
ar
X

iv
:2

40
6.

18
18

1v
1 

 [
cs

.S
E

] 
 2

6 
Ju

n 
20

24

An Empirical Study of Unit Test Generation with Large
Language Models.

Lin Yang∗

linyang@tju.edu.cn
College of Intelligence and

Computing, Tianjin University
China

Chen Yang∗

yangchenyc@tju.edu.cn
College of Intelligence and

Computing, Tianjin University
China

Shutao Gao
gaoshutao@tju.edu.cn

College of Intelligence and
Computing, Tianjin University

China

Weijing Wang
wangweijing@tju.edu.cn
College of Intelligence and

Computing, Tianjin University
China

Bo Wang
wangbo_cs@bjtu.edu.cn

School of Computer and Information
Technology, Beijing Jiaotong

University
China

Qihao Zhu
zhuqh@deepseek.com

DeepSeek-AI
China

Xiao Chu
chuxiao1@huawei.com

Huawei Cloud Computing Co. Ltd.
China

Jianyi Zhou
zhoujianyi2@huawei.com

Huawei Cloud Computing Co. Ltd.
China

Guangtai Liang
liangguangtai@huawei.com

Huawei Cloud Computing Co. Ltd.
China

Qianxiang Wang
wangqianxiang@huawei.com

Huawei Cloud Computing Co. Ltd.
China

Junjie Chen†

junjiechen@tju.edu.cn
College of Intelligence and

Computing, Tianjin University
China

ABSTRACT

Unit testing is an essential activity in software development for ver-

ifying the correctness of software components. However, manually

writing unit tests is challenging and time-consuming. The emer-

gence of Large Language Models (LLMs) offers a new direction

for automating unit test generation. Existing research primarily fo-

cuses on closed-source LLMs (e.g., ChatGPT and CodeX) with fixed

prompting strategies, leaving the capabilities of advanced open-

source LLMs with various prompting settings unexplored. Partic-

ularly, open-source LLMs offer advantages in data privacy protec-

tion and have demonstrated superior performance in some tasks.

Moreover, effective prompting is crucial for maximizing LLMs’ ca-

pabilities. In this paper, we conduct the first empirical study to fill

this gap, based on 17 Java projects, five widely-used open-source

LLMs with different structures and parameter sizes, and compre-

hensive evaluation metrics. Our findings highlight the significant

influence of various prompt factors, show the performance of open-

source LLMs compared to the commercial GPT-4 and the tradi-

tional Evosuite, and identify limitations in LLM-based unit test

generation. We then derive a series of implications from our study

to guide future research and practical use of LLM-based unit test

generation.

KEYWORDS

Large Language Model, Unit Test Generation, Empirical Study

∗Both authors contributed equally to this research.
†Corresponding Author

1 INTRODUCTION

Unit testing focuses on verifying the functionality of each indi-

vidual program component (such as each method) in order to en-

sure it works as intended. Hence, writing high-quality unit tests

is crucial, which facilitates developers to catch defects early and

diagnose them efficiently. However, manually writing these tests

is time-consuming and tedious, which could significantly escalate

the cost of software development [32]. To reduce this effort, sev-

eral approaches have been proposed to automatically generate unit

tests. Traditional approaches adopted symbolic execution [58, 80],

evolutionary algorithms [17], or model checking [15, 18] to auto-

matically generate unit tests. While they can generate tests with

promising coverage, they still fall short of the high utility achieved

by human-written tests. For example, the tests can be difficult to

maintain and understand due to the code smell issue, such as lack

of meaningful identifiers [55]. To alleviate this problem, several

deep-learning-based (DL-based) approaches have been proposed

[7, 70]. They collected a large corpus of unit tests with their cor-

responding focal method to build DL models, thereby enhancing

their test generation effectiveness. However, due to limitations in

the scale of models and training data, they often struggle to fully

understand the code’s intent and generate high-quality tests.

Although existing approaches have made significant progress,

automatically generating unit tests still faces the following chal-

lenges: (1) Generating syntactically correct tests. Unit test genera-

tion can be treated as a sub-problem of code generation, and thus

http://arxiv.org/abs/2406.18181v1


Conference’17, July 2017, Washington, DC, USA Yang et al.

also suffers from the general problem of ensuring that the gener-

ated code conforms to language’s grammar rules. (2) Generating

effective tests. High-quality unit tests should thoroughly explore

the behaviour of the target program component, which requires

the approach to understand code intent and structures and thus

generate tests with high test coverage and defect detection ability.

(3) Generating maintainable tests. In software evolution, we prefer

unit tests that are easy to read and change, which requires the ap-

proach to generate tests following the code practice and smell well.

Recently, Large Language Models (LLMs), with supreme abili-

ties in code understanding and natural language processing, have

shown potential in code generation tasks. Researchers also pro-

posed to leverage the most popular LLMs, i.e., GPT-3.5 or GPT-4,

to automatically generate unit tests [65, 81, 83]. However, these

LLMs are commercial and closed-source, which presents practical

challenges due to concerns over data security and the costs associ-

ated with API usage. Additionally, these existing studies predomi-

nantly relied on fixed prompting strategies based on prior experi-

ence, neglecting the potential influence of various prompting fac-

tors, such as prompt design choices and in-context learning (ICL)

methods. As shown in existing studies, prompting is crucial inmax-

imizing the capabilities of LLMs [38, 45, 75, 84], and thus this lack

of in-depth analysis on these factors could significantly limit the

development of actionable guidelines for optimizing unit test gen-

eration with LLMs [61, 64]. Moreover, with the rapid emergence

of open-source code LLMs and various prompting methods, their

effectiveness for unit test generation remains largely unexplored.

Therefore, it is urgent to investigate the effectiveness of advanced

open-source LLMs in unit test generation with various prompting

methods.

In this work, we conducted the first extensive study to achieve

the above-mentioned goal based on 17 Java projects from the De-

fects4J 2.0 benchmark [28]. Particularly, we evaluated five open-

source code LLMs, which are built on top of the widely-used

CodeLlama [60] and DeepSeek-Coder [13] structures with diverse

model scales ranging from 7B to 34B. Based on the extensive ex-

periments under the guidance of our elaborately-designed four re-

search questions (RQs), we obtain a series findings about LLM-

based unit test generation and deliver the corresponding action-

able guidelines for future research and practice use in this field,

which are mainly summarized as follows:

(1) The prompt design (the description style and selected code

features) is crucial to the effectiveness of LLMs in unit test

generation. It is recommended to align the description style

with the training data and choose code features considering

the LLMs’ code comprehension ability and the space left for

generating unit tests. Notably, including other methods de-

fined in the target class (except the focal method) negatively

impacts the overall effectiveness of LLM-based unit test gen-

eration due to their extensive length.

(2) The conclusions drawn from open-source LLMs in other

tasks do not necessarily generalize to unit test generation, in-

cluding dominance relationships among studied LLMs. How-

ever, all studied LLMs, including the state-of-the-art GPT-4,

underperform traditional Evosuite in terms of test coverage.

This is primarily due to the large percentage of syntactically

invalid unit tests generated by LLMs, a result of LLMs’ hal-

lucination. Therefore, effective solutions are needed, e.g., de-

signing post-processing rules to fix common syntactic issues.

(3) Despite their effectiveness in other tasks, directly adapting

the Chain-of-Thoughts (CoT) and Retrieval Augmented Gen-

eration (RAG) methods for unit test generation does not im-

prove effectiveness and may even reduce it in some cases.

CoT is primarily limited by the LLMs’ code comprehension

ability, while RAG is constrained by the significant gap be-

tween the retrieved unit tests and those that LLMs excel at

generating. Special design for the use of ICL methods in unit

test generation is required.

(4) The defect detection ability of LLM-generated unit tests is

limited, primarily due to their low validity. Although valid

unit tests are generated by LLMs for many defects, a sig-

nificant number of defects remain undetected, mainly be-

cause the tests fail to produce the specific inputs necessary

to trigger these defects. Therefore, designing effective muta-

tion strategies for the inputswithin generated unit tests could

further improve defect detection effectiveness.

In summary, this paper makes the following contributions:

• We performed the first empirical study to evaluate open-

source LLMs in unit test generation. We studied five power-

ful code LLMs, ranging from 7B to 34B parameters, on 17 Java

projects from the well-known Defects4J benchmark. Our ex-

periments required around 3,000 NVIDIA A100 GPU-hours,

underscoring the scale and intensity of our study in advanc-

ing LLM-based unit test generation.

• We evaluated LLM-based unit test generation from four as-

pects defined by our research questions, including the influ-

ence of prompt design, the influence of ICL methods, the

comparison among open-source LLMs, the commercial GPT-

4, and traditional Evosuite, and the evaluation in terms of di-

verse metrics (including syntactic validity, test coverage, and

defect detection).

• We summarized nine major findings from our extensive study

and delivers a series of implications for guiding future re-

search and practice use of LLM-based unit test generation.

2 STUDY DESIGN

In general, when using LLMs to address some code-related task,

it involves three main aspects: an LLM, a prompt as the input of

the LLM, and an in-context (ICL) method employed to improve

LLMs in addressing the task, and thus it is important to investigate

these aspects in LLM-based unit test generation. Furthermore, as

the goal of unit testing is to detect defects at an early stage, the

defect detection ability of the generated unit tests by LLMs is also

crucial. In this work, to conduct a comprehensive study, the work-

flow of our study consists of four parts that target each aspect of

LLM-based unit test generation as discussed above.

