
3182 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 5, MAY 2023

Black-Box Testing of Deep Neural Networks
through Test Case Diversity

Zohreh Aghababaeyan , Manel Abdellatif , Lionel Briand , Fellow, IEEE, Ramesh S ,
and Mojtaba Bagherzadeh

Abstract—Deep Neural Networks (DNNs) have been extensively
used in many areas including image processing, medical diagnostics
and autonomous driving. However, DNNs can exhibit erroneous
behaviours that may lead to critical errors, especially when used
in safety-critical systems. Inspired by testing techniques for tradi-
tional software systems, researchers have proposed neuron cover-
age criteria, as an analogy to source code coverage, to guide the
testing of DNNs. Despite very active research on DNN coverage,
several recent studies have questioned the usefulness of such crite-
ria in guiding DNN testing. Further, from a practical standpoint,
these criteria are white-box as they require access to the internals
or training data of DNNs, which is often not feasible or convenient.
Measuring such coverage requires executing DNNs with candidate
inputs to guide testing, which is not an option in many practical
contexts. In this paper, we investigate diversity metrics as an alter-
native to white-box coverage criteria. For the previously mentioned
reasons, we require such metrics to be black-box and not rely on
the execution and outputs of DNNs under test. To this end, we first
select and adapt three diversity metrics and study, in a controlled
manner, their capacity to measure actual diversity in input sets.
We then analyze their statistical association with fault detection
using four datasets and five DNNs. We further compare diversity
with state-of-the-art white-box coverage criteria. As a mechanism
to enable such analysis, we also propose a novel way to estimate
fault detection in DNNs. Our experiments show that relying on the
diversity of image features embedded in test input sets is a more
reliable indicator than coverage criteria to effectively guide DNN
testing. Indeed, we found that one of our selected black-box di-
versity metrics far outperforms existing coverage criteria in terms
of fault-revealing capability and computational time. Results also
confirm the suspicions that state-of-the-art coverage criteria are

Manuscript received 20 June 2022; revised 5 December 2022; accepted 23
January 2023. Date of publication 9 February 2023; date of current version 16
May 2023. This work was supported by General Motors and Canada Research
Chair and Discovery Grant programs of the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC). Recommended for acceptance by
J. Sun. (Corresponding author: Zohreh Aghababaeyan.)

Zohreh Aghababaeyan is with the School of EECS, University of Ottawa,
Ottawa, ON K1N 6N5, Canada (e-mail: zagha052@uottawa.ca).

Manel Abdellatif is with the Software and Information Technology Engineer-
ing Department, École de Technologie Supérieure, Montreal, QC H3C 1K3,
Canada, and also with the School of EECS, University of Ottawa, Ottawa, ON
K1N 6N5, Canada (e-mail: Manel.abdellatif@etsmtl.ca).

Lionel Briand is with the School of EECS, University of Ottawa, Ottawa, ON
K1N 6N5, Canada, and also with the SnT Centre for Security, Reliability and
Trust, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg (e-mail:
Lbriand@uottawa.ca).

Ramesh S is with the Department of Research and Development, General
Motors, Warren, MI 48092 USA (e-mail: Ramesh.s@gm.com).

Mojtaba Bagherzadeh is with the School of EECS, University of Ottawa,
Ottawa, ON K1N 6N5, Canada (e-mail: Mbagherz@cisco.com).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TSE.2023.3243522, provided by the authors.

Digital Object Identifier 10.1109/TSE.2023.3243522

not adequate to guide the construction of test input sets to detect
as many faults as possible using natural inputs.

Index Terms—Coverage, deep neural network, diversity, faults,
test.

I. INTRODUCTION

OVER the last decade, Deep Neural Networks (DNNs) have
achieved successful performance in many domains, such

as image processing [1], [2], medical diagnostics [3], [4], [5],
speech recognition [6] and autonomous driving [7], [8]. Similar
to traditional software components, DNN models often exhibit
erroneous behaviours that may lead to potentially critical errors.
Therefore, like traditional software, DNNs need to be tested
effectively to ensure their reliability and safety.

In the software testing context, code coverage criteria (e.g.,
branch coverage, statement coverage) are used to guide the
generation of test cases and assess the completeness of test
suites [9]. While full coverage does not ensure functional cor-
rectness, high coverage increases stakeholders’ confidence in
the testing results because it triggers more code execution paths.
Inspired by code coverage, several coverage criteria have been
introduced to measure the adequacy of test data in the context of
DNNs [10], [11], [12], [13], [14]. Neuron coverage measures the
extent to which neurons in a DNN are activated based on certain
input data. Intuitively, test inputs with higher neuron coverage
are desirable. However, reaching high neuron coverage with a
few test inputs is usually easy to achieve [14], [15] and the use-
fulness of such coverage is therefore questionable. Furthermore,
defining coverage in DNNs is not as straightforward as testing
traditional software because in the latter the code logic is explicit
but in DNNs that logic is not represented explicitly. Although
more sophisticated coverage criteria have been proposed, several
articles have criticized the use of such coverage to guide the
testing of DNN models [16], [17], [18].

In traditional software systems, testers rely on coverage met-
rics because they assume that (1) inputs covering the same part
of the source code are homogeneous (i.e., either all or none of
these inputs trigger a failure), and (2) the inputs used in testing
should be diverse to ensure high coverage [16]. However, these
assumptions break down in DNN testing because (1) unlike code
coverage, neuron coverage does not fully exercise the implicit
logic embedded in DNNs; (2) the homogeneity assumption is
broken with adversarial inputs; and (3) increasing the diversity
of inputs does not necessarily increase DNN coverage [16]. Fur-
ther, most coverage studies rely on adversarial inputs to validate

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-9375-4095
https://orcid.org/0000-0002-8647-1676
https://orcid.org/0000-0002-1393-1010
https://orcid.org/0000-0002-8501-7447
https://orcid.org/0000-0002-0253-671X
mailto:zagha052@uottawa.ca
mailto:Manel.abdellatif@etsmtl.ca
mailto:Lbriand@uottawa.ca
mailto:Ramesh.s@gm.com
mailto:Mbagherz@cisco.com
https://doi.org/10.1109/TSE.2023.3243522

AGHABABAEYAN et al.: BLACK-BOX TESTING OF DEEP NEURAL NETWORKS THROUGH TEST CASE DIVERSITY 3183

their proposed criteria [10], [11], [12], [13], [14]. However, these
inputs are mostly unrealistic and used to study the robustness
of the DNN model instead of its accuracy. While state-of-the-
art coverage criteria have been largely validated with artificial
inputs generated based on adversarial methods, their claimed
sensitivity to adversarial inputs does not necessarily mean that
they relate to the fault detection capability of natural test input
sets. This is confirmed by various studies [16], [18] that have
failed to find a significant correlation between coverage and the
number of misclassified inputs in a natural test input set, despite
a positive correlation in the presence of adversarial test inputs.
Consequently, coverage criteria may be ineffective in guiding
DNN testing to increase the fault-detection capability of natural
test input sets. Further, another study [17] found that retraining
DNN models with new input sets that improve coverage does
not increase the robustness of the model to adversarial attacks.

