

review of performance measurements for knowledge work-
ers [4]. The standardized survey instrument, called Smart-
WoW, was fielded at four organizations, and encompass
aspects of the physical workspace, the virtual workspace, the
social workspace, personal work practices, and well-being at
work. Wemodified some of the questions to better reflect con-
temporary terminology in software engineering andmore con-
ventional American English. For instance, SmartWoWasks:

I often telework for carrying out tasks that require uninter-
rupted concentration.

Which we rephrased as:

I often work remotely for carrying out tasks that require
uninterrupted concentration.

SmartWoW included 38 candidate questions for our
survey.

The second source we used was Hernaus and Mikuli�c’s
literature review of work characteristics’ effects on knowl-
edge worker productivity [9]. Their survey, validated for
reliability, is itself an amalgamation of prior research on
productivity, including the Work Design Questionnaire [10],
the Job Diagnostic Survey [11], Campion and colleagues’
measurements of group cooperation [12], and Hernaus’
own measure of the “nature of the task” [13]. We modified
questions directly from these underlying instruments for
brevity and consistency. In a similar vein, we considered
using Campion and colleagues’ instrument directly, but it
focused on characteristics of work groups with little consid-
erations for individuals’ productivity.

The third source was Wagner and Ruhe’s structured
review of productivity factors in software development [14].
Unlike the other sources, this paper was not rigorously peer
reviewed and does not contain original empirical studies, but
to our knowledge it is nonetheless the most comprehensive
review of studies of productivity in software engineering.
Wagner and Ruhe’s factors are broken down into technical
factors and soft factors, and further broken down into envi-
ronmental; team and corporate culture; project, product, and
development environment; capability; and experience factors.

A fourth source we used was Meyer and colleagues’ sur-
vey of Microsoft developers, which listed the top five rea-
sons that developers have productive workdays, including
goal setting, meetings, and interruption [15].

We also opportunistically included three additional fac-
tors that we felt were not adequately captured in the prior
work, that were of particular interest to Google. One was a
factor from the Knowledge Work Productivity Assess-
ment [16], an unpublished precursor to SmartWoW, which
we adapted as:

The information supplied to me (bug reports, user stories,
etc.) is accurate

The second was a factor directly from the Work Design
Questionnaire, adapted as

I receive useful feedback about my job performance
We created the third factor, which was of particular inter-

est to ABB:

I require direct access to specific hardware to test my
software.

Fig. 2. Models predicting a subjective productivity measure from two
objective measures. n.s. indicates a non-significant factor with p > :05,
** indicates p < :01, *** indicates p < :001. Full models are described in
the Supplementary Material, available online.

2. Linear regression assumes that the distance between productivity
ratings are equal. Given the question’s wording, we believe this
assumption is reasonable. Ordered logistic regression does not require
this assumption. Applying that technique here yields robust results:
the same coefficients are significant in linear and ordered models.
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In total, we had 127 candidate factors. To reduce these to
a manageable number of questions that respondents could
answer without significant fatigue [17], we used the follow-
ing criteria for inclusion, as illustrated at the center of Fig. 1:

(1) Eliminate duplicates. For instance, both SmartWoW [4]
and Meyer and colleagues [15] discuss goal setting as
an important productivity factor.

(2) Condense similar factors. For instance, Hernaus and
Mikuli�c describe multiple aspects of communication
between work groups that improve productivity, but
we condensed these down to a single factor [9].

(3) Favor factors with clear utility. For instance, Smart-
WoW [4] includes the factor

Workers have [the] opportunity to see each other’s
calendar

At Google, this is universally true and unlikely to change,
so the factor has little utility.

We applied these criteria collaboratively and iteratively.
First, we printed a large physical poster of all candidate
questions. Then, we put that poster on a wall at Google,
near the Google authors’ shared office space. Next, each
Google author independently reviewed and revised the

questions on the poster based on the criteria above. The
poster remained on the wall for several weeks as we period-
ically added and revised feedback. Finally, the first author
applied that feedback to create the final question set.

In the end, our survey included 48 factors in the form of
statements (Fig. 4, left column), which respondents marked
their level of agreement with on a five point scale, from
Strongly disagree to Strongly agree. These factors can be cat-
egorized into blocks about practices, focus, experience, job,
work, capabilities, people, project, software, and context. An
example question block is shown in Fig. 3. We also asked one
open-ended question about factors that respondents felt that
we had missed. A full blank survey is available in the Sup-
plementary Material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TSE.2019.2900308.