2.1 Research Questions.

We investigated the unit test generation effectiveness of LLMs by

answering the following research questions (RQs):

• RQ1: How does prompt design affect the effectiveness of

LLMs in unit test generation?



An Empirical Study of Unit Test Generation with Large Language Models. Conference’17, July 2017, Washington, DC, USA

• RQ2: How do open-source LLMs perform in unit test gener-

ation compared to GPT-4 and Evosuite?

• RQ3: How do in-context learning methods affect the effec-

tiveness of LLM-based unit test generation?

• RQ4: How effective are the unit tests generated by LLMs in

terms of defect detection?

In RQ1, we investigated the effectiveness of each studied open-

source LLM in unit test generation by designing different prompts.

This helps investigate the influence of different prompt designs

on this task and also helps determine how to design a prompt to

make LLMs achieve the best effectiveness. In RQ2, we compared

the studied open-source LLMs in unit test generation based on the

best prompt design we explored in RQ1, and employed the state-of-

the-art commercial LLM (i.e., GPT-4) and the widely-studied tradi-

tional approach (i.e., Evosuite) as reference. This helps understand

the current situation of these open-source LLMs in unit test gener-

ation. In RQ3, we incorporated several widely-used ICL methods

to improve the usage of these studied LLMs respectively, and then

revisited the effectiveness of these LLMs in unit test generation.

This is helpful to explore whether the state-of-the-art ICL meth-

ods in general tasks can help improve the effectiveness of LLMs in

the specific task of unit test generation.

The former three RQ3 correspond to the above-mentioned three

aspects affecting the effectiveness of LLMs in addressing some

tasks, which adopted the widely-used evaluation metrics in exist-

ing studies on LLM-based unit test generation (i.e., syntactic valid-

ity and test coverage). RQ4 further complements them by consid-

ering another key ability (i.e., the defect detection ability) of unit

tests. That is, in RQ4, we investigated the effectiveness of these

studied LLMs in terms of fault detection with the corresponding

automatically generated unit tests.

2.2 Studied LLMs

First, we selected a set of representative code LLMs for investiga-

tion in our study. Our selection process started with the leader-

board of code LLMs hosted on Hugging Face [4]. We first sorted

code LLMs based on their scores and found that the most power-

ful LLMs shared two structures: CodeLlama and DeepSeekCoder.

Then, we determined a set of code LLMs with different scales for

each structure. They are CodeLlama-7B-Instruct, CodeLlama-13B-

Instruct, Phind-CodeLlama-34B-v2, DeepSeekCoder-6.7B-Instruct,

and DeepSeekCoder-33B-Instruct. Besides, we used the state-of-

the-art commercial LLM (i.e., GPT-4 [6]), as a reference due to its

well-known effectiveness.

CodeLlama refers to a series of code-specific LLMs evolved

from Llama 2 [69], available in three sizes (i.e., 7B, 13B, and

34B) and three variants (i.e., base model, Python fine-tuned

and instruction-tuned models). Phind models are the fine-tuned

versions of CodeLlama-34B, leveraging an internal Phind cor-

pus and instruction-tuning, and they have outperformed other

models in CodeLlama series. In our study, we selected three

instruction-tuned LLMs: CodeLlama-7B-Instruct, CodeLlama-13B-

Instruct, and Phind-CodeLlama-34B-v2, as instruction-tuned mod-

els tend to exhibit superior performance as shown in the existing

work [82]. For ease of presentation, we call them CL-7B, CL-13B,

and PD-34B, respectively.

DeepSeekCoder comprises a series of code LLMs trained on

a repository-level code corpus, including both pre-trained and

instruction-tuned models. These models come in various sizes, in-

cluding 1.3B, 5.7B, 6.7B, and 33B. To ensure fair comparisons with

our selected CodeLlama models, we selected DeepSeekCoder-6.7B-

Instruct and DeepSeekCoder-33B-Instruct since they have compa-

rable parameter sizes with CL-7B and PD-34B. We call them DC-

7B and DC-33B, respectively.

ChatGPT includes influential commercial closed-source LLMs

developed by OpenAI, such as GPT-3.5 and GPT-4. These models

are pre-trained on trillions of tokens and further enhanced through

instruction-tuning and reinforcement learning with human feed-

back [85]. They have shown exceptional performance in various

tasks [81, 83]. Among the ChatGPT series, GPT-4 is the most ad-

vanced and outperforms its predecessors. Therefore, we selected

GPT-4 as the representative closed-source LLM for reference.

2.3 Prompt Design

Prompts are crucial for an LLM as they contain the context, in-

struct the task, and largely influence the model’s performance [8,

20, 35, 61]. In general, when handling code-related tasks, the

prompt should include proper code features, and the task and these

code features should be described in a proper style, which can fa-

cilitate the LLM understanding and thus address this task. That is,

when designing a prompt, we should take two factors into consid-

eration: (1) which style is used to describe the task and these code

features, and (2) which code features should be included.

Description Style. There are two widely-used description

styles in addressing code-related tasks with LLMs in the litera-

ture [12, 62, 81, 83]: natural language description [81, 83] and code

language description [12, 62, 65]. The former describes the task

and code features in natural language, while the latter makes the

prompt a code fragment by introducing the task and code features

in corresponding comments. In our study, we investigated the in-

fluence of the two styles on the effectiveness of each studied open-

source LLM in unit test generation.

Code Features. To adequately investigate the influence of dif-

ferent code features, we surveyed the existing studies on LLM-

based unit test generation [7, 12, 65, 81, 83], and collected all their

used code features. In total, we collected six code features and

categorized them into three types: (1) Focal Method is the target

method to be tested. The code features extracted from it include

the method body (FM1 ) and its parameters (FM? ). (2) Focal Class is

the class containing the focal method. The code features extracted

from it include its constructor (FC2 ), the fields defined within the

class (FC5 ), and other methods defined within the class (FC< ). (3)

Related Classes are the classes including the constructors of the

parameters in the focal method (except the focal class). The code

feature extracted from it is these constructors (RC2 ). Among them,

FM1 is the basic content in the prompt for LLM-based unit test gen-

eration. Thus we performed an ablation experiment to investigate

the contribution of each of the remaining five code features.



Conference’17, July 2017, Washington, DC, USA Yang et al.

2.4 In-Context Learning Method

Chain-of-Thoughts (CoT) [83] and Retrieval Augmented Generation

(RAG) [37] are two widely-used ICL methods in various code-

related tasks. In this study, we adapted them to unit test generation

task, and investigated the impact of these methods on the effective-

ness of unit test generation.

CoT was originally proposed to improve the reasoning ability

of LLMs in addressing mathematical and common-sense reasoning

tasks [75]. Subsequently, it has been applied to some code-related

tasks and the effectiveness has been also demonstrated through

extensive experiments [38, 83]. Particularly, the existing work has

demonstrated the effectiveness of applying CoT to ChatGPT for

unit test generation [83], which instructs ChatGPT to (1) under-

stand the focal method and then (2) generate unit tests according

to its understanding. However, it is unclear whether CoT is still

effective in improving open-source LLMs in unit test generation.

To fill the gap, this work performs the first study that extensively

investigates the effectiveness of COT on various widely used open-

source LLMs.

RAG enhances LLMs by incorporating relevant information

retrieved from external databases to improve prompt contents,

which has been widely used in code generation [57, 72, 74]. In gen-

eral, RAG first retrieves similar inputs, and then treats these inputs

along with their corresponding ground-truth outputs as examples

to enhance LLMs. In our study, we investigated its effectiveness

in improving LLM-based unit test generation through adaptation.

Specifically, it first retrieves the most similar method to the focal

method within the project. Following the existing work [30, 72],

we used CodeBERT to encode the semantics of methods as vectors

and then measured the cosine similarity between vectors. Then,

the retrieved method, along with its corresponding unit tests, was

integrated into the prompt to instruct LLMs to generate unit tests.

2.5 Benchmark

We used the Defects4J 2.0 benchmark [28] to evaluate the effective-

ness of LLMs in unit test generation. It consists of 835 real-world

defects collected from 17 open-source Java projects and has been

widely used in software testing [29], fault localization [24, 25] and

program repair [26, 27, 47, 76]. In this benchmark, each defect cor-

responds to a buggy version and a fixed version. The fixed version

indicates that the patches have been applied to certain methods

and then the defect can be fixed. To balance the evaluation costs

and defect detection capability investigation, we regarded each

patched method as a focal method to be tested, instead of all meth-

ods in this benchmark. Particularly, following the testing practice

and the existing work [7, 70], we just considered public methods

as focal methods. For a bug involving multiple buggy methods, we

used all the public methods as focal methods. In total, we collected

778 focal methods, which involve 413 defects from all 17 projects

in the benchmark. Due to the space limit, we put the numbers of

focal methods and involved defects for each project at our home-

page [5].

2.6 Implementation

Due to the variable inconsistent output format of LLMs, we first

used the widely-used AST parser (i.e., tree-sitter[3]) to extract

the generated unit tests from the outputs, rather than relying on

simple text matching. Then, we integrated all test methods into

a test class for subsequent evaluation. Finally, we imported the

classes within the project and some common dependencies re-

quired by JDK (e.g., the java.utils package) and JUnit (e.g., the

org.junit.Assert package) into the test class, in order to avoid

simple compilation issues caused by missing dependencies.

We developed our experimental scripts based on PyTorch

2.0.0 [1] and transformers 4.34.1 [2], and used DeepSpeed [59] and

VLLM [33] libraries to speed up our experiments. All the experi-

ments were conducted on four servers with the same configura-

tion, i.e., Ubuntu 18.04 LTS, Intel Xeon Gold 6240C CPU, 512GB

RAM, and eight NVIDIA A100 GPUs. All of our code and data are

available at our project homepage [5].