Furthermore, coverage criteria require full access to the in-
ternals of the DNN state or training data, both of which are
often not available to testers, especially when the DNN model is
proprietary and provided by a third party. Thus, in our project, we
focus on black-box input diversity metrics to provide guidance
on how to assess test suites or select test cases for DNNs.
We target diversity because it has been successfully used in
testing software systems [19], [20], [21]. Intuitively, relying on
diverse test inputs should increase the exploration of the fault
space and thus increase the fault detection capability of a given
test input set. Further, we target black-box metrics that do not
require executing test inputs on the DNN under test since this
is a strong practical impediment in many application contexts,
such as when dealing with large models and large databases
of unlabeled inputs. We also target black-box metrics that are
model-independent and do not rely on the outputs of DNNs
under test because they cannot be trusted when the models are
not accurate [22]. Based on these requirements, we propose and
investigate black-box diversity metrics for DNNs that rely on
inputs’ features, investigate their relationships with coverage
metrics and analyze their association with fault detection. In
other words, this paper focuses on the fundamental assumptions
related to the relationship between testing criteria (i.e., coverage
and diversity metrics) and faults in DNNs. However, this paper
does not investigate how these testing criteria might be used
for specific testing scenarios such as the selection, minimization
or generation of test sets. Nonetheless, investigating the rela-
tionship between DNN faults and testing criteria is an essential
step for selecting proper criteria, independent of any specific
purpose.

In traditional software systems, some of the inputs causing
failures are usually very close to each other [23], [24]. Similarly,
it has been observed that many mispredicted inputs in DNNs fail
due to the same causes [25]. Counting such inputs to assess the
fault detection capability of a test suite is therefore misleading.
However, the notion of fault, though rather straightforward in
regular software, is elusive in DNNs. For this reason, we rely
on a clustering-based fault estimation approach to group similar
mispredicted inputs based on their features and misprediction
behaviour [25]. We assume that each cluster corresponds to a
fault because similar mispredicted inputs belonging to the same

cluster are assumed to be mispredicted for similar reasons. To
assess test suites for DNNs, we use and adapt three diversity
metrics. As we evaluate datasets composed of images, com-
monly used as inputs in many DNNs (e.g., the perception layer
of cyber-physical systems), we rely on a feature extraction model
to extract features from images that will be used to compute the
diversity of test input sets. We evaluate the selected metrics in
terms of their capability to measure actual diversity based on
extracted features. We then analyze their associations with fault
detection in DNNs using four widely used datasets and five dif-
ferent DNN models. We further study state-of-the-art white-box
coverage metrics and their associations with diversity and fault
detection.

Based on our experiments, we show that diversity metrics,
and geometric diversity (GD) [26] in particular, though black-
box and without the use of any DNN internal information, far
outperform existing coverage criteria in terms of fault-revealing
capability and computational time. We also show that state-of-
the-art coverage metrics are not correlated to faults or diversity
in natural test input sets.

Overall, the main contributions of our paper are as follows:
� We propose and study the use of black-box diversity met-

rics to guide the testing of DNN models. We show that
geometric diversity is the best option to guide the testing
of DNN models because it is positively correlated to faults
in subsets.

� We introduce and validate a clustering-based approach
to estimate faults in DNNs as test input sets typically
contain many similar mispredicted inputs caused by the
same problems in the DNN model. We explain why this is
a requirement to evaluate any test set evaluation criterion.

� We study state-of-the-art coverage criteria and show that
there is no correlation between coverage and faults in DNN
models. Further, coverage is not correlated with diversity in
input sets. Our results question the reliability of coverage,
as it is currently defined, to guide DNN testing if the
objective is to detect as many faults as possible.

The remainder of the paper is structured as follows. Section II
presents our approach and describes the selected diversity met-
rics. Section III presents our empirical evaluation and results.
Section IV discusses the implications of our results and our rec-
ommendations for guiding the testing of DNN models. Section V
describes the threats to the validity of our study. Sections VI and
VII contrast our work with related work and conclude the paper,
respectively.

II. APPROACH

A central problem in software testing, especially when test
oracles (verdicts) are not automated, is the selection of a small
set of test cases that sufficiently exercise a software system.
Intuitively, testers should select a set of diverse test cases because
selecting similar test cases does not bring extra benefits to fault
detection. In this paper, we study diversity metrics with the
ultimate aim of using them to guide DNN testing, relying on the
best diversity metric in both the capacity to uncover erroneous
behavior and computational complexity. We target black-box

3184 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 5, MAY 2023

diversity metrics that are model-independent because we cannot
rely on DNNs output when the models are not accurate [16]. We
also target black-box metrics that do not require executing the
model with all inputs because it would impede their application
when working with large models and datasets. Therefore, we
use and adapt three diversity metrics that have been applied
widely in other contexts and are based on inputs. We rely
on a feature extraction model to extract features from images
that we use to compute diversity. In Section III, we will first
evaluate the selected metrics in terms of their capability to
measure the actual diversity of a test input set. Then we will
study their relationships with state-of-the-art white-box cover-
age metrics and analyze their associations with fault detection in
DNNs.

In this section, we describe the feature extraction method
and the diversity metrics that we used, and detail the evaluation
process in the following section.

A. Feature Extraction

For diversity to account for the content of images, we need
to extract features from each input image in the test input set.
Consequently, we rely on VGG-16 [27], which is one of the
most-used and accurate state-of-the-art feature extraction mod-
els [28], [29]. It is a pre-trained convolutional neural network
model and consists of 16 weight layers, including 13 convolu-
tional layers with a filter size of 3×3, and three fully connected
layers. The model is trained on ImageNet 1, which is a dataset of
over 14 million labeled images belonging to 22,000 categories.

We use VGG-16 to extract the features of images. A feature
is an activation value on the layer after the last convolutional
layer of the VGG-16 model. A set of features can characterize
semantic elements such as shapes and colors. We extract the
features in the test input setS and build the related feature matrix
Vs where (1) each row of the matrix corresponds to the feature
vector of an input in the test set, and (2) each column corresponds
to a feature.

After generating the feature matrix, we normalize it by ap-
plying Min-Max normalization per feature, which is one of the
most common and simple ways to normalize data. For each
feature in Vs, the maximum and minimum values of that feature
are transformed to one and zero, respectively, and every other
value is transformed to a real value between zero and one. The
Min-Max normalization is defined as follows. For every feature
in the feature matrix Vs where j ∈ [1, 2, ...,m] and m is the
number of features, the normalized feature Vs′j is calculated as
follows:

V s′j(i) =
V sj(i)−min(V sj)

max(V sj)−min(V sj)
(1)

We normalize the feature matrix (1) to make the computation
of the selected diversity metrics more scalable, and (2) to elim-
inate the dominance effect of features with large value ranges.

1https://image-net.org/index.php

B. Diversity Metrics

In this section, we describe the selected diversity metrics:
Geometric Diversity [26], [30], Normalized Compression Dis-
tance [21], [31], and Standard Deviation.

We chose these metrics based on the following criteria. First,
we targeted diversity metrics that measure diversity within a sub-
set. We did not consider metrics that measure diversity in relation
to another subset (e.g., Kullback-Leibler [32], Jensen-Shannon
divergence [33]). Second, we selected diversity metrics that can
be applied to our datasets, specifically targeting metrics that can
be applied to images. Third, we selected diversity metrics that
do not depend on the DNN model under test and do not require
the execution of this model with all inputs. Finally, we targeted
diversity metrics that are widely used in a variety of other appli-
cation contexts. For instance, the geometric diversity metric has
been used in a variety of machine learning applications such as
the selection of training sets with the Determinantal Point Pro-
cess method [26], data summarization [34] and data clustering
[35], [36]. Furthermore, the standard deviation metric is consid-
ered to be a common diversity metric that has been successfully
applied in different contexts to measure text and image similarity
[37]. The Normalized Compression Distance metric has been
employed in many application domains such as image process-
ing [31], security [38] and clustering [31], [39]. This metric
supports any type of input and has been used recently to guide the
selection of diverse input tests for regular software systems [21].