3.3 Demographics

We collected and asked about several demographic factors
that we wanted to control for, as illustrated at the top of
Fig. 1:

� Gender
� Tenure
� Seniority
We asked about gender because prior work suggests that

gender is related to software engineering-relevant produc-
tivity factors, such as success in debugging [18]. Thus, the
survey asked an optional question about gender (Male,
Female, Decline to State, Custom). Respondents who did
not answer the question were recoded to “Decline to State”
(Google n ¼ 26 ½6%�, ABB n ¼ 4 ½3%�, National Instruments
n ¼ 5 ½6%�). We treated this data as categorical.

Fig. 4. 48 factors’ correlation with developers’ and analysts’ self-rated productivity at three companies.

Fig. 3. Example factor questions from the survey.
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For tenure, we collected years at the company at Google
directly from human resources data. This was not feasible
at ABB and National Instruments, so we added an optional
question about it to their survey. At ABB, we recoded miss-
ing data (n ¼ 4 ½3%�) as 12 years of experience, the mean of
the reported data. At National Instruments, we use 9 years
(n ¼ 1 ½1%�), for the same reason. More sophisticated data
imputation techniques are possible [19], such as by using
multiple imputation to predict missing values based on
present values; for instance, missing seniority values can
likely be imputed somewhat accurately based on tenure
and gender. Instead of using such techniques, we chose to
use the simple statistical mean for imputation because
demographic factors were not primary variables of interest,
but instead simply covariates to control for. We treated this
data as numerical.

For seniority, at Google the survey asked participants to
optionally report their numeric job level. We recoded miss-
ing responses (n ¼ 26 ½6%�) as the most common level of the
reported data. For ABB, participants could optionally mark
Junior or Senior Software Engineer/Developer, although
many participants marked “other” job titles. For these, we
recoded responses as Senior if the titles contained the words
senior, lead, manager, architect, research, principal, or sci-
entist; we recoded them as Junior otherwise. Non-responses
(n ¼ 4 ½3%�) we recoded as the most common response,
Senior. For National Instruments, the options were Entry,
Staff, Senior, Principal Architect/Engineer, Chief Architect/
Chief Engineer, Distinguished Engineer, Fellow, or other.
The single “other” response reported being an intern, which
we recoded as “Entry.” Non-responses (n ¼ 3 ½4%�) we
recoded as the most common response, Senior. We treated
seniority data from each company as numerical.

3.4 Non-Developer Comparison Survey

In our third research question, we wish to know what pre-
dicts developer self-rated productivity in particular. For
example, we expect that interruption affects productivity,
but we would also expect that interruption affects the pro-
ductivity of any knowledge worker, so one would naturally
ask whether interruption is particularly influential for
developer productivity.

To answer this research question, we aimed to select a
population comparable to software developers.We began by
trying to find knowledge workers by inspecting common job
titles at Google. While a number of candidate titles seemed
to reasonably indicate knowledge work, the most common
and, in our judgment, most reliable indicator of non-
developer knowledge worker was whether the employee
had “analyst” in their title. We chose to compare Google ana-
lysts to Google developers, instead of comparing Google
analysts to developers across all three companies. Our rea-
soning is that doing so will control for any company-specific
effects (e.g., perhaps Google employees are statistically more
or less likely than employees at other companies to be sensi-
tive to interruption).

We next adapted our survey to analysts. This included
eliminating questions that were clearly software develop-
ment-specific, such as “My software’s requirements change
frequently”. Other questions we adapted specifically for
analysts; for instance, we adapted “I use the best tools and

practices to develop my software” to “I use the best tools
and practices to do my job”.

Self-rated productivity was measured the same way for
analysts as for developers. We measured gender, tenure,
and seniority the same way as we did for developers at Goo-
gle. We piloted the analyst version of the survey with a con-
venience sample of five analysts, who reported the overall
survey was clear, but also made some minor suggestions.
We adjusted the survey accordingly before deploying it.