2.7 Metrics

Following the existing studies [81, 83], we leveraged the three

widely-used metrics to evaluate the generated unit tests by each

technique in RQ1, RQ2, and RQ3: Compilation Success Rate

(CSR), Line Coverage (�>E!), and Branch Coverage (�>E� ). As

introduced in Section 2.6, for each focal method, we integrated all

the generated unit tests into a test class, and then compiled the

test class. Therefore, we calculated CSR by the ratio of the num-

ber of test classes compiled successfully over the total number of

test classes corresponding to all focal methods. Then, we executed

each test class compiled successfully, and collected its achieved

line coverage and branch coverage via the code coverage collection

tool (i.e., Jacoco [21]). For each test class with compilation errors,

we recursively remove test methods occurred in compilation error

messages from the test class and re-execute the test class until it

can be compiled successfully or there is no test method left in the

test class. In this way, we try our best to collect as much coverage

achieved as possible. Higher CSR, �>E! , and �>E� indicate better

effectiveness in unit test generation.

Furthermore, we incorporated an additional metric in RQ4, i.e.,

the Number of Detected Defects (NDD), to evaluate the defect

detection ability of the generated unit tests. Specifically, if a test

class passes on a fixed version but fails on the corresponding buggy

version, it indicates that the test class detected a defect.

3 RESULTS

3.1 Influence of Prompt Design

Influence of Description Style. We first investigated the influ-

ence of description styles, i.e., natural language description (NL)

and code language description (CL). Specifically, we investigated

the effectiveness of each studied open-source LLM by incorporat-

ing all studied code features into the prompt in each studied de-

scription style, respectively. Table 1 shows the results in terms of

CSR, �>E! , and �>E� . To evaluate the difference between NL and

CL in statistics, we performed the Wilcoxon rank sum test [77]

with a significance level of 0.05 between them and calculated the

Rank-biserial correlation [54] scores to show the effect size. If a p-

value is smaller than 0.05, it indicates that there is a statistically sig-

nificant difference between NL and CL for the used LLM in terms

of the metric. An effect-size value above 0.3 generally indicates a

meaningful difference between compared groups [11]. In this table,



An Empirical Study of Unit Test Generation with Large Language Models. Conference’17, July 2017, Washington, DC, USA

Table 1: Effectiveness of Open-source LLMs Using Different Description Styles in Prompt.

Style
CL-7B CL-13B PD-34B DC-7B DC-33B

IYX IovR IovH IYX IovR IovH IYX IovR IovH IYX IovR IovH IYX IovR IovH

NL 40.31 18.76 16.67 53.86 18.55 17.11 51.93 28.59 23.51 47.36 23.79 18.66 49.07 26.98 23.91

CL 34.37 16.21 14.34 38.95 14.16 12.18 56.06 30.31 24.14 50.27 23.94 17.20 50.54 32.36 26.76

we used bold to highlight the better one with statistical and mean-

ingful significance according to the p-value (<0.05) and the effect

size (>0.3) between NL and CL.

From Table 1, CL-7B and CL-13B perform better when using the

NL style than using the CL style in terms of all three used metrics.

In particular, the superiority of NL over CL is statistically signifi-

cant in all six cases for CL-7B and CL-13B. For example, the unit

tests generated by CL-7B in the NL style achieve 2.55% and 2.33%

higher line coverage and branch coverage than those in the CL

style. For DC-7B, DC-33B, and PD-34B, there is no statistically sig-

nificant difference between the two styles in most (seven out of

nine) cases, even though the CL style performs slightly better than

the NL style in general. The results indicate that DC-7B, DC-33B,

and PD-34B are more robust with respect to the description style

used in prompt than CL-7B and CL-13B.

We then investigated the reason behind the above phenomenon

and found that the root cause lies in which description styles are

employed in the training data for LLMs. Specifically, CL-7B and

CL-13B were build based on Llama2 by using a code corpus with

500B tokens. Although they have learned how to understand code

language, the base Llama2 model still have dominant impact on

their ability of understanding prompts. In contrast, although PD-

34B shares the Llama2 architecture, it conducted three rounds of

additional training with CL data (i.e., from Llama2 to CodeLlama-

34B, then Phind-v1 and v2), and thus it performs stably regard-

less of the used styles. Similarly, DC-7B and DC-33B were initially

trained on a hybrid corpus comprising 80% data in the CL style

and 20% data in the NL style, allowing them to work well with

both styles.

Overall, when utilizing an LLM to address the task of unit test

generation, it is preferable to design the prompt in the description

style that the LLM was trained on, which is usually overlooked in

practice. For sufficient comparisons, we adopted the style making

the LLM perform better for each LLM in the following experiments.

Specifically, we designed the prompt in the NL style for CL-7B and

CL-13B and in the CL style for DC-7B, DC-33B, and PD-34B.

Finding 1: CL-7B and CL-13 perform significantly better

when using the style of NL to instruct them, while PD-34B,

DC-7B, and DC-33B perform stably regardless of the used

styles. The underlying reason lies in whether the descrip-

tion styles used for instructing LLMs are well aligned with

those used in the training data for LLMs.

Influence of Code Features. We performed an ablation experi-

ment to investigate the influence of code features (i.e., �"? , ��2 ,

Table 2: Effectiveness of Unit Tests Generated By Open-

Source LLMs with Different Prompt Variants in Terms of

Compilation Success Rate (CSR).

Variants CL-7B CL-13B PD-34B DC-7B DC-33B

All 40.31 53.86 55.49 49.22 45.65

w/o LIc +0.99 -1.87 -0.42 -1.00 -2.43

w/o LIf +0.28 -3.43 +0.29 -0.86 -0.29

w/o LIm -2.14 -14.92 -6.42 -11.42 -4.28

w/o LSp +3.99 -1.01 +1.57 +1.84 -0.71

w/o XIc +3.99 -1.01 +1.57 +1.84 -0.71

��5 , ��< , and '�2 presented in Section 2.3). Specifically, we cre-

ated five variants for prompt design, each of which removes a code

feature from the prompt incorporating all studied code features, re-

spectively. Then, we investigated the effectiveness of each studied

open-source LLM with each of the prompt variants in its descrip-

tion style determined before. Table 2 shows the results in terms

of CSR and Table 3 shows the results in terms of �>E! and �>E� .

In both tables, Rows “All” present the results of each studied LLM

with the prompt incorporating all studied code features, and the

remaining rows present the increased/decreased effectiveness over

the corresponding effectiveness shown in Rows “All” for each stud-

ied LLM. We also used bold to highlight the increment/decrement

with statistical significance (p-values smaller than 0.05 and effect

size greater than 0.3).

From Table 2, all the cases with statistical significance are at

Row “w/o ��<” and all of them are decrement (ranging from 2.14%

to 14.92%) in terms of CSR. The results indicate the significant con-

tribution of ��< (other methods defined within the focal class) to

generate syntactic valid unit tests with LLMs. The reason may be

that building a unit test scenario often requires several steps and

some necessary information exists in ��< . Hence, removing ��<

may result in significant hallucination issues for LLMs, harming

the validity of generated unit tests. The remaining code features

have no statistically significant influence on LLM-based unit test

generation in terms of CSR, which is also as expected. Specifically,

(1) regarding ��5 , fields are seldom directly accessed from unit

tests; (2) regarding ��2 and '�2 , LLMs typically use no-parameter

constructors for instantiation or employ mocked instances instead

(e.g., about 58.49% of generated test classes involve such instantia-

tion methods on average); (3) the parameters of the focal method

also occur in the method body (i.e., the basic content �"1 that is

always retained in the prompt).



Conference’17, July 2017, Washington, DC, USA Yang et al.

Table 3: Effectiveness of Unit Tests Generated By Different Prompt Variants in Terms of Test Coverage.

Variants
CL-7B CL-13B PD-34B DC-7B DC-33B

IovR IovH IovR IovH IovR IovH IovR IovH IovR IovH

All 18.76 16.67 18.55 17.11 33.41 27.12 29.02 23.77 32.72 29.26

w/o LIc +8.09 +7.66 -2.44 -0.12 +0.62 +1.62 -2.72 -2.01 -3.16 -2.31

w/o LIf +7.46 +6.52 +1.83 +0.92 +5.17 +4.61 -0.37 -0.75 +1.11 -0.70

w/o LIm +9.26 +8.67 +3.07 +3.62 +4.04 +5.23 -0.65 +2.27 +1.79 +0.05

w/o LSp +8.93 +8.09 -0.32 +0.37 +2.46 +2.57 -1.31 -1.18 -1.63 -1.91

w/o XIc +8.96 +8.11 -0.32 +0.37 +2.45 +2.56 -1.31 -1.18 -1.90 -2.10

From Table 3, we found a surprising phenomenon, i.e., almost all

cases at Row “w/o ��<” are increment, even with statistical signif-

icance. This indicates that removing ��< in prompt design is help-

ful to improve code coverage even though it is harmful to the syn-

tactic validity of generated unit tests.We carefully analyzed the un-

derlying reason and found that the number of generated unit tests

may be the key factor. Specifically, these open-source LLMs have

fixed-size space to include prompt contents and LLMs’ response. If

the prompt is longer, it indicates that the contents of the response

from the LLM are fewer, potentially leading to a smaller number

of generated unit tests. After removing ��< in prompt design, the

window space left for the LLM’s response becomes larger, and in-

deed, the average number of generated unit tests across all the

studied open-source LLMs are significantly increased from 3,654 to

5,434, which is indeed helpful to improve code coverage. Overall,

this benefit even outperforms the negative influence on the syntac-

tic validity of generated unit tests.