In this section, we will describe each of these metrics and
discuss their strengths and limitations.

1) Geometric Diversity: The geometric diversity metric me-
asures the diversity of the selected inputs [26]. As mentioned pre-
viously, this metric is widely used to select diverse input sets with
the Determinantal Point Process (DPP) method [26], [30]. DPP
is applied to guide the selection of diverse subsets from a fixed
ground set [40] and has been used in a variety of machine learn-
ing applications for images [26], videos [41], documents [34],
recommendation systems [42] and sensor placement [43]. The
key characteristic of DPP is that including one item makes
including other similar items less likely (i.e., a DPP assigns a
greater probability to subsets of items that are diverse). Thus, a
DPP value of a subset indicates its diversity, where the higher
this value, the more diverse the subset. The key component in
DPP is geometric diversity that measures the diversity of an input
set in terms of the (hyper)volume spanned by the input feature
vectors (feature matrix).

a) Definition: The geometric diversity G(.) is defined as
follows. Given a dataset X , a number of inputs n, a number
of features m, and feature vectors V ∈ Rn∗m, the geometric
diversity of a subset S⊆X is defined as:

G(S) = det(V s ∗ V sT) (2)

which corresponds to the squared volume of the parallelepiped
spanned by the rows of Vs, since they correspond to vectors in
the feature space. The larger the volume, the more diverse S is
in the feature space, as illustrated in Fig. 1. It is expected that
very different (similar) images result in very different (similar)
feature vectors.

AGHABABAEYAN et al.: BLACK-BOX TESTING OF DEEP NEURAL NETWORKS THROUGH TEST CASE DIVERSITY 3185

Fig. 1. Illustration of the geometric diversity metric.

b) Calculation: Geometric diversity takes as input the fea-
ture matrix of the test input set, as generated using the feature
extraction model. Because geometric diversity relies on the
calculation of the determinant of a matrix, we need to handle
several challenges related to such processing.

Determinant Overflow. The determinant is likely to run into
overflow when we work with large feature matrices. The main
cause of the problem is that the determinant value is too large
to be represented by a real number. To overcome this problem,
we follow the recommendations of Celis et al. [44] and use
the logarithm of this value rather than the determinant itself.
We also overcome the determinant overflow problem by using
the normalized feature matrix, Vs’ thus making the geometric
diversity computation more scalable.

Mathematical Limitations. If a matrix contains at least two
linearly dependent vectors, its determinant will be equal to
zero. Consequently, we cannot calculate the geometric diversity
score of an input set that contains duplicate inputs. The feature
extraction model predicts features for each test input. If the
feature values are the same for two test inputs, we have duplicate
inputs. This means the two test images are redundant in terms
of this feature extraction model. We therefore have to delete
redundant inputs before calculating the diversity score. This
kind of pre-processing is acceptable in our context because (1)
duplicate inputs that do not add any value to our testing model,
and (2) we aim to test the DNN model with a diverse input set
to detect faults.

Further, the maximum subset size for which we calculate GD
must be less than the number of the features in Vs. This is also
due to the mathematical limitations of the determinant and the
rank of matrices.

Proof: In linear algebra, the rank of a matrix A of size n ∗m
refers to the number of linearly independent rows or columns
in the matrix. Consequently, Rank(An∗m) <= min(n,m),
where n is the number of lines in the matrix A, and m is the
number of columns. Consider a square matrix B of size n ∗ n.
By definition, If Rank(B) < n then Det(B) = 0. Let us as-
sume that B = A ∗AT . By definition Rank(B) = Rank(A ∗
AT) = Rank(A). If n > m then Rank(B) ≤ m < n. As a
result Det(B) = Det(A ∗AT) = 0.

To mitigate this mathematical limitation, we can select one
of the internal layers of the feature extraction model where the
number of linearly independent features is equal to or greater
than the size of the subset. We propose to use the deepest hidden
layer, which provides enough features because, as noted by

Bengio et al. [10], [45], deeper layers represent higher-level
features of the input. Specifically, we can select hidden layers
that are possible candidates for feature extraction because their
number of linearly independent features is greater than or equal
to the size of the subset. From these candidates, we then select
the deepest hidden layer because it is likely to contain the most
semantically significant and helpful features for characterizing
an input.

2) Normalized Compression Distance: The Normalized
Compression Distance (NCD) is a similarity metric based on
the Kolmogorov complexity [46] and information distance [47]
where we measure the information required to transform one
object into another to assess the similarity between these ob-
jects. Because of the complexity in calculating the Kolmogorov
complexity, we approximate it by using real-world compres-
sors [31], [48]. This leads to the normalized compression dis-
tance [39], which has been extended by Cohen et al. [31] to
support the calculation of multisets’ similarity.

a) Definition: The NCD metric for a multiset S is calcu-
lated via an intermediate measure NCD1 [21], [31], [49]:

NCD1(S) =
C(S)−mins∈S{C(s)}
maxs∈S{C(S\{s})} (3)

NCD(S) = max {NCD1(S),maxY ⊂S{NCD(Y)}} (4)

where C(S) denotes the length of S after compression [21],
[31].This metric is interpreted by Cohen et al. [31] as follows.
For example, if a multiset S of strings (inputs) of about 1,000,000
bits each have pairwise information distances of 1,000 bits
between each pair of inputs, then those strings can be considered
relatively similar. If, on the other hand, a multiset S contains
strings of about 1,200 bits each, and each pair of strings in
S has a pairwise information distance of 1,000 bits, then we
can conclude that the inputs in S are quite diverse [31]. NCD
supports any type of input (e.g text, images, execution traces) and
has many applications, such as in pattern recognition [50], [51],
clustering [31], [39], security [38] and measuring the diversity
of test sets [21], [52].

b) Calculation: We have re-implemented the NCD metric
for multisets based on the original paper [21]. NCD takes the
normalized feature matrix of an input set and measures its diver-
sity score. It takes values in the range [0,1]. The more diverse the
input set, the larger the NCD score. However, one limitation of
this metric is its high computational cost, such that its application
on large input sets becomes prohibitive [21], [31]. NCD is
highly sensitive to the used compression tool [21]. Different
compression tools determine various performance aspects of
NCD, such as computation time, used memory and compression
distance. Following the recommendations of existing papers on
NCD [21], [31], [38], we tried different compression tools like
Lzm, Bzip2 and Zlip. We tested their efficiency in computational
cost and correctness in generating diversity scores. We evaluated
the correctness of the diversity scores by controlling the actual
diversity of input sets in terms of features and compared the
corresponding NCD scores. We compared the NCD score of
input sets with similar images to other sets with different images.
The NCD score was expected to increase when the input set was

3186 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 5, MAY 2023

more diverse in terms of features. The best results were obtained
with Bzip2, which we used in our experiments.