3.5 Attention Question

In an attempt to eliminate survey responses that were not
given due consideration, we included an attention item [20]
about two-thirds of the way through the survey. The atten-
tion question said “Respond with ‘Somewhat disagree’ to
this item.” Surveys that did not include a response of
‘Somewhat disagree’ to this attention item were discarded.

3.6 Response Rates

We used human resources data from Google to select 1000
random full-time employees with software developer job
codes. We received 436 responses, a 44 percent response rate,
which is very high for software engineering surveys [21]. 407
valid surveys remained after removing those that answered
the attention question incorrectly (n ¼ 29 ½7%�).

For knowledge workers, we selected 200 random full-
time employees at Google with “analyst” in their job titles.
We chose not to survey more analysts because we judged it
unethical to survey more analysts, when the survey results
are primarily of benefit to software developers. A total of 94
analysts responded, a 47 percent response rate. 88 valid sur-
veys remained after removing those that answered the
attention question incorrectly (n ¼ 6 ½6%�).

We sent the survey to about 2200 randomly selected soft-
ware developers at ABB, and received 176 completed sur-
veys. This 8 percent response rate is on the low end of
typical software engineering surveys [21]. 137 valid surveys
remained after removing those that answered the attention
item incorrectly (n ¼ 39 ½22%�).

We sent the survey to a mailing list containing about 350
software developers at National Instruments, and received
91 completed surveys (26 percent response rate). 78 valid
surveys remained after removing those that answered the
attention question incorrectly (n ¼ 13 ½14%�).

3.7 Analysis

In our analysis, we run linear individual multiple regression
models for each factor at each company, with the factor as
an independent variable (e.g., “My project deadlines are
tight”) and self-rated productivity as the dependent vari-
able. We chose to run separate models at each company for
privacy, so that each company’s raw data was not shared
with any other company. To reduce the influence of covari-
ates, we included available demographic variables in each
regression model. To interpret the results, we focus on three
aspects of the productivity factor coefficient:

� Estimate. This indicates the effect size of each factor
while holding the demographics constant; the fur-
ther this number is from zero, the greater the effect.
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� Standard Error. This represents the variability of the
estimate; lower numbers represent less variability.

� Significance. We also analyze statistical significance,
using p < :05 as a threshold. Because we are running
48 statistical tests per company and thus are likely to
discover a handful of relationships simply by chance,
we correct such p-values on a per-company basis
using the Benjamini-Hochberg method, a technique
designed to correct for false discovery [22].

In our interpretation of the results, we focus more on
effect size (that is, the estimate) and less on the statistical
significance, because statistical significance can be obtained
from sufficiently large data sets, even when practical signifi-
cance is low. As we shall see in the results, statistically sig-
nificant results are obtained most frequently at Google,
where our response rate was high, and least frequently at
National Instruments, where our response rate was lower.
Thus we interpret this difference as a largely a matter of sta-
tistical power. We encourage the reader to place more confi-
dence in results with statistical significance.

To provide context, we also analyze to what extent
demographic factors correlate with self-reported productiv-
ity. We do this by running multiple linear regression, with
the demographic variables at each company as independent
variables, and self-reported productivity as the dependent
variable. We then analyze the overall predictive value of the
resulting model, as well as how each independent variable
contributes to the overall model.

3.8 A Word on Causality

Our methodology measures correlations between produc-
tivity factors and self-reported productivity, but fundamen-
tally we are actually interested in measuring the degree to
which each factor causes productivity changes. So to what
extent is it valid to assume that there actually exists causal
links between the factors and productivity?

Validity depends largely on the strength of the evidence
for causality in the prior work. The strength of this evidence
varies from factor to factor. As one example, Guzzo and
colleagues’ meta-analysis of 26 articles about appraisal and
feedback provides excellent evidence that feedback does
indeed cause productivity increases in the workplace [23].
However, establishing the strength of the evidence for every
factor we surveyed would require an extensive meta-
review, which is well beyond the scope of the present paper.

In sum, although our survey itself cannot establish cau-
sality, by relying on prior work, we can have some confi-
dence that these factors cause increases or decreases in
productivity, but the reader should interpret our results
with some caution.

4 RESULTS

To describe the results of deploying our study, we begin by
describing the correlation between each productivity factor
and self-rated productivity when controlling for demo-
graphics. We use these results to answer each research ques-
tion in turn, followed by a discussion of the results of each
question. We then discuss the relationship between the
demographics and self-rated productivity. Finally, we dis-
cuss implications and threats.

