
Empirical Evaluation of the Tarantula Automatic
Fault-Localization Technique

James A. Jones and Mary Jean Harrold
College of Computing, Georgia Institute of Technology

Atlanta, Georgia, U.S.A.

jjones@cc.gatech.edu, harrold@cc.gatech.edu

Abstract
The high cost of locating faults in programs has motivated
the development of techniques that assist in fault localiza-
tion by automating part of the process of searching for faults.
Empirical studies that compare these techniques have re-
ported the relative effectiveness of four existing techniques
on a set of subjects. These studies compare the rankings
that the techniques compute for statements in the subject
programs and the effectiveness of these rankings in locating
the faults. However, it is unknown how these four techniques
compare with Tarantula, another existing fault-localization
technique, although this technique also provides a way to
rank statements in terms of their suspiciousness. Thus,
we performed a study to compare the Tarantula technique
with the four techniques previously compared. This paper
presents our study—it overviews the Tarantula technique
along with the four other techniques studied, describes our
experiment, and reports and discusses the results. Our stud-
ies show that, on the same set of subjects, the Tarantula
technique consistently outperforms the other four techniques
in terms of effectiveness in fault localization, and is compa-
rable in efficiency to the least expensive of the other four
techniques.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.5 [Software

Engineering]: Testing and Debugging

General Terms
Reliability, Experimentation

Keywords
Fault localization, automated debugging, program analysis,
empirical study

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’05, November 7–11, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-993-4/05/0011 ...$5.00.

1. INTRODUCTION
Debugging software is an expensive and mostly manual

process. Of all debugging activities, locating the faults, or
fault localization, is the most expensive [14]. This expense
occurs in both the time and the cost required to find the
fault. Because of this high cost, any improvement in the
process of finding faults can greatly decrease the cost of
debugging.

In practice, software developers locate faults in their pro-
grams using a highly involved, manual process. This process
usually begins when the developers run the program with a
test case (or test suite) and observe failures in the program.
The developers then choose a particular failed test case to
run, and iteratively place breakpoints using a symbolic de-
bugger, observe the state until an erroneous state is reached,
and backtrack until the fault is found. This process can be
quite time-consuming.

To reduce the time required to locate faults, and thus the
expense of debugging, researchers have investigated ways
of helping to automate this process of searching for faults.
Some existing techniques use coverage information provided
by test suites to compute likely faulty statements (e.g., [1, 4,
5, 10, 12]). Other techniques perform a binary search of the
memory state using one failing test case and one passing test
case to find likely faulty statements (e.g., [2, 15]). Still other
techniques are based on the remote monitoring and statis-
tical sampling of programs after they are deployed (e.g., [6,
7, 8, 9]). Most papers reporting these techniques also report
empirical studies that evaluate the presented technique in
terms of its effectiveness and efficiency. However, because of
the difficulty in comparing techniques developed on differ-
ent platforms for different languages and using different pro-
grams and test suites, few empirical studies have reported
comparison of existing techniques.

Although comparing the fault localization of techniques is
difficult, several recent studies have compared four existing
techniques in terms of their ability to localize faults. Re-
nieris and Reiss [12] presented their technique, called Near-
est Neighbor, and compared it to two techniques that use
set union and intersection operations on coverage data (sim-
ilar to those presented in [1] and [11]). Their studies show
that, on a given set of subjects, the Nearest-Neighbor tech-
nique performs more effectively than the two set-based ap-
proaches. Later, Cleve and Zeller [2] presented their tech-
nique, called Cause Transitions, compared it to the Nearest-
Neighbor technique, and found that, on the same set of sub-
jects, Cause Transitions consistently performs better than
Nearest Neighbor (and thus set union and intersection tech-

273

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1101908.1101949&domain=pdf&date_stamp=2005-11-07

niques) in terms of effectiveness. Because of these results,
they conclude that Cause Transitions locates faults twice
as well as other fault-localization techniques [2, p. 350].
However, their studies do not include a comparison of the
Tarantula technique—another existing technique [5] that
also computes a ranking of statements in terms of their sus-
piciousness. Thus, it is unknown how these four techniques
compare with Tarantula.

Our preliminary evaluation of the Tarantula technique
suggested that it would perform better than both the Nearest-
Neighbor and the Cause-Transitions techniques, and thus
the others considered in these previous studies. To confirm
this, we performed an empirical study to compare the fault-
localization ability of Tarantula with the fault-localization
ability of these other techniques on the same set of subjects.

In this paper, we present this empirical study. We first
present an overview of the techniques that our study com-
pares. We present the Tarantula approach in some detail,
and explain how its results, originally presented in visual
form, can also be reported as a ranking of statements in
terms of their likelihood of faultiness; we do this to provide
a fair comparison with the other techniques. We present a
brief overview of the other four techniques.

We then present the details of the study, which compares
the techniques in terms of efficiency and effectiveness. The
results of our study show that, for the set of subjects studied,
Tarantula consistently outperforms these other four tech-
niques in terms of effectiveness and is comparable in terms
of cost with the most efficient techniques.

The main contributions of the paper are:

• The first study that compares the fault-localization
ability of Tarantula with Set union, Set intersection,
Nearest Neighbor, and Cause Transitions. Our study
shows that, for the subjects studied, Tarantula con-
sistently outperforms these techniques, making it the
best existing technique known for fault localization on
these subjects.

• A description of the Tarantula approach in terms of
ranking of statements for their suspiciousness that pro-
vides a way to compare it with the Nearest-Neighbor
and Cause-Transitions techniques, as well as other fu-
ture techniques.

• A compilation of existing fault-localization results that
have been conducted on the same set of subjects. This
compilation provides a survey of existing empirical stud-
ies on these subjects, and can be used as a benchmark
for future fault-localization studies.