Finding 2: ��< contributes the most to the syntactic va-

lidity of generated unit tests among all studied code fea-

tures, but its extensive length limits the number of gen-

erated unit tests with LLMs. The outperforming influence

of the latter over the former finally makes ��< limit test

coverage.

Except ��< , removing each of the remaining four code fea-

tures is significantly helpful to improve code coverage for the three

LLMs based on CodeLlama in general, but has no statistical signifi-

cant influence on the two LLMs based onDeepSeek-Coder in terms

of code coverage. The underlying reason may lie in the ability of

the foundation models in comprehending code features. Specifi-

cally, the CodeLlama models are trained from Llama2, which are

pre-trained on natural language data, while the DeepSeek-Coder

models are built from scratch based on a corpus primarily com-

posed of code language. Therefore, DC-7B and DC-33B are able

to comprehend provided code features more sufficiently, facilitat-

ing generating effective unit tests. Regarding CL-7B, CL-13B, and

PD-34B, because of the relatively weak ability in comprehending

code features, the negative influence of missing some information

due to removing code features is smaller than the brought benefit

(i.e., leaving larger space for LLMs’ response), eventually bringing

the improvement of test coverage. Additionally, the possible reason

why removing ��< has positive influence on both CodeLlama and

DeepSeek-Coder models is that ��< is significantly longer than

the other code features, and thus the benefit in leaving space for

LLMs’ response due to its removal is more significant to test cov-

erage improvement by generating more unit tests. Overall, there

seems to be a trade-off between including more code features and

leaving space for generating more unit tests in prompt design.

Particularly, when incorporating all studied code features, the

relatively small CodeLlama models (i.e., CL-7B and CL-13B) per-

form worse than the relatively small DeepSeek-Coder model (i.e.,

DC-7B) in terms of code coverage, and the relatively large CodeL-

lama model (i.e., PD-34B) performs closely to the relatively large

DeepSeek-Coder model (i.e., DC-33B). However, in our ablation ex-

periment, the best effectiveness of CL-7B and CL-13B in terms of

code coverage (i.e., that achieved by the prompt variant removing

��<) is even better than that of DC-7B. Similarly, the achieved

code coverage with PD-34B using the prompt variant removing

��< outperforms the best effectiveness of DC-33B. This indicates

the importance of selecting code features for a given LLM due to

the diverse characteristics of LLMs. For sufficient comparisons, we

adopted the prompt variant making the LLM perform the best for

each LLM in the following experiments. Specifically, we incorpo-

rated all studied code features in the prompt for DC-7B and DC-

33B but removed ��< for the remaining three LLMs. Note that

the prompt variant performing the best in our ablation experiment

may be not the global optimum, since we did not evaluate all com-

binations of these code features due to significant costs. We will

discuss this threat in detail in Section 4.

Finding 3: Code features (except ��<) have different in-

fluence on LLMs due to different abilities of their foun-

dation models in comprehending code features. Using

proper code features may largely enhance unit test genera-

tion effectiveness of LLMs (especially CodeLlama models).

3.2 Effectiveness Comparison

Table 4 shows the effectiveness of each studied open-source LLM

with the corresponding best setting mentioned above in terms of

CSR, �>E! , and �>E� . To better understand the effectiveness of

open-source LLMs in unit test generation, we also reported the

effectiveness of traditional technique Evosuite with its default set-

ting, as well as the closed-source GPT-4 model by incorporating



An Empirical Study of Unit Test Generation with Large Language Models. Conference’17, July 2017, Washington, DC, USA

Table 4: Effectiveness Comparison of Studied LLMs and Evo-

suite in Unit Test Generation.

Model IYX (%) Iov! (%) Iov� (%)

CL-7B 38.17 28.02 25.34

CL-13B 38.94 21.62 20.73

PD-34B 49.07 37.45 32.35

DC-7B 49.22 29.02 23.77

DC-33B 45.65 32.72 29.26

GPT-4 52.96 40.43 31.78

Evosuite 85.71 78.91 76.59

all studied code features in the natural language description style

(the most widely-used setting in the literature [68, 81, 83]).

From Table 4, the two most large-scale open-source LLMs (i.e.,

PD-34B and DC-33B) achieve higher code coverage than the re-

maining small-scale LLMs, and the commercial GPT-4 generally

performs better than these studied open-source LLMs. For ex-

ample, DC-33B achieves 12.75% higher line coverage and 23.10%

higher branch coverage than DC-7B. This is as expected since

larger-scale LLMs tend to have a stronger ability to understand

instructions, and the same finding has been observed on the task

of LLM-based code generation [10]. There is an unusual case, i.e.,

CL-13B performs worse than CL-7B in our study. This is because

CL-7B suffers from a repetition issue [22], which causes that the

number of generated unit tests is substantially larger than that gen-

erated by CL-13B. Although this repetition issue could benefit the

task of unit test generation to some degree, it is actually widely-

recognized as a typical aspect reflecting LLM’s poor capability [31].

There are also different findings derived from different tasks with

LLMs. From Table 4, PD-34B outperforms DC-33B in terms of both

line coverage and branch coverage, but the conclusion is opposite

on the task of code generation based on the widely-known leader-

board [4]. This indicates the necessity of re-evaluating LLMs when

a new task is specified, since the most suitable LLM may be differ-

ent for different tasks due to different characteristics involved in

them.

Finding 4: While these open-source LLMs have been eval-

uated on other tasks, not all findings can be generalized to

unit test generation, especially in identifying the most ef-

fective open-source LLM for it. The state-of-the-art com-

mercial GPT-4 is still more effective in unit test genera-

tion.

By comparing the traditional Evosuite with LLM-based unit test

generation in Table 4, the former significantly outperforms all the

LLM-based techniques (including the commercial GPT-4) in terms

of all three used metrics. For example, the line coverage achieved

by Evosuite is 78.91%, while that by GPT-4 is just 40.43%. Of course,

the unit tests generated by Evosuite have always been criticized for

poor readability, rather than for low test coverage [7, 83]. The poor

readability of traditional techniques is also the initial motivation

for LLM-based unit test generation [62, 68, 83], but definitely, LLM-

based unit test generation should not harm test coverage too much

compared to Evosuite. One possible reason is that a substantial por-

tion of the unit tests generated by LLMs (ranging from 34.44% to

61.78%) are syntactically invalid.

To potentially improve the effectiveness of LLM-based unit test

generation, we further analyzed the underlying root cause of their

low CSR. Specifically, there are three main types of invalid unit

tests generated by these LLMs: unresolved symbol errors, parame-

ter mismatch errors, and abstract instantiation errors. All of them

are caused by the hallucination issue [44] of LLMs. Unresolved sym-

bol errors are themost common, which account for 30.68% of all in-

valid unit tests and are caused due to using semantically-coherent

but undefined identifiers in unit tests. Parameter mismatch errors

are the second most common, accounting for 17.25%, which in-

volves incorrect parameter types or counts in invoked APIs. This is

because there are many APIs sharing the same name but different

parameter lists due to the overloading feature, aggregating the dif-

ficulty in generating correct API invocations for LLMs. Abstract

instantiation errors are the third most common, accounting for

10.38%, which involves incorrect instantiation of abstract classes.

Specifically, when a method parameter is defined in an abstract

class, an instance of the corresponding subclass should be declared

since abstract classes cannot be instantiated. However, LLMs often

declare an instance for the parameter according to its defined type.

Finding 5: LLM’s hallucination leads to three main types

of compilation errors for unit tests, i.e., unresolved symbol

errors, parameter mismatch errors, and abstract instanti-

ation errors. This makes LLM-based unit test generation

underperformEvosuite in terms of test coverage, although

the latter suffers from the poor readability issue.

3.3 Effectiveness of In-Context Learning

We investigated the influence of in-context learning on LLM-based

unit test generation by evaluating each studied open-source LLM

with the CoT and RAG methods (introduced in Section 2.4), re-

spectively. Table 5 presents their effectiveness in terms of �>E!
and�>E� . We also used bold to highlight the increment/decrement

with statistical significance (p-values smaller than 0.05 and effect

size greater than 0.3).

From this table, incorporating CoT weakens the effectiveness of

all three CodeLlama models (i.e., CL-7B, CL-13B, and PD-34B) in

terms of �>E! and �>E� , but enhances the effectiveness of both

DeepSeek-Coder models (i.e., DC-7B and DC-33B). For example,

incorporating CoT results in 3.04% decrement for CL-7B in terms

of �>E! , but brings 2.72% increment for DC-7B. This difference

may be attributed to the ability of LLMs in code comprehension.

Specifically, CoT introduces an extra task of describing the focal

method for guiding subsequent unit test generation, which stresses

the code comprehension ability of LLMsmore explicitly. Therefore,

the LLMs with a strong code comprehension ability could provide

informative descriptions, thereby improving the effectiveness of



Conference’17, July 2017, Washington, DC, USA Yang et al.

Table 5: Effectiveness of Open-source LLMs with Different In-Context Learning Methods in Terms of Test Coverage.