4.1 Productivity Factors

Fig. 4 shows the results of our analysis, which we outlined
in Section 3.7. The first column indicates the factor, in the
form of the statement shown to software developers on the
survey, followed by factor labels (F1, F2, and so on) that we
assigned after we completed data analysis. Missing data for
certain factors means that the factor was developer-specific,
and thus was not presented to analysts (for example, F10).
The other major columns display data from each of the three
labeled companies, plus data about Google’s analysts.
Within each major column, there are two minor columns.

The minor column labeled estimate indicates regression
coefficient, which quantifies the strength of the association
between that factor and self-rated productivity, where the
larger the number, the stronger the association. For exam-
ple, the first row for Google gives the estimate as 0.414. Con-
cretely, this means that for every one point increase in
agreement with the statement about job enthusiasm (F1),
the model predicts respondents’ productivity rating will
increase by 0.414 points, controlling for demographic varia-
bles. Estimates can likewise be negative. As an example, for
all 3 companies, the more personnel turnover on a team
(F48), the lower the self-rated productivity. Adjacent to each
estimate is a single bar that reflects that magnitude of the
estimate.

Note that estimate does notmean higher factor ratings, but
instead means a higher correlation between a factor and self-
rated productivity. For instance, National Instruments’s esti-
mate for job enthusiasm (F1) is higher than that of the other
two companies. This does not mean that developers are the
most enthusiastic at National Instruments; what it does mean
is that developers’ job enthusiasmwas a stronger predictor of
self-rated productivity at National Instruments than at the
other two companies. We do not report ratings directly
because it was a condition of corporate participation. In par-
ticular, ratings could be interpreted wrongly without full
context; for instance, if we reported that one company’s
developers had a lower job enthusiasm rating than another
company’s developers, the reader may get the impression
that the latter company is not a good company towork at.

The minor column labeled error indicates the standard
error of the model for each factor. Lower numbers are bet-
ter. Intuitively, lower numbers indicate that as the factor
changes, the model will more reliably predict self-rated pro-
ductivity. Overall error rates are fairly consistent across fac-
tors, especially for Google, which had a larger number of
respondents.

Estimate and standard error values with an asterisk (*)
indicate that the factor was statistically significant in its
model. For instance, job enthusiasm (F1) was statistically
significant across all three companies, but meeting prepara-
tion (F17) was only significant in Google.

The third major column indicates the mean (m) estimate
across all three companies, with the standard deviation in
parentheses (s). The first bar visualizes the magnitude of
the mean estimate, and the second bar visualizes the magni-
tude of the standard deviation. For example, the average
estimate was 0.43 for job enthusiasm (F1), with a standard
deviation of 0.051. The table is sorted by the mean estimate.

The last column indicates the magnitude of the difference
(diff) between estimates at Google for software developers
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versus analysts. Positive values indicate developers’ esti-
mates being higher, negative values indicate analysts’ esti-
mates being higher. For example, analysts’ estimates tended
to be slightly lower than developers’ for enthusiasm (F1).

4.2 RQ1: What Factors Most Strongly Predict
Developers’ Self-Rated Productivity?

The strongest predictors of self-rated productivity are the
statementswith the highest absolutemean estimate; theweak-
est factors of self-rated productivity are those with the lowest
absolute mean estimate. In other words, the factors at the top
of the Fig. 4 are the strongest predictors, and at the bottom, the
weakest. To determine which of the factors we can have the
most confidence in, we identify the results that are statistically
significant across all three companies:

� Job enthusiasm (F1)
� Peer support for new ideas (F2)
� Useful feedback about job performance (F11)
Discussion.Anotable outcome of the ranking is that the top

10 productivity factors are non-technical. This is somewhat
surprising, given that most software engineering research
tends to focus on technical aspects of software engineering, in
our estimation. Thus, a vigorous refocusing on human factors
may yield substantiallymore industry impact for the software
engineering research community. For instance, answering the
following questionsmay be especially fruitful:

� What makes software developers enthusiastic about
their job? What accounts for differences in levels of
enthusiasm between developers? What interventions
can increase enthusiasm? This work can extend
existing work on developer happiness [24] and
motivation [25].