3) Standard Deviation: Standard deviation (STD) is a statis-
tical measure of how far from the mean a group of data points
is, determined by calculating the square root of the variance.

a) Definition: STD is a straightforward measure of the
diversity of a test input set based on the statistical variation
of the inputs’ features. We define the STD metric as the norm
of the standard deviation of each feature in the test input set.
Formally, we define the STD of an input set S of size n as
follows:

STD(S) =

∥∥∥∥∥∥

⎛
⎝
√√√√

n∑
i=1

V si,j − µj

n
, 1 ≤ j ≤ m

⎞
⎠
∥∥∥∥∥∥

(5)

where Vs is the feature matrix of the input setS,m is the number
of features, and µj is the mean value of feature j in Vs.

b) Calculation: To calculate STD for an input set S, we
first extract the feature matrix for S and normalize it. Then we
calculate the norm of the standard deviations of each feature in
the matrix to measure the diversity of the input set. The higher
the STD, the more diverse the input set. One of the limitations
of the standard deviation is its dependence on the mean, which
introduces unwanted bias in some cases. To explain this, we use
two same-size subsets, A and B, where (1) in subset A we have
two sets of similar inputs and these two sets are far from each
other in the features space, and (2) in subset B all inputs are
different from one another. The variance of the inputs in subset
A with respect to the mean could be larger than the one in subset
B. In such a case, STD(A) would be larger than STD(B) though
subset B is more diverse than A, as the latter only contains two
truly distinct groups of inputs.

III. EMPIRICAL EVALUATION

This section describes the empirical evaluation of our ap-
proach, including research questions, datasets, DNN models,
experiments and results.

A. Research Questions

Our empirical evaluation is designed to answer the following
research questions.
� RQ1. To what extent do the selected diversity metrics

measure actual diversity in input sets? We want to assess,
in a controlled way, the reliability of the selected diversity
metrics for measuring the actual diversity of an input set in
terms of the features the images contain. Only the metrics
that reliably reflect changes in image diversity will be
retained for the next research questions.

� RQ2. How does diversity relate to fault detection? Similar
to other studies in different contexts [21], [53], [54], we aim
to investigate the correlation between diversity and faults
to assess whether diverse input sets lead to higher fault
coverage. We do not investigate in this research question
the correlation between diversity and the number of mispre-
dicted inputs, as this is misleading. Many mispredictions
result from the same problems in the DNN model and are

therefore redundant. This is similar to failures in regular
software. In classification problems, for example, guiding
the selection of test inputs to maximize misprediction rates
(the number of mispredicted inputs / total number of inputs)
could thus be misleading. However, the notion of fault in
DNN models is not as straightforward as it is in regular
software, where we can identify statements responsible for
failures. Therefore, to investigate this research question,
we need to first define a mechanism to compare how
effective test sets are in detecting faults in DNNs, so that we
can then investigate the relationship between diversity and
faults.

� RQ3. How does coverage relate to fault detection? Similar
to diversity, we aim to assess the association between
state-of-the-art coverage metrics and faults. This enables
us to compare black-box diversity and white-box coverage
in selecting test sets with high fault-revealing power. Note
that recent studies questioned the use of coverage metrics
to assess DNN test inputs [16], [55]. Most state-of-the-art
coverage metrics strongly rely on artificial inputs generated
based on adversarial methods [10], [11], [12], [13], [14].
However, their positive correlation with the presence of
adversarial inputs does not necessarily mean that they are
efficient enough to reveal the fault detection capability of
natural test input sets. Several studies [16], [18] failed to
find a strong correlation between coverage and mispredic-
tion rates when using only natural input sets. Furthermore,
coverage metrics showed poor performance in guiding
the retraining of DNN models to improve the robustness
of the model to adversarial attacks [17], [56]. Therefore,
there is still no consensus on which coverage metrics are
suitable for different DNN testing-related tasks such as test
selection, minimization and generation.

� RQ4. How do diversity and coverage perform in terms
of computation time? We aim to compare the compu-
tation times of selected diversity and coverage metrics.
Most importantly, we aim to study how these computation
times scale as the sizes of the test sets increase. Excessive
computation times may limit applicability, though what is
acceptable depends on the context.

� RQ5. How does diversity relate to coverage? Though di-
versity is black-box and therefore has inherent practical
advantages, it is interesting to study the correlation between
diversity and coverage to determine if they essentially cap-
ture the same thing. Though this question can be answered
indirectly by some of the previous questions (correlations
are transitive), such correlation analysis can provide addi-
tional insights to explain and support previous results.

B. Subject Datasets and DL Models

Table I shows the characteristics of the datasets and models
in our experiments. We used four common image recognition
datasets, Cifar-10 [57], MNIST [58], Fashion-MNIST [58] and
SVHN [59]. We use these datasets with five state-of-the-art DNN
models: 12 layers Convolutional Neural Network (12-layer Con-
vNet), LeNet-1, LeNet-4, LeNet-5 and ResNet20.

AGHABABAEYAN et al.: BLACK-BOX TESTING OF DEEP NEURAL NETWORKS THROUGH TEST CASE DIVERSITY 3187

TABLE I
DATASETS AND MODELS USED FOR EVALUATION

Cifar-10 contains 50,000 images for training and 10,000 for
testing. These images belong to 10 different classes (e.g cats,
dogs, trucks).

We also used MNIST, which contains 70,000 images (60,000
for training and 10,000 for testing). Each of these images rep-
resents a handwritten digit and belongs to one of the 10 classes.
We included Fashion-MNIST, which contains grayscale images
in 10 different classes of clothes. It is composed of 60,000
images for training and 10,000 images for testing. Finally, we
use SVHN, a real-world image dataset for recognizing house
numbers. It contains 99,289 images where 73,257 are for training
and 26,032 are for testing.

For Cifar-10, we used a 12-layer ConvNet and ResNet20 that
we trained for 50 and 100 epochs, respectively. For MNIST, we
used the LeNet-1 and LeNet-5 models that we trained for 50
epochs. We trained the LeNet-4 model with Fashion-MNIST
for 20 epochs. Finally, for SVHN, we used the LeNet-5 model,
which we trained for 100 epochs. The different combinations
of models and datasets, along with the models’ accuracy, are
detailed in Table I.

We selected these datasets and models because they are widely
used in the literature [10], [11], [12], [13]. Further, all the inputs
in the selected datasets are correctly labelled. These datasets and
models are considered good baselines to observe key trends,
as they offer a wide range of diverse inputs (in classes and
domain concepts) and different models (in terms of internal
architecture).

C. Evaluation and Results

Before addressing our research questions, one essential issue
was how to count faults in DNNs. A misprediction implies the

Fig. 2. Relying on misprediction rates is misleading.

existence of a fault in the DNN. However, identifying faults
is not as straightforward as in regular software, where faulty
statements that cause failures can be identified. Nevertheless,
estimating fault detection effectively is essential to compare
coverage and diversity metrics. Simply comparing misprediction
rates is misleading as many test inputs are typically mispredicted
for the same reasons [25]. Typically, with regular software, a
tester does not select input tests to maximize the failure rate
(equivalent to the misprediction rate in our context) but rather
wants to maximize the number of distinct detected faults. This
should be not different with DNNs, where we want to detect the
distinct causes of mispredictions.

We illustrate this issue in Fig. 2 where we represent an exam-
ple of a test input set in a two-dimensional feature space. Black

3188 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 5, MAY 2023

Fig. 3. Estimating faults in DNNs.

dots refer to the inputs correctly predicted by the DNN under
test, and red dots represent the mispredicted ones. We select
two subsets from the initial set and measure their corresponding
misprediction rates. As shown in Fig. 2, subset 1 is less diverse
than subset 2 but has a higher misprediction rate. However,
some of the mispredicted inputs are very similar and somewhat
redundant.