Model
CL-7B CL-13B PD-34B DC-7B DC-33B

IovR IovH IovR IovH IovR IovH IovR IovH IovR IovH

Base 28.02 25.34 21.62 20.73 37.45 32.35 29.02 23.77 32.72 29.26

+ CoT -3.04 -2.79 -6.45 -4.57 -0.02 -2.06 +2.72 +4.03 +0.69 +0.48

+ RAG -5.57 -5.85 -6.03 -5.10 -9.28 -8.78 -5.80 -4.44 -3.34 -5.72

subsequent unit test generation. However, the LLMs with a rela-

tively weak code comprehension ability may not describe the fo-

cal method correctly, eventually leading to the effectiveness decre-

ment. Through our manual analysis, the studied DeepSeek-Coder

models indeed provide more accurate and informative descriptions

than the studiedCodeLlamamodels, thereby achieving better effec-

tiveness in terms of test coverage. This indicates the superiority of

the former in the code comprehension ability, which is also aligned

with Finding 3. Hence, it is important to determine whether incor-

porating CoT to guide the used LLM is really helpful through a

preliminary study in advance.

Finding 6: CoT is helpful to improve the effectiveness

of both DeepSeek-Coder models in unit test generation

while it cannot for the three CodeLlama models due to

the stronger ability of the former in code comprehension.

From Table 5, incorporating RAGmakes all studied open-source

LLMs performworse in terms of both line coverage and branch cov-

erage. For example, the decrement of �>E! and �>E� for CL-7B is

5.57% and 5.85%, respectively. We extensively analyzed the reason

behind the negative conclusion, and found that there is a signifi-

cant gap between the unit tests retrieved by the RAG method and

those that LLMs excel at generating, which causes the informa-

tion that LLMs learn from the retrieved examples is limited (even

disruptive). For example, the average length of the retrieved unit

tests is 12.10 lines of code (LOC) while that of the generated unit

tests by LLMs is 5.60 LOC. Also, the average number of retrieved

unit tests per focal method (i.e., 2.41) is much smaller than that of

the generated unit tests by LLMs (i.e., 6.94). That is, the current re-

trieval method, which is restricted within the project following the

practice of code generation [30, 72], is not sufficient. This indicates

that setting a high-quality database specific to the task of unit test

generation could be helpful to improve the effectiveness of RAG in

enhancing LLM-based unit test generation.

Finding 7: The RAG method adapted from code gener-

ation is ineffective to enhance LLMs in unit test genera-

tion. This is mainly caused by the large gap between unit

tests retrieved and those that LLMs excel at generating,

indicating the necessity of setting a high-quality retrieval

database specific to unit test generation.

Table 6: Defect Detection Effectiveness of Studied LLMs.

Models CL-7B CL-13B PD-34B DC-7B DC-33B GPT-4

NTD 41 28 63 60 62 65

NDD 12 15 30 24 33 39

3.4 Defect Detection Ability

We further investigated the effectiveness of each LLM-based unit

test generation technique in terms of defect detection by execut-

ing its generated unit tests on the corresponding faulty versions.

As shown before, a number of generated unit tests by each LLM

cannot be compiled successfully, causing that there are no valid

unit tests for many defects. These defects cannot be detected at

all. Therefore, for each LLM, we filtered out such defects in this

experiment and reported the number of remaining defects that are

detectable in Row “NTD” (short for the number of testable defects

that have at least test classes compiled successfully on the corre-

sponding version) in Table 6. From this row, 87.13% of defects can-

not be detected due to the compilation issue on average across all

studied LLMs, suggesting that improving the validity of generated

unit tests by LLMs is critical to improve the defect detection ability

of them.

We then reported the number of detected defects by each LLM

in Row “NDD” in Table 6. We further confirmed the larger-scale

LLMs (including GPT-4, PD-34B, and DC-33B) detected more de-

fects than the remaining smaller-scale LLMs. Among these de-

tectable defects, however, the percentage of detected defects is still

small, ranging from 29.27% to 60.00%. This indicates the weak de-

fect detection ability of LLM-based unit test generation.

Finding 8: The defect detection ability of LLM-based unit

test generation is weak, mainly caused by the low valid-

ity of generated unit tests. On average, for 87.13% defects,

LLMs do not generate any valid unit tests. Among the re-

maining defects, just 47.28% defects are exactly detected.

We then analyzed why just a few defects are detected among

all detectable ones in order to further understand the challenges

for LLM-based unit test generation in defect detection. Through

our manual investigation on each valid unit test corresponding to

each undetected defect, we summarized the following three rea-

sons. Table 7 presents the number of undetected defects caused by

each reason for each LLM.

(1) Insufficient test coverage refers to that all the generated

unit tests by an LLM do not reach the faulty code. From Table 7,



An Empirical Study of Unit Test Generation with Large Language Models. Conference’17, July 2017, Washington, DC, USA

Table 7: Number of Defects that Valid Unit Tests Failed to Detect Categorized by Three Reasons

Model CL-7B CL-13B PD-34B DC-7B DC-33B GPT-4

Insufficient Test Coverage 6 3 11 10 9 0

Missing Specific Inputs 22 10 21 26 20 24

Improper Assertionw 1 0 1 0 0 2

there are 3.61%, 1.81%, 6.63%, 6.02%, 5.42% of undetected defects

caused by this reason for CL-7B, CL-13B, PD-34B, DC-7B, DC-33B,

respectively. (2) Missing specific inputs refers to that there are

some unit tests executing the faulty code but the inputs specified

in the unit tests cannot trigger the defect. That is, the triggering

of the defect requires some specific inputs (such as setting the

real part of a complex number to NaN for triggering the defect in

Math-53). From Table 7, there are 13.25%, 6.02%, 12.65%, 15.66%,

12.05% , 14.46% of undetected defects caused by this reason for CL-

7B, CL-13B, PD-34B, DC-7B, DC-33B, GPT-4, respectively. (3) Im-

proper assertions refer to that the defect-triggering inputs have

been specified in some unit tests, but no proper assertions are pro-

duced to capture this defect. For example, the defect in Compress-

34 lies in missing to flush the input stream after closing a file. How-

ever, the unit tests generated by PD-34B do not contain the asser-

tions checking whether the corresponding attribute is null, but

just check whether the file is closed. From Table 7, there are 0.60%,

0.60%, 1.20% of undetected defects caused by this reason for CL-7B,

PD-34B, GPT-4, respectively.

Finding 9: Regarding the undetected defects with valid

unit tests generated by LLMs, the main reason lies in miss-

ing to produce the specific inputs required to trigger de-

fects, resulting in 74.99% of undetected defects on average.

4 THREATS TO VALIDITY

The threats to internal validity mainly lie in our experimental

scripts and the usages of LLMs. To reduce the former threat, two

authors have carefully checked our implementations through code

review and testing. We also released our implementations at our

project homepage for replication. To reduce the latter threat, we

used publicly accessible model weights from Hugging Face ad-

hered strictly to the well-documented usage guidelines for open-

sourcemodels, and leveraged the API services provided by OpenAI

for GPT-4.

The threats to external validity mainly lie in our used bench-

mark and LLMs. In our study, we adopted the Defects4J benchmark

for evaluation, which has been widely used in the existing studies

on software testing and debugging [24, 25, 43, 79]. Specifically, we

collected 778 focal methods involving 413 defects from 17 projects,

exhibiting the diversity of our evaluation data to some degree. Also,

we studied five open-source LLMs and the state-of-the-art com-

mercial LLM (i.e., GPT-4). As presented in Section 2.2, we selected

these LLMs by considering diverse architectures and model sizes,

as well as their effectiveness on code-related tasks highlighted in

the leaderboard hosted on Hugging Face. The above diversity is

helpful to reduce this kind of threats to some degree. Actually, the

current experiments on the used benchmark and LLMs have spent

3,000 A100 GPU hours, and our experimental design balances con-

clusion generalizability and evaluation costs well.

The threats to construct validity mainly lie in our studied code

features, ICL methods, randomness, and potential data leakage. Re-

garding the former, we collected all the code features that have

been used in the existing studies on LLM-based testing [7, 70, 81,

83], demonstrating the comprehensiveness of our investigation.

However, due to the evaluation costs, it is unaffordable to inves-

tigate the effectiveness of all combinations of these code features.

Instead, we performed an ablation experiment by respectively re-

moving one code feature from the whole set to investigate the

contribution. Therefore, we may not find the globally optimal set-

ting for each studied LLM for the experiments in Sections 3.2, 3.3,

and 3.4, but selected the locally optimal setting from our ablation

experiment.

Regarding the ICL methods, we investigated two most widely-

studied methods, i.e., CoT and RAG, in the literature [37, 75]. Ac-

cording to the characteristics of unit test generation, we adapted

them to fit our task as introduced in Section 2.4. The current adap-

tations are reasonable but may be not the best strategies in unit

test generation. In the future, we will explore more usages of CoT,

RAG, and some other ICL methods (e.g., self-repairing [81], self-

consistency [73], prompt tuning [35]) in LLM-based unit test gener-

ation for more sufficient investigation. To reduce the threat of ran-

domness from LLMs, we set the temperature to zero, which is the

most widely-used setting to increase LLMs’ determinacy [16, 53].

Same as the existing studies on LLMs using the Defects4J bench-

mark [52, 78, 81], there is also a potential data leakage threat in

our study. Following the existing practice [62, 78], we compared

LLM-generated unit tests with the original unit tests equipped by

this benchmark. We found that there is no exact match between

them, and even the number of LLM-generated unit tests (3.70 on

average) is largely different with that of original unit tests (2.41).

This helps reduce the influence of this threat to some degree. In

the future, we will extend our study to more recent benchmarks,

such as GitBug-Java [66].