� What kinds of new ideas are commonly expressed in
software development practice? What actions influ-
ence developers’ feelings of support for those ideas?
What interventions can increase support for new
ideas, while maintaining current commitments?

� What kinds of job feedback do software engineers
receive, and what makes it useful? What kinds of
feedback is not useful? What interventions can
increase the regularity and usefulness of feedback?

Another notable feature is the ranking of factors from the
COCOMO II line of research. COCOMO II factors, derived
from empirical studies of industry software projects and vali-
dated through quantitative analysis of 83 projects [26], were
originally designed to help estimate the cost of software proj-
ects. Examples of COCOMO II productivity factors include
the volatility of the underlying platform and the complexity
of the product. Interestingly, the COCOMO II factors in our
survey (F5, F10, F14, F16, F24, F26, F28, F32, F33, F34, F36,
F38, F39, F43, F44, F46, F47, F48) tend to be lower ranked,
suggesting they are less predictive of productivity than the
other factors. Of the top 50 percent of most predictive factors
(F1–F24), only 5 are related to COCOMO II; in the bottom 50
percent, 14 are. We see two different interpretations of this
result. One is that COCOMO II is missing several important
productivity factors, and that future iterations of COCOMO
II may be able to make more accurate predictions if they
incorporated the more predictive productivity factors we
studied, such as an organization’s support for work method

autonomy. Another interpretation is that COCOMO II is fit
for its current purpose – capturing productivity at the project
level [6], [27], [28], [29], [30], [31] – but it is less suitable for
capturing productivity at the individual developer level.
This interpretation underscores the importance, and the nov-
elty, of our results.

Similarly, all of COCOMO II’s platform factors were rela-
tively small and not statistically significant predictors of
productivity across all three companies studied, such as:

� My software requires extensive processing power
(F39)

� My software requires extensive data storage (F43)
� My software’s platform (e.g., development environ-

ment, software stack, hardware stack) changes rap-
idly (F46)

One explanation is that, in the 20 years since COCOMO II
was created and validated, platforms have begun to make
less of a difference in terms of productivity. Standardized
operating systems now arguably shield developers from
productivity losses due to hardware changes (e.g., Android
for mobile development). Likewise, cloud computing plat-
forms may shield developers from productivity losses due
to scaling up processing and data storage needs. This is not
to say that modern operating system frameworks and cloud
computing platforms are easy to use, but instead that the
productivity gap between processing a little data and proc-
essing a lot of data may have closed since COCOMO II.

4.3 RQ2: How Do these Factors Differ Across
Companies?

To answer this question, we can look to the standard devia-
tion of estimates across all three companies. The three fac-
tors with the lowest variance, that is, were the most
consistent across companies were:

1) Use of remote work to concentrate (F40)
2) Useful feedback about job performance (F4)
3) Peer support for new ideas (F2)

We posit that the stability of these factors makes them good
candidates for generalizability; companies beyond the ones
we studied are likely to get similar results as to ours, for
these factors.

The three factors with the highest variance, that is, varied
the most between companies were:

1) Use of best tools and practices (F15)
2) Code reuse (F25)
3) Accuracy of incoming information (F6)
Discussion. The three factors that varied the least between

companies (F40, F4, and F2) have a common feature that
they are social and environmental, rather than technical.
Perhaps this suggests that developers, regardless of where
they work, are equally affected by remote working, job feed-
back, and peer support for new ideas. Interventions that
change these three factors may have a higher impact than
other interventions, since these factors seem so consistent.

And why might F15, F25, and F6 vary so much between
companies? We provide a potential explanation for each,
based on what we know about these companies.

Using the best tools and practices (F15) was most
strongly related to self-rated productivity at Google, but
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weakly, non-significantly related in National Instruments.
One potential explanation is that Google’s codebase may be
substantially larger than National Instruments’. Conse-
quently, using best practices and tools to effectively navi-
gate and understand a larger codebase is essential to
productivity; at National Instruments, productivity is less
sensitive to tool use due to the smaller, more understand-
able nature of the codebase.