As a result, it can be argued that subset 2 is more diverse
than subset 1 and is more informative for testing the model
because its mispredicted inputs potentially reveal more faults
in the DNN model. In preliminary experiments (not included in
this paper), we evaluated the computation of misprediction rates
in test input sets and studied their correlation with diversity and
coverage and found no statistically significant correlation for
both diversity and coverage metrics. We suspected that account-
ing for numerous redundant test inputs affected our correlation
analysis. In practice, selecting or generating test inputs that
trigger failures (i.e mispredictions) is far more useful when these
failures are diverse [60]. A test set that repeatedly exposes the
same problem in the DNN model is a waste of computational
resources, especially when we have a limited testing budget and
a high labeling cost for testing data [60]. This is why, similar to
other studies comparing the effectiveness of test strategies with
regular software, we want here to address the notion of faults
detected in DNNs and study their association with diversity and
coverage.

1) Estimating Faults in DNNs: Following a similar approach
to the work of Fahmy et al. [25] and Attaoui et al. [61], we
rely on a clustering approach to group similar mispredicted
inputs presenting a common set of characteristics that are plau-
sible causes for mispredictions. We approximate the number
of detected faults in a DNN through such clustering. Although
many mispredicted test inputs are redundant and result from the
same causes, we assume that test inputs belonging to different
clusters are mispredicted due to distinct problems [25] in the
DNN model. This is an approximation but a practical and
plausible way to estimate and compare the number of detected
faults across coverage and diversity strategies. Although faults
can only be addressed by retraining in DNNs, as opposed to
debugging, clusters nevertheless capture common causes for
mispredictions and are thus comparable to faults in regular
software. Fig. 3 depicts how faults are counted in DNNs and
we describe below each step in detail.

a) Feature Extraction: We start by training our model
using the training dataset. We then run our pre-trained model
on the test and training datasets to identify all mispredicted
inputs. We not only use mispredicted inputs from the test set
but also mispredicted inputs from the training dataset to extract
the best clusters and estimate detected faults as accurately as
possible. We rely on VGG16 to extract the mispredicted inputs’
features and build the corresponding feature matrix as described
in Section II-A. We add two extra features to the matrix from
the DNN model to capture actual and mispredicted classes
(labels) related to each misclassified input. This adds informa-
tion to the feature matrix about the misprediction behaviour of
the model under test for each mispredicted input, which we
believe builds better clusters to reflect common misprediction
causes.

b) Dimensionality Reduction: By definition, the number
of input features for a dataset corresponds to its dimensionality.
Low density in high-dimensional spaces makes it difficult, in
general, for typical clustering algorithms to find a continuous
boundary that separates the different clusters [62]. Therefore,
employing dimensionality reduction techniques can help clus-
tering algorithms make the inputs and their related clusters more
distinguishable. Because we are working with high-dimensional
inputs (512 features from the VGG model and two features from
the DNN model), we rely on the Uniform Manifold Approxi-
mation and Projection (UMAP) [63] dimensionality reduction
technique. We selected UMAP because several studies [64], [65]
have shown its effectiveness as a pre-processing step to boost the
performance of clustering algorithms when compared to other
state-of-the-art dimensionality reduction techniques, such as
PCA [66] and t-SNE [67]. PCA is a linear dimensionality reduc-
tion technique that performs poorly on features with nonlinear
relationships. To work with high-dimensionality data to obtain
low-dimensionality and nonlinear manifolds, some nonlinear
dimensionality reduction algorithms, such as UMAP and t-SNE,
should be used [65]. However, t-SNE is more computationally
expensive than UMAP and PCA. It is used in practice for data
visualization and data reduction to two or three dimensions.
Furthermore, it involves hyperparameters that are not always
easy to tune in order to get the best results. Therefore, we
relied on UMAP for dimensionality reduction as an effective
pre-processing step to boost the performance of density-based
clustering. This will be used in the next step.

AGHABABAEYAN et al.: BLACK-BOX TESTING OF DEEP NEURAL NETWORKS THROUGH TEST CASE DIVERSITY 3189

c) Clustering: After performing dimensionality reduc-
tion, we apply the HDBSCAN [68] clustering algorithm to group
mispredicted inputs that are similar and believed to result from
the same causes (faults) in the DNN model. HDBSCAN is
a density-based clustering algorithm where each dense region
is considered a cluster and low-density regions are considered
noise. In other words, it views clusters as areas of high density
separated by areas of low density. Clusters found by HDBSCAN
can be of any shape, as opposed to other types of clustering
algorithms, such as k-means or hierarchical clustering, which
assume that clusters are convex-shaped. Each cluster is supposed
to correspond to a fault (common problems) in the DNN model
because their inputs are similar in terms of extracted features
and actual and mispredicted classes.

d) Evaluation: As with any clustering algorithm, there are
several hyperparameters to fine-tune to obtain the best clustering
results. Such hyperparameters include for example, the mini-
mum distance that controls how tightly UMAP is allowed to
pack points together, the number of neighbours to consider as
locally connected in UMAP and the minimum size of clusters
in HDBSCAN. We tried several hyperparameter configurations
and selected the best configurations based on both manual
and metric-based evaluations. For the latter, we relied on two
standard metrics to evaluate the clusters, which are the Sil-
houette score [69] and the Density-Based Clustering Validation
(DBCV) [70] metric.

The Silhouette score is one of the state-of-the-art clustering
evaluation metrics that compare inter- and intra-cluster dis-
tances. It varies between minus one and one. The closer to
one, the better the clustering. A score near zero represents
clusters with inputs very close to the decision boundary of the
neighboring clusters. A negative score generally indicates that
the inputs are assigned to the wrong clusters.

We also relied on the DBCV metric to evaluate the generated
clusters. This metric is dedicated to density-based clustering
algorithms and assesses clustering quality based on the relative
density connection between pairs of inputs. It evaluates the
within- and between-cluster density connectedness [71]. Similar
to Silhouette, DBCV generates scores between -1 and 1 [70].
High-density within clusters and low-density between clusters
lead to high DBCV scores, indicating better clustering results.

We selected the configuration with the best Silhouette and
DBCV scores. We further evaluated the generated clusters by
performing a manual evaluation. First, we tried to check the
content of the clusters to see whether their inputs were similar
to or shared some features that might have led to mispredictions
by the DNN model. Because of the large number of mispredicted
inputs, an exhaustive manual inspection of the clusters was
impractical. Therefore, we relied on generating the features’
heatmaps related to each cluster to better visualize and assess
the quality of the clusters. Figs. 4, 5, 6 and 7 illustrate four
representative examples of heatmaps where rows correspond to
the inputs’ ids in one cluster, columns refer to their features and
colours encode the features’ values. As we observe in Figs. 4, 6
and 7, within a cluster, well-clustered inputs share common
patterns in terms of the features’ distribution while ill-clustered
inputs (such as noisy inputs) do not, as is visible in Fig. 5. Based

Fig. 4. Heatmap example 1 related to a final cluster.

Fig. 5. Heatmap example 2 related to noisy cluster.

Fig. 6. Heatmap example 3 related to a final cluster.

Fig. 7. Heatmap example 4 related to a final cluster.

on our manual analysis of the final selected clusters, we observed
that most of them look like the first three figures and share com-
mon patterns. We therefore conclude that the mispredicted inputs
inside each cluster are similar and share common characteristics
(features), potentially causing mispredictions.

Table II describes the final clusters that we generated for the
different datasets and models that we used in our experiments.