5 IMPLICATIONS

Based on our findings from the study, we summarize a series of im-

plications, which could suggest better practice of leveraging LLMs

in unit test generation.
1© Tuning prompt design (including both description

styles and code features) for a given LLM is important. As

shown in Section 3.1, both description styles and code features sig-

nificantly affect the effectiveness of LLM-based unit test genera-

tion. Improper prompts can even decrease effectiveness in terms

of both CSR and test coverage. This suggests that, for a given LLM,



Conference’17, July 2017, Washington, DC, USA Yang et al.

it is necessary to perform preliminary experiments to determine

an optimal prompt for unit test generation.
2© Removing useless information from code features

helps balance prompt content and space for generating unit

tests. According to Section 3.1, there is a trade-off between incor-

porating more information and leaving sufficient space for gener-

ating unit tests, particularly for ��< . Directly removing ��< is

somewhat coarse-grained and may result in the loss of necessary

information for constructing valid unit tests. Therefore, conduct-

ing static analysis to remove the methods in ��< that do not have

dependencies to the focal method is a promising method to achieve

this balance.
3© Empirically selecting a proper LLM is necessary, in-

stead of relying on the best LLM according to experience in

other tasks. As shown in Section 3.2, larger-scale LLMs gener-

ally perform better than smaller-scale ones, a conclusion consis-

tent across unit test generation and other code-related tasks. How-

ever, for LLMs with similar scales, the best one may vary depend-

ing on the specific task. This variability arises because open-source

LLMs are based on different foundation models and fine-tuned on

different datasets, thus exhibiting different capabilities across var-

ious tasks. Therefore, to generate high-quality tests, it is crucial to

evaluate several LLMs rather than simply using the one deemed

best in other tasks.
4© Refining the use of ICL methods specific to unit test

generation is essential. As shown in Section 3.3, the effective-

ness of CoT varies due to different LLMs’ code comprehension

abilities, which significantly affects their understanding of focal

methods and, consequently, the effectiveness of unit test genera-

tion. Specifically, applying CoT to LLMs with weak code compre-

hension abilities can even decrease test coverage. Therefore, it is

advisable to conduct preliminary studies to determine if employ-

ing CoT benefits the given LLM. Additionally, the existing RAG

method used in code generation is ineffective for unit test gener-

ation, primarily due to the significant gap between retrieved unit

tests and those generated by LLMs. This highlights the necessity of

constructing a high-quality retrieval database specific to unit test

generation.
5©Designing post-processing strategies to fix invalid unit

tests can help mitigate the influence of LLMs’ hallucination.

Our study reveals that a significant percentage of unit tests gen-

erated by LLMs cannot be compiled successfully, thereby limiting

their effectiveness in terms of both test coverage and defect de-

tection. We analyzed the major error types for these invalid unit

tests caused by LLMs’ hallucination, and found that it is possi-

ble to design post-processing rules to fix these errors. For exam-

ple, extracting the class inheritance relationship can help address

abstract instantiation errors. Additionally, we can follow existing

methods [81, 83] to instruct LLMs to fix these errors by feeding

error messages back to them.
6© Designing mutation strategies for the inputs speci-

fied in LLM-generated unit tests is helpful in improving de-

fect detection ability. As demonstrated in Section 3.4, many de-

tectable defects remain undiscovered by valid unit tests generated

by LLMs due to the absence of specific defect-triggering inputs.

This is understandable as LLMs tend to produce more common

inputs, given their inherent characteristics. Therefore, it could be

promising to design mutation strategies to transform a generated

unit test into a mutated one that includes the defect-triggering in-

put. Such mutation strategies could involve (1) mutating an input

to its boundary value, and (2) mutating an input to a value found

in historically defect-triggering tests, which can be obtained from

bug repositories.
7© Supervised fine-tuning (SFT) of open-source LLMs by

incorporating unit test generation data may fundamentally

improve effectiveness. The overall effectiveness of directly ap-

plying existing open-source LLMs to the task of unit test gener-

ation is unsatisfactory based on our results. This deficiency may

stem from these LLMs’ limited knowledge acquisition regarding

this task during the pre-training process. Therefore, conducting

SFT specific to the task of unit test generation could be beneficial,

representing a promising direction alongside the construction of a

high-quality corpus tailored to this task.

6 RELATED WORK

Unit Test Generation. In the literature, a significant body of re-

search has been dedicated to the development of automated unit

test generation techniques [7, 9, 12, 39, 63, 65, 70, 81, 83]. They can

be divided into twomain categories: traditional techniques and DL-

based techniques.

Traditional techniques adopted a variety of methods to solve

this problem, including symbolic execution [58, 80], search-based

optimization [17], model checking [15, 18]. For instance, one of the

most influential unit test generation techniques, i.e., Evosuite [17],

treats this problem as a search problem and leverages the evolu-

tionary search algorithm to find the tests achieving high code cov-

erage. Although they can generate unit tests with reasonable cov-

erage, they often lack readability and maintainability compared to

manually written ones. As a result, it is challenging for developers

to use these automatically generated tests in practice directly.

DL-based techniques exploited the power of pre-trained lan-

guage models to unit test generation. They often treat this prob-

lem as a neural machine translation problem, which inputs the

target methods and outputs the unit tests. For instance, Tufano

et al. [70] proposed AthenaTest, which leverages the pre-trained

BART Transformer [36] to generate unit tests about the given

methods. However, the early techniques used smaller general-

purpose pre-trained language models, thereby limiting their effec-

tiveness.

Recently, with the huge impact of ChatGPT, researchers ex-

plored the effectiveness of LLMs in generating unit tests. Specif-

ically, Zhang et al. [83] proposed Chattester that iteratively gen-

erates unit tests based on conversations with ChatGPT. Lemieux

et al. [34] proposed CODAMOSA that combines evolutionary

search with CodeX [10] by exploiting code understanding abil-

ity of CodeX to overcome the low rate of generating coverage-

improving tests with traditional methods. Li et al. [40] proposed

using the subtle differences between fixed and buggy code ver-

sions to guide ChatGPT to generate failure-inducing tests. These

LLM-based techniques show significant superiority over earlier

DL-based ones. However, they are all based on closed-source LLMs,

resulting in a lack of transparency and reproducibility. Particularly,



An Empirical Study of Unit Test Generation with Large Language Models. Conference’17, July 2017, Washington, DC, USA

it is still unclear how recent open-source LLMs perform in unit test

generation.

Empirical Study on evaluating LLMs in Code-Related Tasks.

With the rapid development in LLMs, there are multiple studies in-

vestigating the effectiveness of LLMs in code-related tasks [14, 19,

23, 41, 42, 46, 48–51, 56, 67, 71, 78]. In particular, there are some em-

pirical studies on LLM-based unit test generation [12, 62, 65, 81, 83].

For example, Yuan et al. [83] investigated the effectiveness of Chat-

GPT and proposed ChatTester by employing CoT for unit test gen-

eration. Xie et al. [81] proposed and evaluated ChatUniTest by em-

ploying the feedback-based generation process with ChatGPT. Sid-

diq et al. [65] investigated the effectiveness of GPT-3.5 and Codex

in unit test generation. Schafer et al. [62] proposed TestPilot, which

incorporates API documentation and GPT-3.5 for unit test genera-

tion.

However, these existing studies mostly relied on fixed prompt-

ing strategies based on closed-source LLMs, neglecting the power

of advanced open-source LLMs and the influence of various

prompting factors (such as prompt design and ICL methods). In

our study, we focus on open-source LLMs with extensive consider-

ation of these factors, and performed the first study to demonstrate

their effectiveness. Our findings provide a series of actionable sug-

gestions to LLM-based unit test generation.

Furthermore, there are some empirical studies on evaluating

LLMs in addressing other code-related tasks. For example, Du et

al. [14] conducted experiments to investigate the effectiveness of

LLMs in class-level code generation. Nam et al. [50] compared the

code understanding ability of LLMs when using them to help de-

velopers understand the project. Sun et al. [67] conducted exper-

iments to investigate the effectiveness of ChatGPT in code sum-

marization. Facundo et al. [49] summarized three types of oracles

and threats that arise from automatically generating oracles using

LLMs. Xia et al. [78] conducted experiments on LLMs to investigate

their effectiveness in automated program repair. Niu et al. [51] con-

ducted a comprehensive investigation on the effectiveness of pre-

trained models in six code-related tasks. Different from them, our

work targets the task of unit test generation.

7 CONCLUSION

This work conducted an comprehensive evaluation of five open-

source LLMs for unit test generation. We investigated several as-

pects: the influence of different prompt designs, the comparison

effectiveness among open-source LLMs, the commercial closed-

source LLM (i.e., GPT-4) and the traditional method (i.e., Evosuite),

the influence of in-context learning on LLM-based unit tests gener-

ation, and the defect detection ability of LLM-generated unit tests.

Our findings first point out that prompt design is crucial to the

effectiveness of LLMs in unit test generation, and suggest that it

is better to align the description style with the training data and

choose code features considering the LLMs’ code comprehension

ability and the prompt length. Second, our results indicate that the

conclusions drawn from other tasks do not necessarily general-

ize to unit test generation, especially in identifying the best open-

source LLM specific to the task. However, all studied LLMs (includ-

ing the best GPT-4) still underperform Evosuite, primarily due to

the significant percentage of invalid tests caused by hallucination.