Reusing existing code (F25) was strongly related to self-
rated productivity at Google, but weakly, non-significantly
related at ABB. One potential explanation is that code reuse
is easier to achieve in Google than in ABB. Google uses a
monolithic codebase, where all developers can browse
nearly every line of code in the company, so reusing code
comes with little effort. In contrast, ABB uses multiple
repositories, so reusing code across the company requires
developers to gain access to other repositories before reus-
ing code from them. Thus, in ABB, productivity gains
(achieved through code reuse) may be negated by produc-
tivity losses (in finding and accessing relevant code to
reuse).

Accurate information (F6) was strongly related to self-
rated productivity at National Instruments, but weakly,
non-significantly related at ABB. One potential explanation
was that developers at ABB are more insulated from the
effect of inaccurate information than at National Instru-
ments. Specifically, ABB has multiple levels of support
teams dedicated to getting correct information from cus-
tomers about bugs. If developers at ABB receive inaccurate
information, their productivity may not be reduced because
they can delegate correcting that information back to the
support teams.

4.4 RQ3: What Predicts Developer Self-Rated
Productivity, in Particular, Compared to Other
Knowledge Workers?

To answer this question, we can look at the last column of
Fig. 4. Looking at a few of the correlations with the highest
estimates, we can see that, compared to software develop-
ers, analysts’ self-rated productivity was more strongly
related to:

� Positive feelings about their teammates (F7)
� Time management autonomy (F4)
On the other hand, developers’ self-rated productivity

was more strongly related to, for example:

� Doing a variety of tasks as part of their work (F13)
� Working effectively away from their desks (F30)
Discussion. Overall, these results suggest that developers

are similar to knowledge workers in some ways and differ-
ent from them in others. For instance, the strongest predic-
tor of productivity for developers was job enthusiasm, but
that factor predicted productivity to nearly the same extent
for analysts. We believe that our results on the similarities
and differences between developers and other knowledge
workers can be used by organizations either to choose pro-
ductivity initiatives targeted specifically at developers or to
choose initiatives targeted more broadly.

The unified development toolset at Google may explain
why an increase in task variety corresponds to a larger self-

rated productivity increase for developers than analysts.
While task variety may decrease boredom and thus increase
productivity in both groups, the unified toolset for develop-
ers at Google may mean that developers can use the same
tools for different tasks. In contrast, analysts may have to
use different toolsets for different tasks, inducing a heavier
penalty for mental context switching.

The disruption caused by interruption may explain why
why an increase in working effectively away from one’s
desk corresponds to a larger productivity increase for devel-
opers than analysts. Specifically, we posit that perhaps
interruption is more harmful during programming than
during analytical work, so being able to work effectively
away from one’s desk may be especially important for
developers’ productivity. Parnin and Rugaber found that
resuming tasks after interruption is a frequent and persis-
tent problem for developers [32], caused in part by the need
for better tools to assist with task resumption [33].

4.5 Other Productivity Factors

At the end of the survey, respondents were able to respond
to write-in additional factors that they felt impacted produc-
tivity. We noticed that these responses largely provided the
same or more specific descriptions of our 48 factors, so we
closed-coded responses based on our factors, and created a
handful of new factors when necessary. We provide an
accounting of the new factors, as well as the more specific
descriptions of our factors, in the Supplementary Material,
available online. Overall, researchers deploying and modi-
fying our survey instrument may wish to add a new ques-
tion about a projects’ personnel mix. They may also wish to
either clarify or provide more specific breakdowns of the
questions for factors F15, F16, and F19.

4.6 Demographics

For Google and National Instruments, neither the overall
demographic models nor any individual covariates were
statistically significant predictors of self-rated productivity.
For ABB, the demographic model was significant (F ¼
3:406; df ¼ ð5; 131Þ; p < :007). Gender was a statistically
significant factor (p ¼ :007), with female respondents
reporting 0.83 points higher self-rated productivity than
males, and custom genders reporting 1.6 points higher self-
rated productivity than males (p ¼ :03). Tenure also showed
significant results (p ¼ :04), with self-rated productivity
increasing .02 points for every additional year at the com-
pany. To our knowledge, the differences between ABB and
the other two companies do not seem to explain why these
demographic factors were significant predictors at ABB but
not elsewhere.