We observe that the number of noisy inputs (inputs that do not
belong to any cluster) is not large compared to the total number
of mispredicted inputs. We decided to delete them from the sets
of mispredicted inputs in all the following experiments because
(1) they do not belong to any cluster and cannot therefore be
associated with faults as we defined them, and (2) the minimum

3190 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 5, MAY 2023

TABLE II
FAULT ESTIMATES ACROSS DATASETS AND MODELS

number of detected faults in the studied DNN models can thus
be assumed to correspond to the number of clusters.

e) Validation: As mentioned earlier, we followed an ap-
proach similar to existing work [25], [61] to estimate faults
in DNNs. The authors conducted an empirical study on six
DNNs to validate the clustering-based fault estimation approach.
They retrained the DNNs using the original training set and
subsets selected from each identified cluster (i.e., fault), which
led to a significant improvement in the models’ accuracy, thus
demonstrating the usefulness of clustering. To further validate
the identified faults (clusters) in our work, we followed a finer-
grained validation method which aimed to prove that (1) inputs
in the same cluster tend to be mispredicted due to the same fault,
and (2) inputs belonging to different clusters are mispredicted
because of distinct faults.

Inputs That Belong to the Same Cluster are Mispredicted Due
to the Same Fault in the DNN Model. If inputs within one cluster
are mispredicted due to the same fault, retraining the model with
a subset of the cluster should help fix the model with respect
to that fault. We verified this hypothesis for each fault-related
cluster Ci where i ∈ [1, 2, ..., n] and n is the total number of the
identified faults (clusters), by retraining the original DNN model
under test with a retraining dataset consisting of the original
training set and 85% of randomly selected mispredicted inputs
inside Ci. The original training set was reused to prevent any
reduction in model accuracy [25], [61], [72]. We then tested
the retrained model on the remaining 15% of inputs in Ci.
We repeated this process five times (as we randomly selected
inputs from clusterCi) and measured the average accuracy of the
retrained models when tested with 15% of the remaining inputs
from cluster Ci. If clusters included mispredictions caused by
the same fault, the retraining process was expected to alleviate
the cause of input mispredictions in Ci and thus significantly
improve the accuracy of the model for images in that particular
cluster. We did not expect a perfect model with no mispredictions
because we did not have a large number of mispredicted inputs
in each cluster to retrain the model. Moreover, clustering was
not expected to be perfect but only an approximation of faults.
Because clusters did not have the same size and were not all
large enough to enable this analysis, our analysis focused on the
ten largest clusters across datasets and models. Due to the high

computational expense of our experiments, we used two models,
12-layer ConvNet and ResNet20, to validate the fault-estimation
method. Table III shows the accuracy of the retrained 12-layer
ConvNet and ResNet20 models when tested on the ten largest
clusters in each of their corresponding datasets. By definition,
the accuracy of the original model on all cluster images was
zero because they were all mispredicted. As shown in Table III,
there was significant improvement in the models’ accuracy, with
an average equal to 66.64% in 12-layer ConvNet and 69%
in ResNet20. The results therefore suggested that test inputs
belonging to the same cluster are indeed mispredicted due to
the same faults, thus supporting the hypothesis underlying our
method of counting faults.

Inputs Belonging to Different Clusters are Mispredicted Due
to Distinct Faults. If the clusters represent distinct faults in
the DNN, retraining the model with a subset of a cluster Ci

should have a significant effect on the other images in Ci when
compared to images in other clusters. Consequently, to validate
that inputs belonging to different clusters are mispredicted due
to distinct faults, we test each of the previously retrained DNN
models for each cluster Ci on the other clusters Cj where
j �= i. We measure the average accuracy of each of the retrained
DNN models over all remaining clusters and report the results
in Table III. The retrained ResNet20 and 12-layer ConvNet
models are significantly more accurate on the clusters for which
they were retrained than on other clusters. Indeed, in 12-layer
ConvNet, for example, the average accuracy for the latter is
only 27.74% compared to 66.64% for the former. We therefore
conclude that inputs belonging to different clusters tend to be
mispredicted due to distinct faults. Although they are quite lim-
ited, we nevertheless observed improvements in model accuracy
on clusters for which the model was not retrained. This can be
expected because fixing one fault in the DNN model through
retraining may also, to a more limited extent, fix other related
faults, potentially improving the accuracy on other clusters.
As acknowledged previously, our clustering is not perfect and
although the obtained clusters’ Silhouette and DBCV scores are
high, they are not equal to one as shown in Table II.

2) RQ1. To What Extent Do the Selected Diversity Metrics
Measure Actual Diversity in Input Sets?: To directly evaluate the
capability of the selected metrics to measure diversity in input

AGHABABAEYAN et al.: BLACK-BOX TESTING OF DEEP NEURAL NETWORKS THROUGH TEST CASE DIVERSITY 3191

TABLE III
THE RESULTS OF FAULTS VALIDATION EXPERIMENT ON 12-LAYER CONVNET AND RESNET20. IN EACH ROW, WE RETRAINED THE MODEL UNDER TEST ON 85%
OF EACH CLUSTER Ci. WE REPORT IN THE THIRD COLUMN THE ACCURACY OF THE RETRAINED MODEL ON THE REMAINING 15% OF CLUSTER Ci. THE LAST

COLUMN REFERS TO THE AVERAGE OF ACCURACIES OF THE RETRAINED MODELS OVER ALL OTHER FAULT CLUSTERS Cj (j �= i)

sets, we studied how diversity scores changed while varying,
in a controlled manner, the number of image classes covered
by the input sets. Classes characterize the content of images.
For example, a set of images, sampled from the Cifar-10 dataset
and containing the two classes Car and Deer is considered more
diverse than a set containing only cars. We assumed that diversity
scores should increase with the number of classes that are present
in an input set.

Algorithm 1 describes at a logical level our experiment’s
procedure to answer RQ1. This procedure aims to increase the
actual diversity of the content of image sets in a controlled
manner and observe whether diversity metrics are sensitive to
such changes. Given a certain dataset, we started by randomly
selecting the first class Ci from the dataset in our experiment
(Line 1). Then, we randomly sampled, with replacement, 20
input sets of size 100. Each of these input sets was sampled
from the same class Ci (Lines 2-4). We measured the diversity
scores for each initial input set (Lines 5-7). For each such input
set, we incrementally increased the number of classes it covered
by replacing some of its inputs with new ones from a new class
Ck �=i while maintaining a uniform distribution across classes
inside the samples. To do so, for each initial input set Fset, we
randomly selected another classCk that we wanted to add (Lines
8 and 10) and randomly selected new inputs from the classCk as
a Newset (Line 10-11). We randomly kept about 100/k inputs

(k is the number of selected classes) of each existing class in
Fset (Line 12) and merged their inputs in Fset with the newly
selected ones in Newset (Line 13). Finally, we measured the
diversity scores for each input set (Lines 15-17) and repeated the
process until we included images from all classes in the selected
dataset (Line 9). The distribution of the diversity scores that
are related to each metric using boxplots is depicted in Fig. 8.
Each boxplot illustrates the distribution of the diversity scores
of 20 input sets of size 100, each with the same number of
classes.