2. FAULT-LOCALIZATION TECHNIQUES
STUDIED

In this section, we present an overview of the five fault-
localization techniques we studied—Tarantula, Set union,
Set intersection, Nearest Neighbor, and Cause Transitions.
For each technique, we describe (1) its method for comput-
ing an initial set of suspicious statements in the program—
the set of statements where the search for the fault should
begin and (2) its method of ordering (or ranking) the rest
of the statements for continuing the search in case the fault
is not found in this initial set of suspicious statements.

2.1 Tarantula
Software testers often gather large amounts of data about

a software system under test. These data can be used to
demonstrate the exhaustiveness of the testing, and find ar-
eas of the source code not executed by the test suite, thus
prompting the need for additional test cases. These data
can also provide information that can be useful for fault
localization.

Tarantula utilizes such information that is readily avail-
able from standard testing tools: the pass/fail information
about each test case, the entities that were executed by
each test case (e.g., statements, branches, methods), and
the source code for the program under test. The intuition
behind Tarantula is that entities in a program that are pri-
marily executed by failed test cases are more likely to be
faulty than those that are primarily executed by passed test
cases. Unlike most previous techniques that used coverage
information (e.g., [1]), Tarantula allows some tolerance for
the fault to be occasionally executed by passed test cases.
We have found that this tolerance often provides for more
effective fault localization.

Previously, we presented our Tarantula technique [4, 5]
and a visualization tool that uses the technique for assign-
ing a value for each program entity’s likelihood of being
faulty. We did this by specifying a color for each statement
in the program. We utilize a color (or hue) spectrum from
red to yellow to green to color each statement in the pro-
gram under test. The intuition is that statements that are
executed primarily by failed test cases and are thus, highly
suspicious of being faulty, are colored red to denote “dan-
ger”; statements that are executed primarily by passed test
cases and are thus, not likely to be faulty, are colored green
to denote “safety”; and statements that are executed by a
mixture of passed and failed test cases and thus, and do not
lend themselves to suspicion or safety, are colored yellow to
denote “caution.”

In particular, the hue of a statement, s, is computed by
the following equation:

hue(s) =

passed(s)
totalpassed

passed(s)
totalpassed

+ failed(s)
totalfailed

(1)

In Equation 1, passed(s) is the number of passed test cases
that executed statement s one or more times. Similarly,
failed(s) is the number of failed test cases that executed
statement s one or more times. totalpassed and totalfailed
are the total numbers of test cases that pass and fail, re-
spectively, in the entire test suite. Note that if any of the
denominators evaluate to zero, we assign zero to that frac-
tion. Our Tarantula tool used the color model based on a
spectrum from red to yellow to green. However, the result-
ing hue(s) can be scaled and shifted for other color models.

Although we expressed these concepts in the form of state-
ment coloring, they compute values that can be used without
visualization. The hue(s) is used to express the likelihood
that s is faulty, or the suspiciousness of s. The hue(s) varies
from 0 to 1 — 0 is the most suspicious and 1 is the least sus-
picious. To express this in a more intuitive manner where
the value increases with the suspiciousness, we can either
subtract it from 1, or can equivalently replace the numera-
tor with the ratio of the failed test cases for s. Also, note
that we can define this metric for other coverage entities
such as branches, functions, or classes.

274

 int x,y,z,m;
 mid() {

P P P P F

3,
3,

5

1,
2,

3

3,
2,

1

5,
5,

5

5,
3,

4

2,
1,

3

 1: read("Enter 3 numbers:",x,y,z);

 2: m = z;

 3: if (y<z)

 4: if (x<y)

 5: m = y;

 6: else if (x<z)

 7: m = y; // *** bug ***

 8: else

 9: if (x>y)

 10: m = y;

 11: else if (x>z)

 12: m = x;

 13: print("Middle number is:",m);

 } Pass/Fail Status

Test Cases

P

0.5

0.5

0.63

0.5

0.0

0.71

0.83

0.0

0.0

0.0

0.0

0.0

0.5

su
sp

ic
io

us
ne

ss

ra
nk

7

7

7

3

13

2

1

13

13

13

13

13

7

Figure 1: Example of Tarantula technique.

With these simple modifications, we define the suspicious-
ness of a coverage entity e with the following equation:

suspiciousness(e) = 1 − hue(e) =

=

failed(e)
totalfailed

passed(e)
totalpassed

+ failed(e)
totalfailed

(2)

Using the suspiciousness score, we sort the coverage en-
tities of the program under test. The set of entities that
have the highest suspiciousness value is the set of entities
to be considered first by the programmer when looking for
the fault. If, after examining these statements, the fault
is not found, the remaining statements should be examined
in the sorted order of the decreasing suspiciousness values.
This specifies a ranking of entities in the program. For eval-
uation purposes, each set of entities at the same ranking
level is given a rank number equal to the greatest number
of statements that would need to be examined if the fault
were the last statement in that rank to be examined. For
example, if the initial set of entities is ten statements, then
every statement in that set is considered to have a rank of
10.

To illustrate how the Tarantula technique works, we pro-
vide a simple example program, mid(), and test suite, given
in Figure 1. Program mid() takes three integers as input and
outputs the median value. The program contains a fault on
line 7—this line should read “m = x;”. To the right of each
line of code is a set of six test cases: their input is shown
at the top of each column, their coverage is shown by the
black dots, and their pass/fail status is shown at the bottom
of the columns. To the right of the test case columns are
two columns labeled “suspiciousness” and “rank.” The sus-
piciousness column shows the suspiciousness score that the
technique computes for each statement. The ranking column
shows the maximum number of statements that would have
to be examined if that statement were the last statement

of that particular suspiciousness level chosen for examina-
tion. The ranking is ordered on the suspiciousness, from the
greatest score to the least score.