Our further analysis suggests that effective post-processing could

help mitigate this problem. Third, we found that directly adapting

ICL techniques from other tasks does not improve the effectiveness

of unit tests generation, requiring special design for the use of ICL

methods according to the characteristics of the task. Finally, we

found that the defect detection ability of LLM-generated unit tests

is limited, primarily due to their low syntactic validity and the lack

of specific input for triggering the defects. Our analysis indicates

that designing effective mutation strategies for the inputs could

further improve the defect detection effectiveness.

REFERENCES
[1] Accessed: 2023. PyTorch. https://pytorch.org/.
[2] Accessed: 2023. Transformers. https://github.com/huggingface/transformers/.
[3] Accessed: 2023. Tree-sitter. https://tree-sitter.github.io/tree-sitter/.
[4] Accessed: 2024. Big Code Models Leaderboard.

https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard.
[5] Accessed: 2024. HomePage. https://anonymous.4open.science/r/LLM4UT/.
[6] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Flo-

rencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shya-
mal Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[7] Saranya Alagarsamy, Chakkrit Tantithamthavorn, and Aldeida Aleti. 2023.
A3Test: Assertion-Augmented Automated Test Case Generation. CoRR
abs/2302.10352 (2023).

[8] Xavier Amatriain. 2024. Prompt Design and Engineering: Introduction and Ad-
vanced Methods. CoRR abs/2401.14423 (2024).

[9] Shreya Bhatia, Tarushi Gandhi, Dhruv Kumar, and Pankaj Jalote. 2023. Unit
Test Generation using Generative AI : A Comparative Performance Analysis of
Autogeneration Tools. CoRR abs/2312.10622 (2023).

[10] Mark Chen, Jerry Tworek, Heewoo Jun, , et al. 2021. Evaluating Large Language
Models Trained on Code. CoRR abs/2107.03374 (2021).

[11] Jacob Cohen. 2013. Statistical power analysis for the behavioral sciences. Rout-
ledge.

[12] Arghavan Moradi Dakhel, Amin Nikanjam, Vahid Majdinasab, Foutse Khomh,
andMichel C. Desmarais. 2024. Effective test generation using pre-trained Large
Language Models and mutation testing. Inf. Softw. Technol. 171 (2024), 107468.

[13] DeepSeek. 2023. DeepSeek Coder: Let the Code Write Itself.
https://github.com/deepseek-ai/DeepSeek-Coder.

[14] Xueying Du,Mingwei Liu, KaixinWang, , et al. 2024. Evaluating Large Language
Models in Class-Level Code Generation. In ICSE. ACM, 81:1–81:13.

[15] Eduard Paul Enoiu, Adnan Causevic, Thomas J. Ostrand, Elaine J. Weyuker,
Daniel Sundmark, and Paul Pettersson. 2016. Automated test generation using
model checking: an industrial evaluation. Int. J. Softw. Tools Technol. Transf. 18,
3 (2016), 335–353.

[16] Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta,
Shin Yoo, and Jie M. Zhang. 2023. Large Language Models for Software Engi-
neering: Survey and Open Problems. In ICSE-FoSE. IEEE, 31–53.

[17] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite genera-
tion for object-oriented software. In SIGSOFT FSE. ACM, 416–419.

[18] Angelo Gargantini and Constance L. Heitmeyer. 1999. Using Model Checking to
Generate Tests from Requirements Specifications. In ESEC / SIGSOFT FSE (Lec-
ture Notes in Computer Science, Vol. 1687). Springer, 146–162.

[19] Qi Guo, Junming Cao, Xiaofei Xie, Shangqing Liu, Xiaohong Li, Bihuan Chen,
and Xin Peng. 2024. Exploring the potential of chatgpt in automated code re-
finement: An empirical study. In Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering. 1–13.

[20] Stefan Hackmann, Haniyeh Mahmoudian, Mark Steadman, and Michael
Schmidt. 2024. Word Importance Explains How Prompts Affect LanguageModel
Outputs. CoRR abs/2403.03028 (2024).

[21] Marc Hoffmann and Michael Ernst. 2021. JaCoCo: Java Code Coverage Library.
https://www.jacoco.org. Accessed: 2024-05-19.

[22] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2020. The Cu-
rious Case of Neural Text Degeneration. In ICLR. OpenReview.net.

[23] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo,
David Lo, John C. Grundy, and Haoyu Wang. 2023. Large Language Models for
Software Engineering: A Systematic Literature Review. CoRR abs/2308.10620
(2023).

[24] Jiajun Jiang, Ran Wang, Yingfei Xiong, Xiangping Chen, and Lu Zhang. 2019.
Combining spectrum-based fault localization and statistical debugging: An em-
pirical study. In 2019 34th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). IEEE, 502–514.

https://pytorch.org/
https://github.com/huggingface/transformers/
https://tree-sitter.github.io/tree-sitter/
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://anonymous.4open.science/r/LLM4UT/
https://github.com/deepseek-ai/DeepSeek-Coder
https://www.jacoco.org


Conference’17, July 2017, Washington, DC, USA Yang et al.

[25] Jiajun Jiang, Yumeng Wang, Junjie Chen, Delin Lv, and Mengjiao Liu. 2023.
Variable-Based Fault Localization via Enhanced Decision Tree. ACM Transac-
tions on Software Engineering and Methodology 33, 2 (2023), 1–32.

[26] Jiajun Jiang, Yingfei Xiong, and Xin Xia. 2019. A manual inspection of defects4j
bugs and its implications for automatic program repair. Science china information
sciences 62 (2019), 1–16.

[27] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.
2018. Shaping program repair space with existing patches and simi-
lar code. In Proceedings of the 27th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis (Amsterdam, Netherlands) (ISSTA
2018). Association for Computing Machinery, New York, NY, USA, 298–309.
https://doi.org/10.1145/3213846.3213871

[28] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: a database of
existing faults to enable controlled testing studies for Java programs. In ISSTA.
ACM, 437–440.

[29] Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023. Large languagemodels are few-
shot testers: Exploring llm-based general bug reproduction. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). IEEE, 2312–2323.

[30] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick S. H. Lewis, Ledell Wu,
Sergey Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval
for Open-Domain Question Answering. In EMNLP (1). Association for Compu-
tational Linguistics, 6769–6781.

[31] Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and
Richard Socher. 2019. CTRL: A Conditional Transformer Language Model for
Controllable Generation. CoRR abs/1909.05858 (2019).

[32] Divya Kumar and Krishn Kumar Mishra. 2016. The impacts of test automation
on software’s cost, quality and time to market. Procedia Computer Science 79
(2016), 8–15.

[33] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,
Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient mem-
ory management for large language model serving with pagedattention. In Pro-
ceedings of the 29th Symposium on Operating Systems Principles. 611–626.

[34] Caroline Lemieux, Jeevana Priya Inala, Shuvendu K Lahiri, and Siddhartha Sen.
2023. CODAMOSA: Escaping coverage plateaus in test generation with pre-
trained large language models. In International conference on software engineer-
ing (ICSE).

[35] Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The Power of Scale for
Parameter-Efficient Prompt Tuning. In EMNLP (1). Association for Computa-
tional Linguistics, 3045–3059.

[36] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: Denois-
ing sequence-to-sequence pre-training for natural language generation, transla-
tion, and comprehension. arXiv preprint arXiv:1910.13461 (2019).

[37] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, NamanGoyal, Heinrich Küttler, Mike Lewis,Wen-tau Yih, TimRock-
täschel, et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp
tasks. Advances in Neural Information Processing Systems 33 (2020), 9459–9474.

[38] Jia Li, Yongmin Li, Ge Li, and Zhi Jin. 2023. StructuredChain-of-Thought Prompt-
ing for Code Generation. CoRR (2023).

[39] Kefan Li and Yuan Yuan. 2024. Large Language Models as Test Case Generators:
Performance Evaluation and Enhancement. CoRR abs/2404.13340 (2024).

[40] Tsz-On Li, Wenxi Zong, YiboWang, Haoye Tian, YingWang, Shing-Chi Cheung,
and Jeff Kramer. 2023. Nuances are the key: Unlocking chatgpt to find failure-
inducing tests with differential prompting. In 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 14–26.

[41] Yichen Li, Yintong Huo, Zhihan Jiang, Renyi Zhong, Pinjia He, Yuxin Su, and
Michael R Lyu. 2023. Exploring the effectiveness of llms in automated logging
generation: An empirical study. arXiv preprint arXiv:2307.05950 (2023).

[42] Zongjie Li, Chaozheng Wang, Pingchuan Ma, Chaowei Liu, Shuai Wang,
Daoyuan Wu, Cuiyun Gao, and Yang Liu. 2024. On extracting specialized code
abilities from large language models: A feasibility study. In Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering. 1–13.

[43] Jingjing Liang, Ruyi Ji, Jiajun Jiang, Shurui Zhou, Yiling Lou, Yingfei Xiong, and
Gang Huang. 2021. Interactive patch filtering as debugging aid. In 2021 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE,
239–250.

[44] Fang Liu, Yang Liu, Lin Shi, Houkun Huang, Ruifeng Wang, Zhen Yang, and Li
Zhang. 2024. Exploring and Evaluating Hallucinations in LLM-Powered Code
Generation. arXiv preprint arXiv:2404.00971 (2024).

[45] Hanmeng Liu, Zhiyang Teng, Leyang Cui, Chaoli Zhang, Qiji Zhou, and Yue
Zhang. 2023. Logicot: Logical chain-of-thought instruction-tuning data collec-
tion with gpt-4. arXiv preprint arXiv:2305.12147 (2023).

[46] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is
Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large
Language Models for Code Generation. arXiv preprint arXiv:2305.01210 (2023).