For example, when we evaluated Cifar-10, we selected 20
input sets of size 100. All the selected images inside each input
set corresponded to the class Deer. For each selected input set,
we measured the GD, NCD and STD scores. For each metric,
we reported the distribution of the diversity scores related to
these samples using boxplots, as depicted in Fig. 8(a), Fig. 8(b)
and Fig. 8(c). We then increased the number of classes inside
each sample by randomly replacing 50 images in Deer with new
images from the Truck class. Each input set contained equal
distribution of Deer and Truck images. We reported again the
distribution of the diversity scores using boxplots. We repeated
the process until we reached a total number of 10 classes inside
the selected samples, while maintaining a uniform distribution
across classes inside the input sets at each sampling iteration.
As shown in Fig. 8, we observed that GD outperforms NCD and

3192 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 5, MAY 2023

Fig. 8. Evolution of the diversity scores for input sets from Cifar-10 and MNIST. Each boxplot shows the distribution of diversity scores of 20 input sets of size
100.

Algorithm 1: Experimental Procedure for RQ1.

STD as it exhibits a monotonic increase when increasing the
number of classes inside the input sets. As shown in Fig. 8(a)
and Fig. 8(d), the more diverse the input sets, the higher the GD
in all datasets and models that we have evaluated. We observed
a similar but noisier trend in STD. Using the example of STD
scores for MNIST (Cf. Fig. 8(e)), we observe that these scores
slightly decrease for samples embedding seven classes. A similar
observation can be made in Cifar-10 when going from nine to
ten classes (Cf. Fig. 8(b)). Surprisingly, we found that NCD

scores do not increase when input sets become more diverse.
We also observed that this diversity metric has low variability
in the generated scores. As shown in Fig. 8(c) and Fig. 8(f), the
range of the calculated mean NCD scores for the different input
sets in the experiment is between 0.9895 and 0.9913. We should
note that we have tried other types of features in our experiments
with NCD to further assess the reliability of this metric in
evaluating diversity. For this purpose, we followed one of the
recommendations of Cohen et al. [31] and Cilibrasi et al. [39]
and calculated the NCD scores of the input sets based on the raw
images from MNIST. However, we obtained similarly poor re-
sults because the NCD score did not consistently increase when
input sets became more diverse. Besides its poor performance in
measuring data diversity, we note that NCD is computationally
expensive. It took approximately one hour to calculate the NCD
score for one input set of size 100, suggesting another limitation
regarding its applicability in testing DNN models. We conclude
that, in our context, this metric is neither practical nor reliable
in measuring data diversity and is therefore excluded from the
rest of our study. Note that the NCD metric’s poor results may
be due to the combination of feature inputs and compression
tools that fail to generate accurate compression distances in our
datasets. We therefore believe that NCD cannot be applied or
function properly without careful selection of image formats and
their associated feature representation and the compression tool,
which is highly sensitive to these elements. Although we have
tried several combinations of the aforementioned configurations
based on existing prior works [31], [39], we aim in future work
to investigate more combinations of feature images and dedi-
cated compression tools to achieve better results for the NCD
metric.

AGHABABAEYAN et al.: BLACK-BOX TESTING OF DEEP NEURAL NETWORKS THROUGH TEST CASE DIVERSITY 3193

TABLE IV
CORRELATION BETWEEN FAULTS IN SUBSETS AND CLUSTERS IN THE ENTIRE

TEST SET

Answer to RQ1: Geometric diversity and STD performed
well in measuring actual data diversity in all the studied
datasets. This is not the case with NCD, which we excluded
from the following experiments.

3) RQ2. How Does Diversity Relate to Fault Detection?: We
aimed to investigate whether higher diversity increases the fault
detection capability of test sets. We randomly selected, with
replacement, 60 samples of size n ∈ {100, 200, 300, 400, 1000}.
For each sample, we calculated the corresponding diversity
scores (GD and STD) and the number of faults (i.e., the number
of covered clusters of mispredicted inputs). We calculated the
Spearman correlation [73] between the diversity scores and
the number of faults. The correlation results are reported in
Tables V, VI and VII for the different datasets and DNN models.
The grey boxes in the table refer to statistically significant
correlations (p-value <= 0.05). We chose to use the Spearman
correlation because it measures the strength of a monotonic
correlation between two variables, without making assumptions
about the form of the relationship or data distributions [73].

Nonetheless, there is a potential confounding factor in the
correlation between faults and diversity. If we were to apply
clustering in the test dataset, we would expect higher diversity to
lead to more clusters. If there is a high similarity in distribution
between the entire test dataset and the subset of mispredicted
inputs, the correlation between diversity and faults in subsets
could be due to the presence of such a confounding factor. To
verify this, we analyzed the correlation between the number
of clusters in the entire test dataset that were covered and the
number of faults (i.e., fault-related clusters) in subsets. A low
correlation would indicate that such a threat is unlikely.

We applied the same HDBSCAN clustering process (Sec-
tion III-C1) to the entire testing dataset to obtain data clusters.
We then used the previously selected 60 samples of size n ∈
{100, 200, 300, 400} and calculated the number of faults (i.e., the
number of covered clusters of only mispredicted inputs) and data
clusters (i.e., the number of covered clusters of both correctly
predicted and mispredicted inputs) inside each sample. Finally,
we calculated the Spearman correlation between the number
of faults and the number of covered data clusters in subsets.
We performed this experiment using 12-layer ConvNet (with
Cifar-10) and LeNet-5 (with MNIST). The correlation results
are reported in Table IV. As shown in the table, we did not

find any positive and statistically significant correlation between
faults and data clusters. We therefore conclude that there is no
confounding factor in our correlation study between diversity
and faults, thus giving us more confidence in the cause-effect
relationship underlying the observed correlations. These results
also suggest that correctly predicted inputs belong to separate
clusters from fault-related clusters (i.e., clusters of mispredicted
inputs) in general. They provide evidence that mispredicted in-
puts belong to the same cluster and share common characteristics
that are different from the ones shared by correctly predicted
inputs.

In our correlation experiment between diversity and faults,
we evaluated a total of 60 configurations related to diversity
metrics (6 models & datasets x 2 diversity metrics x 5 input
sizes). As mentioned in Tables V, VI and VII, we found that
GD outperforms STD in terms of fault-revealing capabilities as
we observed that there was a positive, statistically significant
correlation between GD and faults in all configurations (30/30).
Furthermore, they were consistent across all the studied models,
datasets and input set sizes. On the other hand, we found that
STD had a positive significant correlation with faults in only
ten configurations. These results were expected because, in
RQ1, GD showed better performance in measuring actual data
diversity than STD. We expected to have a moderate correlation
between diversity and faults because we relied on a clustering
approach to approximate faults in DNNs (Section III-C1). Such
correlation is expected to be higher if we have a more straight-
forward method to identify faults in DNNs.

Nevertheless, the obtained results clearly indicate that GD
can be used to effectively guide DNN testing by devising input
sets with maximum diversity to increase their fault-revealing
capabilities. Let us recall that GD also has the practical advan-
tage of being black-box, as opposed to state-of-the-art DNN
coverage metrics [10], [11], [12], [13], which require access to
the internals of DNN models or their training sets.

Answer to RQ2: There is a positive and statistically signifi-
cant correlation between GD and faults in DNNs. GD is more
frequently correlated to faults than STD. Consequently, GD
should be used as a black-box approach to guide the testing
of DNN models.

4) RQ3. How Does Coverage Relate to Fault Detection?:
Similar to the previous section on diversity, in this research
question, we aim to study the correlation between state-of-the-art
coverage criteria and faults in DNNs. Our goal is to under-
stand how they compare to diversity in this respect. Based on
three factors, we selected the following two coverage criteria:
Likelihood-based Surprise Coverage (LSC) and Distance-based
Surprise Coverage (DSC) [10]. First, we retained criteria that
were recently published in the literature. We also chose those
that (1) have been compared to other coverage criteria, and
(2) showed better performance in guiding the testing of DNN
models.