Consider statement 1, which is executed by all six test
cases containing both passing and failing test cases. The
Tarantula technique assigns statement 1 a suspiciousness
score of 0.5 because one failed test case executes it out of a
total of one failing test case in the test suite (giving a ratio
of 1), and five passed test cases execute it out of a total of
five passing test cases in the test suite (giving a ratio of 1).
Using the suspiciousness equation specified in Equation 2,
we get 1/(1 + 1), or 0.5. When Tarantula orders the state-
ments according to suspiciousness, statement 7 is the only
statement in the initial set of statements for the programmer
to inspect. If the fault were not at line 7, she would continue
her search by looking at the statements at the next ranks.
There are three statements that have higher suspiciousness
values than statement 1. However, because there are four
statements that have a suspiciousness value of 0.5, Taran-
tula assigns every statement with that suspiciousness value
a rank of 7 (3 statements examined before, and a maximum
of 4 more to get to statement 1). Note that the faulty state-
ment 7 is ranked first—this means that programmer would
find the fault at the first statement that she examined.

2.2 Set Union and Set Intersection
Several researchers have used coverage based information

for fault localization. Agrawal and colleagues present a tech-
nique that computes the set difference of the statements cov-
ered by two test cases—one passing and one failing [1]. A
set of statements is obtained by removing the statements
executed by the passed test case from the set of statements
executed by the failed test case. This resulting set of state-
ments is then used as the initial set of suspicious statements
when searching for faults.

Pan and colleagues present a set of dynamic-slice-based
heuristics that use set algebra of test cases’ dynamic slices

275

for similar purposes [11]. In addition to using the infor-
mation listed above, they also use analysis information to
compute dynamic slices of the program and test cases from
a particular program point and particular variable.

Some simple and common techniques described in [12] for
computing a subset of all of coverage entities1 are the Set-
union and Set-intersection techniques. The Set-union tech-
nique computes a set by removing the union of all statements
executed by all passed test cases from the set of statements
executed by a single failed test case. That is, given a set of
passing test cases P containing individual passed test cases
pi, and a single failing test case f , the set of coverage entities
executed by each p is Ep, and the coverage entities executed
by f is Ef . The union model gives

Einitial = Ef −

[

p∈P

Ep (3)

The Set-intersection technique computes the set difference
between the set of statements that are executed by every
passed test case and the set of statements that are executed
by a single failing test case. A set of statements is obtained
by intersecting the set of statements executed by all passed
test cases and removing the set of statements executed by
the failed test case. The intuition is to give the statements
that were neglected to be run in the failed test case, but
were run in every passed test case. Using the same notation
as Equation 3, we can express the Set-intersection technique
as

Einitial =
\

p∈P

Ep − Ef (4)

The resulting set Einitial for each of these two techniques
defines the entities that are suspected of being faulty. In
searching for the faults, the programmer would first inspect
these entities. To illustrate the Set-union and Set-intersection
techniques, consider their application to program mid() and
test suite given in Figure 1. For this example, both tech-
niques compute an empty initial set of statements. Thus, for
this example, these techniques would fail to assist in fault
localization. To demonstrate how these techniques could
work on a different example, consider the same program, but
with the test suite consisting of test cases 2-6 (i.e., omitting
the first test case in the test suite). When we apply the
Set-union method, the set of statements in the union of all
passed test cases consists of statements 1, 2, 3, 4, 5, 6, 8,
9, 10, 11 , and 13. When we remove these statements from
the the set of statements executed by the failed test case,
we are left with an initial set containing only one program
entity—statement 7. In this case, the Set-union technique
would have identified the fault in the initial set. However,
notice the sensitivity of this technique to the particular test
cases used—for many test suites, the initial set is either the
null set or fails to include the fault.

If the fault is not found in the initial set of entities com-
puted by the set-based approaches, there must be a strat-
egy to guide the programmer’s inspection of the rest of the
statements in the program. Renieris and Reiss suggest a
technique that provides an ordering to the entities based

1Coverage entities are program entities, such as statements,
branches, functions, and classes, that can be instrumented
and covered by a test case.

on the system dependence graph, or SDG [12]. We refer to
this ranking technique as the SDG-ranking technique. Un-
der this ranking technique, nodes that correspond to the
initial set of entities are identified; they call these blamed
nodes. A breadth-first search is conducted from the blamed
nodes along dependency edges in both forward and back-
ward directions. All nodes that are at the same distance are
grouped together into a single rank. Every node in a partic-
ular rank is assigned a rank number, and this number is the
same for all constituent nodes in the rank. Given a distance
d, and a set of nodes at that distance S(d), the rank number
that is assigned to every node in S(d) is the size of every set
of nodes at lesser distances plus the size of S(d).

For example, consider a scenario where an initial set con-
tains three statements. These three statements correspond
to three nodes in the SDG. The programmer inspects these
statements and determines that the fault is not contained
in them. She then inspects all forward and backward con-
trolflow and dataflow dependencies at a distance of 1. This
gives an additional seven nodes. The rank number of all
nodes in the initial set is 3, and the rank number of all
nodes at a distance of 1 is 10 (i.e., (3+7)). Using the size of
the rank plus the size of every rank at a lesser distance for
the rank number gives the maximum number of nodes that
would have to be examined to find the fault following the
order specified by the technique. This is similar to the use
of the maximum rank number described in the Tarantula
technique.

We [5] and others [12] have found that these set-based cov-
erage techniques often perform poorly. One reason for this
is that most faulty statements are executed by some combi-
nation of both passed and failed test cases. However, when
using set operations on coverage-based sets, the faulty state-
ment is often removed from the resulting set of statements
to be considered; the application of the Set-union technique
to our example illustrates this. These techniques’ ineffec-
tiveness when faults are executed by occasional passed test
cases was recognized by us and other researchers, and this
recognition motivated techniques that allow some tolerance
for these cases.