4.7 Implications for Practice and Research

How should practitioners put our results into action? We
provide a ranked list of most predictive productivity factors,
which can be used to prioritize productivity initiatives. Such
initiatives can be drawn from prior work. For example, to
increase job enthusiasm,Markos and Sridevi suggest helping
workers grow [34], such as by providing workshops to tech-
nology and interpersonal skills.Markos and Sridevi also sug-
gest providing recognition for good work; for instance, ABB
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has experimented with providing public recognition for
developers who adopt tools and practices for structured
code navigation [35]. To increase support for new ideas,
Brown and Duguid suggest informal and formal sharing of
best practices [36]. At Google, one way knowledge is shared
is through an initiative called “Testing on the Toilet”, where
engineers write short newsletters about testing or other tech-
nical knowledge, and those newsletters are posted in bath-
rooms around the company. To increase feedback quality
about job performance, London and Smither suggest focus-
ing on feedback that is non-threatening, behaviorally-
focused, interpreted, and outcome-oriented [37]. At Google,
one way that feedback is provided in this way is through
blameless postmortems, where after a significant negative out-
come occurs like a service outage, engineers collaboratively
write a report that focuses on the behaviors that contributed
to a root-cause, without blaming individual engineers.

For researchers, several areas of future work in this area
would build on this work and advance the field of software
developer productibity. First, a systematic literature review,
which characterizes the strength and context of the evidence
for each productivity factor discussed in this paper, would
improve actionability of this work by helping establish
causal links. In areas where those links are weak, actionabil-
ity would likewise be improved by conducting a set of
experiments that establish causality. Second, as we mention
in Sections 4.5 and 4.6, future researchers may want to con-
sider other factors that our participants suggested, and
investigate how gender and other demographic factors
interact with developer productivity. Third, the impact of
productivity research in software engineering would be
improved with a multi-dimensional toolbox of productivity
metrics and instruments, validated through empirical study
and triangulation. Fourth, if researchers can quantify the
cost to change the factors that drive productivity, organiza-
tions can make even smarter investment choices.

4.8 Threats

Several threats to the validity of this study should be con-
sidered when interpreting its results.

4.8.1 Content Validity Threats

First, we reported on only one dimension of productivity,
self-rated productivity. Other dimensions of productivity
exist, including objective measures, such as number of lines
of code written per day per engineer, a measure used by
companies like Facebook [38]. As we argue in Section 3.1,
all productivity metrics have drawbacks, including self-
rated productivity. For instance, developers may be insuffi-
ciently self-aware of their own productivity or may artifi-
cially increase their self-rating due to social desirability
bias [39]. Despite this limitation, Zelenski and colleagues
draw from prior work to argue for the validity of a single
item, self-report measure of productivity [40], such as the
one we use in our paper.

Second, we measured self-reported productivity through
a single question, which likely does not capture the full
range of developers’ productivity experiences. For instance,
the question’s wording focuses on frequency and intensity,
but omits other aspects of productivity like quality. The

survey also did not ask respondents to bound their answers
by a particular time period, so some participants may have
provided answers that reflect their experience over the last
week whereas others reflect their experience over the last
year. In retrospect, the survey should have specified a fixed
time window.

Third, because we were limited in the number of ques-
tions we could ask and we relied on only the factors studied
in prior work, our 48 chosen factors may not capture all
aspects of behavior that influence productivity. Likewise,
our chosen factors may be too broad in some cases. For
example, in retrospect, the factor that asks about best “tools
and practices” (F14) would probably be more actionable if it
disaggregated tools from practices.

4.8.2 Internal Validity Threats

Fourth, aswementioned in Section 3.8, we rely on priorwork
to establish a causal link between factors and productivity,
but the strength of the evidence for causality varies. For
some factors, it may be that the factor and self-rated produc-
tivity are only linked through some third factor, or that the
causal relationship is reversed. For instance, it’s plausible
that the top productivity factor, increased job enthusiasm
(F1), could actually be caused by increased productivity.

4.8.3 External Validity Threats

Fifth, although we surveyed three fairly diverse companies,
generalizability to other types of companies, to other organi-
zations, and to other types of knowledge workers, is limited.
Similarly, in this paper we selected analysts to represent
non-developer knowledge workers, but this selection
excludes several types of knowledge workers, such as
physicians, architects, and lawyers. Another threat to valid-
ity is non-response bias; the people who responded to the
survey were self-selected.