[47] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F Bissyandé. 2019. Tbar:
Revisiting template-based automated program repair. In Proceedings of the 28th

ACM SIGSOFT international symposium on software testing and analysis. 31–42.
[48] Antonio Mastropaolo, Luca Pascarella, Emanuela Guglielmi, Matteo Ciniselli, Si-

mone Scalabrino, Rocco Oliveto, and Gabriele Bavota. 2023. On the robustness
of code generation techniques: An empirical study on github copilot. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE,
2149–2160.

[49] Facundo Molina and Alessandra Gorla. 2024. Test Oracle Automation in the era
of LLMs. arXiv preprint arXiv:2405.12766 (2024).

[50] DayeNam, AndrewMacvean, Vincent Hellendoorn, Bogdan Vasilescu, and Brad
Myers. 2024. Using an llm to help with code understanding. In Proceedings of
the IEEE/ACM 46th International Conference on Software Engineering. 1–13.

[51] Changan Niu, Chuanyi Li, Vincent Ng, Dongxiao Chen, Jidong Ge, and Bin Luo.
2023. An Empirical Comparison of Pre-Trained Models of Source Code. In ICSE.
IEEE, 2136–2148.

[52] Wendkûuni C. Ouédraogo, Laura Plein, Abdoul Kader Kaboré, Andrew Habib,
Jacques Klein, David Lo, and Tegawendé F. Bissyandé. 2023. Enriching Auto-
matic Test CaseGeneration byExtracting Relevant Test Inputs fromBug Reports.
CoRR abs/2312.14898 (2023).

[53] Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang. 2023. LLM is
Like a Box of Chocolates: the Non-determinism of ChatGPT in Code Generation.
CoRR abs/2308.02828 (2023).

[54] Julie Pallant. 2020. SPSS survival manual: A step by step guide to data analysis
using IBM SPSS. Routledge.

[55] Fabio Palomba, Dario Di Nucci, Annibale Panichella, Rocco Oliveto, and Andrea
De Lucia. 2016. On the diffusion of test smells in automatically generated test
code: An empirical study. In 2016 IEEE/ACM 9th International Workshop on
Search-Based Software Testing (SBST). IEEE, 5ś14 (2016).

[56] Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lam-
bert Pouguem Wassi, Michele Merler, Boris Sobolev, Raju Pavuluri, Saurabh
Sinha, and Reyhaneh Jabbarvand. 2024. Lost in translation: A study of bugs
introduced by large language models while translating code. In Proceedings of
the IEEE/ACM 46th International Conference on Software Engineering. 1–13.

[57] Md. Rizwan Parvez, Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray,
and Kai-Wei Chang. 2021. Retrieval Augmented Code Generation and Summa-
rization. In EMNLP (Findings). Association for Computational Linguistics, 2719–
2734.

[58] Corina S. Pasareanu, Peter C. Mehlitz, David H. Bushnell, Karen Gundy-Burlet,
Michael R. Lowry, Suzette Person, and Mark Pape. 2008. Combining unit-level
symbolic execution and system-level concrete execution for testing NASA soft-
ware. In ISSTA. ACM, 15–26.

[59] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020. Deep-
speed: System optimizations enable training deep learningmodels with over 100
billion parameters. In Proceedings of the 26th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining. 3505–3506.

[60] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xi-
aoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton-
Ferrer, Aaron Grattafiori,Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and
Gabriel Synnaeve. 2023. Code Llama: Open Foundation Models for Code. CoRR
abs/2308.12950 (2023).

[61] Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat Mondal,
and Aman Chadha. 2024. A Systematic Survey of Prompt Engineering in Large
LanguageModels: Techniques and Applications. arXiv preprint arXiv:2402.07927
(2024).

[62] Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. 2024. An Empirical
Evaluation of Using Large Language Models for Automated Unit Test Genera-
tion. IEEE Trans. Software Eng. 50, 1 (2024), 85–105.

[63] Domenico Serra, Giovanni Grano, Fabio Palomba, Filomena Ferrucci, Harald C
Gall, and Alberto Bacchelli. 2019. On the effectiveness of manual and automatic
unit test generation: ten years later. In 2019 IEEE/ACM 16th International Confer-
ence on Mining Software Repositories (MSR). IEEE, 121–125.

[64] Mohammed Latif Siddiq, Simantika Dristi, Joy Saha, and Joanna Santos. 2024.
Quality Assessment of Prompts Used in Code Generation. arXiv preprint
arXiv:2404.10155 (2024).

[65] Mohammed Latif Siddiq, Joanna C. S. Santos, Ridwanul Hasan Tanvir, Noshin Ul-
fat, Fahmid Al Rifat, and Vinicius Carvalho Lopes. 2023. Exploring the Effective-
ness of Large Language Models in Generating Unit Tests. CoRR abs/2305.00418
(2023).

[66] André Silva, Nuno Saavedra, and Martin Monperrus. 2024. GitBug-Java: A Re-
producible Benchmark of Recent Java Bugs. CoRR abs/2402.02961 (2024).

[67] Weisong Sun, Chunrong Fang, Yudu You, Yun Miao, Yi Liu, Yuekang Li, Gelei
Deng, Shenghan Huang, Yuchen Chen, Quanjun Zhang, Hanwei Qian, Yang Liu,
and Zhenyu Chen. 2023. Automatic Code Summarization via ChatGPT: How
Far Are We? CoRR abs/2305.12865 (2023).

[68] Yutian Tang, Zhijie Liu, Zhichao Zhou, and Xiapu Luo. 2023. ChatGPT vs SBST:
A Comparative Assessment of Unit Test Suite Generation. CoRR abs/2307.00588
(2023).

https://doi.org/10.1145/3213846.3213871


An Empirical Study of Unit Test Generation with Large Language Models. Conference’17, July 2017, Washington, DC, USA

[69] Hugo Touvron, LouisMartin, Kevin Stone, et al. 2023. Llama 2: Open Foundation
and Fine-Tuned Chat Models. CoRR abs/2307.09288 (2023).

[70] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel
Sundaresan. 2020. Unit Test Case Generation with Transformers. CoRR
abs/2009.05617 (2020).

[71] Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing
Wang. 2024. Software Testing With Large Language Models: Survey, Landscape,
and Vision. IEEE Trans. Software Eng. 50, 4 (2024), 911–936.

[72] Weishi Wang, Yue Wang, Shafiq Joty, and Steven CH Hoi. 2023. Rap-gen:
Retrieval-augmented patch generation with codet5 for automatic program re-
pair. In Proceedings of the 31st ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering. 146–158.

[73] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan
Narang, Aakanksha Chowdhery, and Denny Zhou. 2023. Self-Consistency Im-
proves Chain of Thought Reasoning in Language Models. In ICLR. OpenRe-
view.net.

[74] Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi DQ Bui, Junnan Li, and
Steven CH Hoi. 2023. Codet5+: Open code large language models for code un-
derstanding and generation. arXiv preprint arXiv:2305.07922 (2023).

[75] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei
Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. 2022. Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models. In NeurIPS.

[76] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.
Context-aware patch generation for better automated program repair. In Pro-
ceedings of the 40th international conference on software engineering. 1–11.

[77] Frank Wilcoxon. 1992. Individual comparisons by ranking methods. In Break-
throughs in statistics: Methodology and distribution. Springer, 196–202.

[78] Chunqiu StevenXia, YuxiangWei, and Lingming Zhang. 2022. Practical Program
Repair in the Era of Large Pre-trained Language Models. CoRR abs/2210.14179
(2022).

[79] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated pro-
gram repair in the era of large pre-trained language models. In Proceedings of the
45th International Conference on Software Engineering (ICSE 2023). Association for
Computing Machinery.

[80] Tao Xie, Darko Marinov, Wolfram Schulte, and David Notkin. 2005. Symstra: A
Framework for Generating Object-Oriented Unit Tests Using Symbolic Execu-
tion. In TACAS (Lecture Notes in Computer Science, Vol. 3440). Springer, 365–381.

[81] Zhuokui Xie, Yinghao Chen, Chen Zhi, Shuiguang Deng, and Jianwei Yin. 2023.
ChatUniTest: a ChatGPT-based automated unit test generation tool. CoRR
abs/2305.04764 (2023).

[82] Zhiqiang Yuan, Junwei Liu, Qiancheng Zi, Mingwei Liu, Xin Peng, and Yiling
Lou. 2023. Evaluating instruction-tuned large language models on code compre-
hension and generation. arXiv preprint arXiv:2308.01240 (2023).

[83] Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen,
and Xin Peng. 2023. NoMoreManual Tests? Evaluating and Improving ChatGPT
for Unit Test Generation. CoRR abs/2305.04207 (2023).

[84] Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. 2022. Automatic chain
of thought prompting in large language models. arXiv preprint arXiv:2210.03493
(2022).

[85] Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford,
Dario Amodei, Paul F. Christiano, and Geoffrey Irving. 2019. Fine-Tuning Lan-
guage Models from Human Preferences. CoRR abs/1909.08593 (2019).


	Abstract
	1 Introduction
	2 Study Design
	2.1 Research Questions.
	2.2 Studied LLMs
	2.3 Prompt Design
	2.4 In-Context Learning Method
	2.5 Benchmark
	2.6 Implementation
	2.7 Metrics

	3 Results
	3.1 Influence of Prompt Design
	3.2 Effectiveness Comparison
	3.3 Effectiveness of In-Context Learning
	3.4 Defect Detection Ability

	4 Threats to Validity
	5 Implications
	6 Related Work
	7 Conclusion
	References