2.3 Nearest Neighbor
Renieris and Reiss [12] address the issue of tolerance for

an occasional passed test case executing a fault with their
Nearest-Neighbor technique. Rather than removing the state-
ments executed by all passed test cases from the set of state-
ments executed by a single failed test case, they selectively
choose a single best passed test case for the set difference.
By removing the set of statements executed by a passed test
case from the set of statements executed by a failed test
case, their approach applies the technique of Agrawal and
colleagues in [1], but has a specific technique for specifying
which passed test case to use for this set difference. They
choose any single failed test case and then find the passed
test case that has coverage that is most similar to the cov-
erage of the failed test case. Utilizing these two test cases,
they remove the set of statements executed by the passed
test case from the set of statements executed by the failed
test case. The resulting set of statements is the initial set
of statements from which the programmer should start her
search for the fault.

Renieris and Reiss defined two measures for the similarity
of the coverage sets between the passed and failed test cases.

276

They call the first measure binary distancing. This measure
computes the set difference of the set of statements covered
by the chosen failed test case and the set of statements cov-
ered by a particular passed test case. They propose that this
measure could be defined as either (1) the cardinality of the
symmetric set difference of the statements executed by each
of the passing and failing test cases, or (2) the cardinality of
the asymmetric set difference between the set of statements
executed by the failed test case and the set of statements
executed by the passed test case. They call their second
measure permutation distancing. In this measure, for each
test case, a count is associated with each statement or ba-
sic block that records the number of times it was executed
by the test case. The statements are then sorted by the
counts of their execution. The permutation distance mea-
sure of two test cases is based on the cost of transforming
one permutation to the other.

After an arbitrary failed test case is chosen, the distance
value is computed for every passed test case. The passed
test case that has the least distance is chosen. They then
remove the set of statements executed by this passed test
case from the set of statement executed by the failed test
case. This resulting set is the initial set of statements for
the programmer to examine to find the fault.

If the fault is not contained in the initial set, they specify
using the SDG-ranking technique (presented in Section 2.2)
on the remaining nodes starting at the initial set. The re-
maining program points should be examined in the order
specified by the ranking technique.

To illustrate how this technique works, consider our exam-
ple program, mid() and its test suite presented in Figure 1.
In this test suite, only one failed test case exists, thus we
choose it as our base for measuring distances. The distance
is measured for every test case in the suite and the first test
case is chosen as the test case with the least distance—it
covers exactly the same set of statements as the failed test
case. When we remove the set of statements executed by the
passed test case from the set of statements executed by the
failed test case, we get the null set as our initial set of state-
ments to examine. Thus, for this test suite and program,
this technique is ineffective. To demonstrate how this tech-
nique could work on a different example, consider the same
program, but with the test suite consisting of test cases 2-6
(i.e., omitting the first test case in the test suite). We find
that the fifth test case is the passed test case with the least
distance. When we remove the set of statements executed
by the fifth test case from the set of statements executed by
the failed test case, we obtain a set containing only state-
ment 7. In this case, the Nearest-Neighbor technique would
have identified the fault in the initial set. However, notice
that this technique is also sensitive to the particular test
cases used.

2.4 Cause Transitions
Cleve and Zeller’s Cause-Transitions technique [2] per-

forms a binary search of the memory states of a program
between a passing test case and a failing test case; this tech-
nique is part of a suite of techniques defined by Zeller and
colleagues called Delta Debugging. The Cause-Transitions
technique defines a method to automate the process of mak-
ing hypotheses about how state changes will affect output.
In this technique, the program under test is stopped in a
symbolic debugger using a breakpoint—for both a passed

test case and failed test case. Part of the memory state is
swapped between the two runs and then allowed to continue
running to termination. The memory that appears to cause
the failure is narrowed down using a technique much like a
binary search with iterative runs of the program in the sym-
bolic debugger. This narrowing of the state is iteratively
performed until the smallest state change that causes the
original failure can be identified. This technique is repeated
at several program points to find the flow of the differing
states causing the failure throughout the lifetime of each
run. These program points are then used as the initial set
of points from which to search for the fault.

After this set of program points has been defined, they
are specified as the initial set of statements that the pro-
grammer uses to search for the faults. If the fault is not
contained in this initial set, they too prescribe the SDG-
ranking technique to guide the programmer’s efforts in find-
ing the fault. They also specify two improvements to the
SDG-ranking technique that can exploit the programmer’s
knowledge of whether particular states are “infected” by a
fault or “causes” the fault to be manifest. These improve-
ments are called exploiting relevance and exploiting infec-
tions and are defined in Reference [2].

3. EMPIRICAL STUDY
We conducted a study to compare Tarantula to the other

four existing fault-localization techniques that were described
in Section 2. This section describes our empirical study, and
presents the results of the study and an analysis of it.

3.1 Variables and Measures

3.1.1 Independent Variables
Our experiment manipulated one independent variable:

the fault-localization technique. The techniques that we ex-
amine are:

1. Set union
2. Set intersection
3. Nearest Neighbor
4. Cause Transitions
5. Tarantula

3.1.2 Dependent Variables and Measures
To compare these techniques, we use two dependent vari-

ables: effectiveness and efficiency. To evaluate the effective-
ness of the techniques, we rank the statements of a program
in terms of how the individual techniques specify their rank-
ings. For the Set-union, Set-intersection, Nearest-Neighbor,
and Cause-Transitions techniques, we use the SDG-ranking
technique that is described in References [12] and [2]; we
described this ranking technique in Section 2.2. These tech-
niques produce an initial subset of program entities that are
to be examined as suspicious. However, these subsets of-
ten exclude the fault. Thus, this ranking system specifies a
way to order the remaining program entities in the search
for the fault after the initial specified subsets are examined.
For the Tarantula technique, we used the ranking system
described in Section 2.1. This ranking system uses the “sus-
piciousness” scores to rank the executable statements in the
program.