Sixth, we analyzed each productivity factor in isolation,
but multiple factors may co-vary. This is not a problem so
muchwith the analysis, butwith its actionability; if factors are
co-dependent, adjusting onemay adversely affect another.

4.8.4 Construct Validity Threats

Seventh, in designing this survey we were concerned with
respondents’ ability to guess our analysis methodology and
not answer truthfully as a result. We attempted to mitigate
this by separating the productivity question from the pro-
ductivity factors, but respondents nonetheless may have
been able to infer our analysis methodology.

Finally, we reworded some questions to adapt the survey
to analysts, which may have altered their meaning in unin-
tended ways. Consequently, differences between develop-
ers and analysts may be unduly influenced by question
differences, rather than job differences.

5 RELATED WORK

Many researchers have studied individual factors of soft-
ware developer productivity. One example is Moser and
Nierstrasz’ field study of 36 software projects, which exam-
ined whether object-oriented technology can improve soft-
ware developer productivity [41]. Another example is
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DeMarco and Lister’s study of 166 programmers in 35 dif-
ferent organizations performing a one-day programming
exercise, which found that workplace and organization cor-
related with productivity [42]. A third example is Kersten
and Murphy’s lab experiment with 16 developers, which
showed that developers who used a task-focusing tool were
significantly more productive than those that did not use
the tool [43]. Beyond these examples, Wagner and Ruhe’s
systematic review provides a good overview of the individ-
ual productivity factors that correlate with productivity [14].
Likewise, Meyer and colleagues provide a more recent over-
view of productivity factors [3]. In general, our work builds
on these factor-by-factor productivity studies by broadly
investigating a wide variety of factors.

As described in Petersen’s systematic mapping literature
review, seven software engineering papers have quantified
the factors that predict software development productiv-
ity [44]. Each paper uses a quantitative method, typically a
regression as we use in this paper, to predict productivity in
several software projects. The most common factors relate
to the size of the project and 6 of 7 explicitly build on
COCOMO II productivity drivers [6], [27], [28], [29], [30],
[31]. The most complex predictive model in Petersen’s study
is based on 16 factors [6]. Our paper differs in two main
respects. The first is that we evaluate a larger number (48)
and a wider variety of productivity factors than prior work,
drawing heavily on industrial and organizational psychol-
ogy. The second is unit of analysis; while these prior studies
examined what predicts project productivity, we instead
examine what predicts people’s productivity.

Beyond software engineering, prior work has compared
the factors that predict productivity in other kinds of work-
ers, particularly in industrial/organizational psychology.
While such research has investigated productivity at an
organization-wide scale [45] and for physical work like
manufacturing [46], the most relevant subfield is productiv-
ity of knowledge workers, that is, people who primarily
work with knowledge and information, typically using a
computer [47]. Two major pieces of work have compared
factors for knowledge workers. The first is Palvalin and
colleagues’ investigation into 38 factors that had been
shown to correlate with productivity in prior work; these
factors cover the physical workplace, virtual workplace,
social workplace, personal work practices, and well-being
at work [4]. The second is Hernaus and Mikuli�c’s survey of
512 knowledge workers, which investigated 14 factors in
three categories [9]. We built on both of these studies when
designing our survey (Section 3.2).

At the same time, studies that compare productivity fac-
tors for knowledge workers are insufficient for studying
software developers for two main reasons. First, the degree
to which these general results translate to software develop-
ers specifically is unclear. Second, such works tend to
abstract away software-specific factors, such as software
reuse and codebase complexity [48]. Thus, an important
gap in the literature is a broad understanding of the factors
that predict productivity for software developers. Filling
this gap has practical importance; the authors of the present
paper are part of three research groups across three differ-
ent companies tasked specifically with improving developer
productivity. Filling this gap helps our groups, and the

companies we are part of, decide how to invest in developer
productivity improvements.

6 CONCLUSION

Many factors influence developers’ productivity, yet organi-
zations have limited resources to invest in improving pro-
ductivity. We designed and deployed a survey at three
companies to rank and compare productivity factors. To
focus their effort, developers, management, and executives
can use our productivity factor ranking to prioritize what is
otherwise a wide array of investment options.3 In short,
prior research provides many ways that organizations can
improve software developer productivity, and our research
provides a way to prioritize them.
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