To evaluate the efficiency of the techniques, we recorded
timings of using the Tarantula technique. The timings are

277

Table 1: Objects of Analysis

Program Faulty Versions Procedures LOC Test Cases Description
print tokens 7 20 472 4056 lexical analyzer
print tokens2 10 21 399 4071 lexical analyzer
replace 32 21 512 5542 pattern replacement
schedule 9 18 292 2650 priority scheduler
schedule2 10 16 301 2680 priority scheduler
tcas 41 8 141 1578 altitude separation
tot info 23 16 440 1054 information measure

gathered for both computational time and time required for
necessary I/O. For the Cause-Transitions technique, we use
the timing averages reported in [2]. For the other three
techniques, we do not have recorded timings, but we can re-
liably estimate their efficiency relative to the two techniques
for which we have recorded times. We discuss this in detail
in Section 3.3.2.

3.2 Experiment Setup

3.2.1 Object of Analysis
For the object of analysis, we used the Siemens suite [3]

of programs. We chose these programs because they are
the most common object of analysis for comparing fault-
localization techniques. The Siemens suite contains seven
programs, faulty versions of those programs, and test suites
designed to test those programs. Each faulty version con-
tains exactly one fault, although the faults may span mul-
tiple statements or even functions. Table 1 provides a sum-
mary of the details about these subjects; see Hutchins et
al. [3] for a more complete description of the programs, ver-
sions, and test suites. Combined, there are 132 faulty ver-
sions. Of these versions, we were able to use 122 versions.
Two versions—versions 4 and 6 of print tokens—contained
no syntactic differences with the correct version of the pro-
gram in the C file—there were only differences in a header
file. In three other versions—version 10 of print tokens, ver-
sion 32 of replace, and version 9 of schedule2—no test cases
fail, thus the fault was never manifested. In five versions—
versions 27 and 32 of replace and versions 5, 6, and 9 of
schedule—all failed test cases failed because of a segmenta-
tion fault. The instrumenter we used for our experiment (gcc
with gcov) does not dump its coverage before the program
crashes. Thus, we were unable to use these five versions for
our study. After removing these ten versions, we have 122
versions for our studies. For comparison, Renieris and Reiss
eliminated even more versions due to additional technical
problems and used 109 versions for their studies.

3.2.2 Experiment Design and Analysis Strategy
For the Set-union, Set-intersection, and Nearest-Neighbor

techniques, we use the results and implementation given in
[12]. For the Cause-Transitions technique, we use the results
and implementation given in [2].

For the Tarantula technique, we implemented the tech-
nique in Java. The object programs and versions are com-
piled with statement-level instrumentation using the GNU
C compiler, gcc. The instrumented program is run, and the
statement coverage is reported using the gcov program. The
Tarantula tool reads in the coverage from gcov for each test
case, parses its output, and represents the coverage in mem-

ory. Gcov reports the number of times each statement in
the program was executed by each test case. The Taran-
tula tool represents any statements that are executed one or
more times for a particular test case as simply “covered”
and statements that are executed zero times as “uncov-
ered.” The statements that are executable and uncovered
are distinguished from statements that are not executable—
only those statements that are executable and uncovered are
deemed “uncovered.” Each executable statement is then
given a suspiciousness score and then ranked according to
the ranking system given in Section 2.1. The process of run-
ning the Tarantula tool on all versions is automated using
shell scripts. All times for the efficiency study were mea-
sured on a 3 GHz Pentium PC.

To evaluate the effectiveness of the techniques, a score is
assigned to every faulty version of each subject program.
The score defines the percentage of the program that need
not be examined to find a faulty statement in the pro-
gram or a faulty node in the SDG. The ranking strategy
for each technique is used to determine the rank number
of the fault, and this rank number is used to compute the
score. The Set-union, Set-intersection, Nearest-Neighbor,
and Cause-Transitions techniques use the nodes of a system
dependence graph (SDG) to determine the percentage of the
program that must be examined. The Tarantula technique
uses the subject program’s source code. To be comparable
with the SDG approach, we consider only executable state-
ments to determine the score. This omits from considera-
tion source code such as blank lines, comments, function and
variable declarations, and function prototypes. We also join
all multi-line statements into one source code line so that
they will be counted only once. We do this to compare the
techniques fairly—only statements that can be represented
in the SDG are considered. Thus, the percentage of the pro-
gram that need not be considered includes no unexecutable
program entities, for all techniques in our experiment.

Faults and failures are identified by using the version of
the subject programs that is deemed “correct.” To identify
the faults, the faulty version of the program is compared
with the correct version. The lines in which they differ are
recorded as the fault. To distinguish failing from passing
test cases, we ran the correct version with each test case
and recorded its output. We use these outputs to define the
expected outputs for that program and test cases. We ran
all faulty versions recording their outputs, and compared
those with the expected output.

278

Table 2: Percentage of test runs at each score level.

Score Tarantula NN/perm NN/binary CT CT/relevant CT/infected Intersection Union
99-100% 13.93 0.00 0.00 4.65 5.43 4.55 0.00 1.83
90-99% 41.80 16.51 4.59 21.71 30.23 26.36 0.92 3.67
80-90% 5.74 9.17 8.26 11.63 6.20 10.91 0.00 0.92
70-80% 9.84 11.93 4.59 13.18 6.20 13.64 0.00 0.92
60-70% 8.20 13.76 3.67 1.55 9.30 4.55 0.00 0.00
50-60% 7.38 19.27 7.33 6.98 10.08 6.36 0.00 0.00
40-50% 0.82 3.67 9.17 3.10 3.88 1.82 0.00 0.00
30-40% 0.82 6.42 13.76 7.75 10.08 3.64 0.00 0.00
20-30% 4.10 1.83 13.76 4.65 3.10 7.27 0.00 0.00
10-20% 7.38 0.00 6.42 6.98 10.85 0.00 0.00 0.00
0-10% 0.00 17.43 28.44 17.83 4.65 20.91 99.08 92.66

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

%
 o

f t
es

t r
un

s

% of program that need not be examined (’Score’)

Comparison of fault localization techniques

Tarantula
NN/perm

NN/binary
CT

CT/relevant
CT/infected
intersection

union

Figure 2: Comparison of the effectiveness of each technique.

3.3 Results and Analysis

3.3.1 Effectiveness
We represent the results concerning the effectiveness de-

pendent variable in Table 2 and Figure 2. In Table 2 we
show the percentage of versions that achieve a score within
each segment listed. Following the convention used by both
[12] and [2], each segment is 10 percentage points, except
for the 99-100% range and the 90-99% range. We report our
findings on the same segments. Note that whereas a 100%
score is impossible2 for all techniques considered, the first
segment from 99-100% effectively “pinpoints” the fault in
the program.

For example, in Table 2, for about 14% of the faulty ver-
sions and their test suites, the Tarantula technique was able
to guide the programmer to the fault by examining less than
one percent (a score of 99% or higher) of the executable code.
At the next score level, 90-99%, we can see in Table 2 that

2The best-case scenario is where the first ordered location is
the fault. For this, the score is (1−(1/size of the program))∗
100.

the Tarantula technique is able to guide the programmer to
the fault by examining less than 10% of the program for an
additional 42% of the faulty versions and their test suites.

The results shown in Figure 2 depict the data in Table 2.
Points and connecting lines are drawn for each technique.
The legend to the right shows how to interpret the lines rep-
resenting each technique. The labels in the legend are abbre-
viated for space. “NN/perm” is the Nearest-Neighbor tech-
nique using permutation distancing. “NN/binary” is the
Nearest-Neighbor technique using binary distancing. “CT”
is the Cause-Transitions technique using the standard SDG-
ranking technique. “CT/relevant” is the Cause-Transitions
technique exploiting relevance in the ranking technique. “CT/
infected” is the Cause-Transitions technique exploiting in-
fections in the ranking technique.

The horizontal axis represents the score measure defined
above, which represents the percentage of the subject pro-
gram that would not need to be examined when following
the order of program points specified by the techniques. The
vertical axis represents the percentage of test runs that are
found at the score given on the horizontal axis. For the

279

Tarantula technique there is one test suite used for each
faulty version, so the horizontal axis represents not only the
percentage of test runs, but also the percentage of versions.
For the Set-intersection, Set-union, and Nearest-Neighbor
techniques, multiple test cases are chosen for each version
(recall that each is dependent on which single failed test that
is used). For these the vertical axis represents the percent-
age of all version-test pairs.

At each segment level, points and lines are drawn to show
the percentage of versions for which the fault is found at the
lower bound of that segment range or higher. For example,
using the Tarantula technique, for 55.7% of the faulty ver-
sions, the fault was found by examining less than 10% of the
executable code, thus achieving a score of 90% or better.

Overall, Figure 2 shows that the Set-intersection tech-
niques perform the worst, followed by Set-union, then Nearest-
Neighbor using binary distancing, then Nearest-Neighbor
using permutation distancing, then the Cause-Transitions
using different ranking strategies (some that leverage pro-
grammer knowledge), and then the best result is achieved
by the fully automatic Tarantula technique.

The results show that at the 99% score level, Tarantula
was able to effectively pinpoint the fault. At this level of
specificity, Tarantula performs three times better than the
previously known best technique—Cause Transitions—on
these subjects. These results also show that this trend con-
tinues for every ranking—Tarantula was consistently more
effective at guiding the programmer to the fault.

Table 3: Average time expressed in seconds.

Program Tarantula
(computa-
tion only)

Tarantula
(including
I/O)

Cause Tran-
sitions

print tokens 0.0040 68.96 2590.1
print tokens2 0.0037 50.50 6556.5
replace 0.0063 75.90 3588.9
schedule 0.0032 30.07 1909.3
schedule2 0.0030 30.02 7741.2
tcas 0.0025 12.37 184.8
tot info 0.0031 8.51 521.4

3.3.2 Efficiency
Table 3 summarizes the efficiency results for the study.

For Tarantula, both computational time and the time in-
cluding computation and I/O are shown. For example, the
table shows that for the program schedule2, the Tarantula
technique required 0.0032 seconds of computational time
and about 30 seconds to read and parse the coverage infor-
mation about the test cases. For this same program, Cause
Transitions requires over two hours to complete its analysis.

Although we do not have timing information for the Set-
union, Set-intersection, and Nearest-Neighbor techniques,
because of the way in which the computation is performed,
we expect that they will be very similar to those found with
the Tarantula technique. In the Set-intersection and Set-
union techniques, set operations are performed over the set
of statements for all passing test cases and a single failed
test case. In the Nearest-Neighbor technique, a distance
score must be defined for every passing test case, then set
operations are performed over the set of statements using

two test cases. In these three techniques, the SDG for the
program is then traversed until the fault is found. We expect
the computational time for these techniques and Tarantula
to be similarly small. Moreover, the time required by the
Tarantula technique for computation is quite small–in the
thousandths of a second—thus, comparable times for other
techniques will be indistinguishable by humans. The I/O
cost should also be similar for these techniques. Recall that
the Nearest-Neighbor technique needs to read in all cover-
age information for all passing test cases to determine which
passing test case will be chosen as the “nearest” one to the
failing test case used. Similarly for the Set-union and Set-
intersection techniques, coverage information for all passing
test cases and one failing test case must be read.

It is worth mentioning that Tarantula’s I/O time can be
greatly reduced with a more compact representation of the
coverage information. Currently, the tool is using the output
of gcov, which stores every test case’s coverage in a text file
that contains the program’s full source code. For each test
case, a text file of this format must be read in and parsed
to extract which statement were executed.

Nonetheless, the results show a difference of about two
orders of magnitude between Tarantula and Cause Transi-
tions, indicating that for these programs the Tarantula tech-
nique is not only significantly more effective, but also much
more efficient.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

%
 o

f t
es

t r
un

s

% of program that need not be examined (’Score’)

Tarantula on Space program

Figure 3: Results of the Tarantula technique on a larger

program, Space.

3.4 Threats to Validity
There are a number of threats to the validity of this exper-

iment. Specifically, the results obtained using the Siemens
suite cannot be generalized to arbitrary programs. However,
we expect that on larger programs with greater separation
of concerns, all fault-localization techniques will do better.
This expectation is supported by the results presented in our
earlier paper [5] and the results summarized in Figure 3. In
this figure, the Tarantula technique is applied to a program
called Space containing 6218 lines of executable code, 38
faulty versions of Space, of which 30 versions produce fail-
ing test cases, and 13,585 test cases. On this larger subject
program, Tarantula is much better at detecting the fault
than on the smaller subjects. For 40% of the versions, the
Tarantula technique guided the programmer to the fault by
examining less than 1% of the code, effectively pinpointing

280

the fault automatically. For 87% of the versions, the pro-
grammer needs to examine less than 10% of the program
(score of 90% or higher) specified by Tarantula’s ordering.
We expect most fault-localization techniques to perform bet-
ter on such larger programs, and would expect to see even
better results on even larger programs that have an even
greater separation of concerns.

The results presented in this experiment apply only to
the case where the subjects used in the study each contain
a single fault. We cannot generalize these results to these or
any programs that have multiple faults. However, our pre-
vious studies [5], with a program containing multiple faults,
suggests that the techniques can help to identify faults. In
these studies, we evaluated versions of Space with up to five
faults, and found that our technique could identify at least
one fault in these multiple-fault versions. Furthermore, as
faults are discovered and removed, others reveal themselves,
which suggests an iterative process of using the technique.

In all techniques presented here, we assume that a pro-
grammer can identify the fault by inspecting the code—that
is, she can follow the order of nodes or statements that is
specified and determine at each one whether it is faulty. This
applies further to the ranking modifications of the Cause-
Transitions technique using the identification of infections.
This issue must be explored further with human studies.

Another limitation to the experiment is that we did not
implement all of the techniques evaluated here. This could
be a factor when considering the efficiency results. Whereas
the particular implementation may affect the efficiency of
the techniques, the differences in timing results that we re-
port are drastic enough (two orders of magnitude in some
cases; see Table 3) that the implementation cannot explain
these differences. Moreover, our technique is not optimized—
it runs in a somewhat brute-force way, and it runs in an
interpreted environment (Java).

4. DISCUSSION, CONCLUSIONS, AND
FUTURE WORK

This paper presented the first set of empirical studies that
compare four previously compared existing automatic fault-
localization techniques—Set union, Set intersection, Nearest
Neighbor, and Cause Transitions—with the Tarantula tech-
nique. The studies compare the five techniques in terms of
effectiveness in focusing the programmer’s attention on the
likely faulty statements, and thus helping with the search for
the fault. The results of the study are given in terms of the
percentage of the program that need not be examined to lo-
cate the fault. The study shows that Tarantula consistently
outperforms the other four approaches for the set of subjects
studied. At the 99%-score level, Tarantula can pinpoint the
fault three times more often than the technique previously
shown to be the most effective at fault detection on this
set of subjects. At the 90%-score level, Tarantula performs
57% better than this previous technique. The studies also
compare the five techniques in terms of efficiency. Tarantula
performs its computational analysis six orders of magnitude
faster than the previously most effective technique and two
orders of magnitude faster when considering I/O.

The studies also show that the Set-union, Set-intersection,
and Nearest Neighbor techniques are less effective than the
other two, especially at the higher scores. There are several
possible causes for these differences:

• Sensitivity. The Set-union, Set-intersection, and Nearest-

Neighbor techniques may be less effective because of
the techniques’ sensitivity to the particular test suites.
This sensitivity was demonstrated on the example in
Section 2. For the Nearest-Neighbor technique, remov-
ing the set of statements executed by the passed test
case with the most similar coverage from the set of
statements executed by the failed test case may cause
the fault to be removed from the initial set in many
cases. For this reason, we have designed our Tarantula
technique to allow tolerance for passed test cases that
occasionally execute faults.

• Ranking technique. The use of a breadth-first search
over the SDG may not be an efficient strategy for ex-
ploring the program. The size of the set of nodes
at each distinct distance (“rank”) would likely grow
quickly with the distance from the initial set up to a
certain distance (beyond that distance, the size of the
set of nodes would likely decrease rapidly). For this
reason, we believe that it is important to provide an
ordering of program points to guide the programmer
from the program points that are most likely to be
faulty to those least likely to be faulty (according to
some approximation measures).

• Use of single failed test case. We have found that our
Tarantula technique performs better with more failed
test cases as well as more passed test cases. With our
technique, we can observe its results with any subset of
the test suite as long as it has at least one passed test
case and at least one failed test case. We have found
that utilizing the information from multiple failed test
cases lets the technique leverage the richer information
base. We believe that other fault-localization tech-
niques would benefit by using multiple failed test cases
as well.

In future work, we will further investigate these possible
causes for differences.

The paper presented an overview of the techniques in-
cluded in the studies (in Section 2). There are, however,
several other fault-localization techniques that are related
to the ones compared in the paper. Liblit and colleagues [7,
8] present a technique to monitor and locate faults in pro-
grams after they have been deployed. This technique uses
sampling information—they instrument the program with
probes that are randomly fired, and the sampled data is sent
from the users’ machines to the developer’s site. The data
also indicates whether the program terminated normally or
with a segmentation fault. These data are then accumulated
from all users and analyzed to attempt to find the source of
the program crashing in the field. Their technique monitors
branch coverage, return values, and invariant information.
They represent each of these types of data as predicates.
The predicates are then pruned using techniques much like
those presented in the Section 2.2. In later work [8], they
utilize equations similar to those used by the Tarantula tool
to prune and rank the predicates in the program for in-
spection by the programmer. Their latest equations also
exhibit a tolerance for faults that are occasionally executed
by passed test cases. We did not include their technique
in our study because their presented technique provides no
way to quantify the ranking for all program points. They
define an ordering for predicates, but if the fault lies out-
side a predicate, there is no technique presented to order

281

these program points. In future work, we plan to identify a
method for comparing their technique to the five presented
here, and perform studies using this method.

Another area of related work is that of Ruthruff, Burnett,
and Rothermel [13]. Ruthruff and colleagues present fault
localization techniques for end-user programmers. Such end-
user programming environments include spreadsheets in which
programming is done by users with little or no formal pro-
gramming education. Like Tarantula, they define a visu-
alization for their techniques to enable the user to identify
likely faulty areas. In recent work [13], they presented an
empirical study that investigates the impact of the infor-
mation from which they work and separately investigates
the mapping to the interface for this information for the
user. This approach could be useful in evaluating how our
technique is both calculated and then displayed to the user,
and we plan to consider such an evaluation for Tarantula.
They also found that end-users often make mistakes in deter-
mining when some values are erroneous and thus prescribe
techniques that have some tolerance for some incorrect in-
teraction with the user. This technique is closely related
to Tarantula’s approach that also tolerates test cases that
execute the fault but still produces the expected output.

There are a number of other directions for future work
that we would like to pursue. Although we presented our
technique here as a simple ranking for the purposes of demon-
strating that Tarantula can be compared to other techniques
using quantitative measures, we believe there is value in pre-
senting a visualization that lets programmers understand
the ranks and suspiciousness values that are computed (in-
stead of simply reporting them). Programmers may be able
to see that program points identified as suspicious are re-
lated in some way that might not be obvious from such a
report. This role of the visualization in helping the pro-
grammer to locate faults has not yet been evaluated on real
users, and we believe that this is an important area for fu-
ture work.

Finally, to address some of the threats to validity, we
plan to perform more studies to evaluate the way Tarantula
and the other techniques perform on other subjects, such
as larger subjects and subjects containing more than one
fault. Although the Siemens’ suite is the common suite of
programs on which several researchers have evaluated their
work, programs of greater size and number of faults may
provide greater ability to generalize the results.

5. ACKNOWLEDGMENTS
This work was supported in part by National Science

Foundation awards CCR-0096321, CCR-0205422, SBE-0123532

and EIA-0196145 to Georgia Tech, by Tata Consultancy Ser-

vices, and by the State of Georgia to Georgia Tech under

the Yamacraw Mission. The anonymous reviewers provided

many helpful suggestions to improve the paper. Eli Tilevich

also provided many suggestions to improve the paper.

6. REFERENCES
[1] H. Agrawal, J. Horgan, S. London, and W. Wong. Fault

localization using execution slices and dataflow tests. In

Proceedings of IEEE Software Reliability Engineering,

pages 143–151, 1995.

[2] H. Cleve and A. Zeller. Locating causes of program failures.

In Proceedings of the International Conference on Software

Engineering, pages 342–351, St. Louis, Missouri, May 2005.

[3] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.

Experiments on the effectiveness of dataflow- and

controlflow-based test adequacy criteria. In Proceedings of

the International Conference on Software Engineering,

pages 191–200, Sorrento, Italy, May 1994.

[4] J. Jones, M. J. Harrold, and J. Stasko. Visualization for

fault localization. In Proceedings of the Workshop on

Software Visualization, 23rd International Conference on

Software Engineering, Toronto, Ontario, May 2001.

[5] J. Jones, M. J. Harrold, and J. Stasko. Visualization of test

information to assist fault localization. In Proceedings of

the International Conference on Software Engineering,

pages 467–477, Orlando, Florida, May 2002.

[6] J. Jones, A. Orso, and M. Harrold. Gammatella:

Visualizing program-execution data for deployed software.

Palgrave Macmillan Information Visualization,

3(3):173–188, Autumn 2004.

[7] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug

isolation via remote program sampling. In Proceedings of

the Conference on Programming Language Design and

Implementation, San Diego, California, June 2003.

[8] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I.

Jordan. Scalable statistical bug isolation. In Proceedings of

the Conference on Programming Language Design and

Implementation, Chicago, Illinois, June 2005.

[9] A. Orso, J. Jones, and M. J. Harrold. Visualization of

program-execution data for deployed software. In

Proceedings of the ACM Symposium on Software

Visualization, pages 67–76, San Diego, California, June

2003.

[10] H. Pan, R. A. DeMillo, and E. H. Spafford. Failure and

fault analysis for software debugging. In Proceedings of

COMPSAC 97, pages 515–521, Washington, D.C., August

1997.

[11] H. Pan and E. Spafford. Heuristics for automatic

localization of software faults. Technical Report

SERC-TR-116-P, Purdue University, 1992.

[12] M. Renieris and S. Reiss. Fault localization with nearest

neighbor queries. In Proceedings of the International

Conference on Automated Software Engineering, pages

30–39, Montreal, Quebec, October 2003.

[13] J. R. Ruthruff, M. Burnett, and G. Rothermel. An

empirical study of fault localization for end-user

programmers. In Proceedings of the International

Conference on Software Engineering, pages 352–361, St.

Louis, Missouri, May 2005.

[14] I. Vessey. Expertise in debugging computer programs.

International Journal of Man-Machine Studies: A process

analysis, 23(5):459–494, 1985.

[15] A. Zeller. Isolating cause-effect chains from computer

programs. In Proceedings of the International Symposium

on the Foundations of Software Engineering, pages 1–10,

Charleston, South Carolina, November 2002.

282