We selected coverage metrics that we could apply and repli-
cate on our models and datasets. The first two factors yielded

3194 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 5, MAY 2023

TABLE V
CORRELATION RESULTS BETWEEN TEST CRITERIA AND DNN FAULTS. THE

GREY BOXES REFER TO STATISTICALLY SIGNIFICANT CORRELATIONS

(P-VALUE <= 0.05)

TABLE VI
CORRELATION RESULTS BETWEEN TEST CRITERIA AND DNN FAULTS. THE

GREY BOXES REFER TO STATISTICALLY SIGNIFICANT CORRELATIONS

(P-VALUE <= 0.05)

AGHABABAEYAN et al.: BLACK-BOX TESTING OF DEEP NEURAL NETWORKS THROUGH TEST CASE DIVERSITY 3195

TABLE VII
CORRELATION RESULTS BETWEEN TEST CRITERIA AND DNN FAULTS. THE

GREY BOXES REFER TO STATISTICALLY SIGNIFICANT CORRELATIONS

(P-VALUE <= 0.05)

four coverage metrics: Likelihood-based Surprise Coverage,
Distance-based Surprise Coverage, Importance-Driven Cover-
age (IDC) [11] and Sign-Sign Coverage (SSC) [14]. However,
we could not apply IDC and SSC on our datasets and models. We
got several execution errors2 when we tried to compute IDC on
the 12-layer ConvNet and LeNet models. For SSC, we obtained
different results from the original paper [14] when we applied
this metric on LeNet-1, and encountered several execution errors
in the remaining models. Therefore, we excluded these metrics
from our research and only studied LSC and DSC in the correla-
tion between coverage and fault detection in DNNs. In addition
to this criteria, we included basic and widely used criteria such as
Neuron Coverage (NC) [12] and DeepGauge [13] coverage met-
rics. We considered the following metrics related to DeepGauge:
k-Multisection Neuron Coverage (KMNC), Neuron Boundary
Coverage (NBC), Top-K Neuron Coverage (TKNC) and Strong
Neuron Activation Coverage (SNAC). We describe these metrics
and their limitations in Section VI.

To investigate the relationship between coverage and fault
detection, we ran the same experiment as in RQ2 and evaluated
the same selected subsets. We calculated the different coverage
scores for all subsets. For LSC and DSC, we used the same
recommended settings for hyperparameters (e.g., upper bound,
lower bound, number of buckets) as in the original paper [10]
and other existing papers in the literature [56]. We used the same
hyperparameters that were recommended in the literature [13]
for NC, KMNC and TKNC. We used the activation threshold
of 10% for NC and fixed the number of buckets K to three for
TKNC and 1,000 for KMNC; this is for the different models
and datasets in our experiments. We calculated the Spearman
correlation between each coverage criterion and the number of
faults. The results are reported in Tables V, VI, VII and VIII.

We considered 30 configurations per metric (6 models &
datasets x 5 input sizes). Further, we accounted for a total of
210 configurations related to the coverage criteria (6 models &
datasets x 7 criteria x 5 input sizes). As depicted in Table VIII,
out of 30 different configurations per metric, the distributions
of positive, statistically significant correlations to faults are as
follows: 5 for KMNC, 4 for TKNC, 3 for LSC, and 2 for NC,
NBC and SNAC. DSC, however, did not show any statistically
significant correlation with faults in any of the datasets and
models.

In general, we that significant correlations between coverage
and faults are rare in the configurations of models and datasets
that we used. None of the studied coverage metrics consistently
showed statistically significant correlations across all the mod-
els, datasets and input set sizes. For example, we found that
LSC is positively correlated to faults in only three out of 30
configurations related to LeNet-5 and ResNet20. However, we
did not find any statistically significant correlation for this metric
with LeNet-1, LeNet-4 and 12-layer ConvNet.

Our findings raise questions about the usefulness of the se-
lected coverage criteria for enabling effective DNN testing in
fault detection. These results confirm, from a different angle,

2Authors have been contacted but the execution errors have not been resolved.

3196 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 5, MAY 2023

TABLE VIII
NUMBER OF POSITIVE STATISTICALLY SIGNIFICANT CORRELATIONS BETWEEN TESTING CRITERIA AND FAULTS

Fig. 9. Computation time for diversity and coverage metrics with Cifar-10 and ResNet20.

Fig. 10. Computation time for diversity and coverage metrics with MNIST and LeNet-5.

many recent studies [16], [18], [55] that questioned the reliability
of such coverage criteria to guide the testing of DNN models. A
central concern raised by these articles is whether such coverage
metrics relate to the model’s behaviour and its decision results.
Our results suggest that this relationship is, at best, weak.

Answer to RQ3: In general, significant positive correlations
between coverage and faults are rarely based on the con-
figurations and datasets used in our experiments. Coverage
metrics are not a good indicator of fault detection.

5) RQ4. How Do Diversity and Coverage Perform in Terms
of Computation Time?: We aimed to compare the computation
times of the selected diversity metrics and coverage criteria and
assessed how they scaled with the sizes of test sets. For this

purpose, we randomly selected, with replacement, 60 samples of
size n ∈ {100, 200, 300, 400}. We calculated, for each sample,
diversity and coverage scores, and measured their respective
computation times. Because we found in RQ2 that GD outper-
forms STD in correlation to faults, in the rest of this work we
only used the GD metric to calculate diversity in input sets. For
GD, we accounted for the sum of the following two computation
times: (1) calculation of diversity based on the extracted features;
and (2) the pre-processing time that is required to extract features
with the VGG16 model. We report in Figs. 9 and 10 the change
in computation times for ResNet20 and LeNet-5 as we increased
the sizes of the input sets. We observed that for both diversity
and coverage metrics, computation time is linear with test set
sizes up to 400. Both types of metrics are not computation-
ally expensive. For example, the computation time related to
diversity and coverage metrics in MNIST and LeNet-5 varies

AGHABABAEYAN et al.: BLACK-BOX TESTING OF DEEP NEURAL NETWORKS THROUGH TEST CASE DIVERSITY 3197

between 0.4 and 49 seconds for samples of size 400. We observed
that KMNC, SNAC and NBC have the same computation time.
Further, they are the most computationally expensive metrics.
For example, KMNC, SNAC and NBC are approximately 25
times more computationally expensive than the other metrics in
ResNet20. However, we found that GD generally outperforms
most of the coverage metrics in computation time, except for
NC and TKNC in LeNet-5. We used the Wilcoxon signed-rank
test [74] to assess the statistical significance of the difference
between GD’s computation time and the other testing criteria.
We found that GD statistically outperformed all coverage met-
rics in computation time. For example, it was three-to-five times
faster to compute GD than LSC and DSC. Although absolute
differences are a matter of seconds, such computations, in the
context of test selection or minimization, may be performed
thousands of times and thus become practically significant. We
studied the distributions of the computation times for diversity
and coverage metrics and analyzed their variations. Due to space
limitations, we included the related boxplots in our replication
package [75]. We found that the distributions of the computa-
tions times related to GD showed less variation than the studied
coverage metrics for samples of the same size. For example,
GD showed less variation than LSC and DSC for samples of the
same size because the GD metric depends on the calculation of
the determinant of a fixed-size feature matrix, while LSC and
DSC depend on a search mechanism for the nearest inputs in the
training set. Search time may vary from one sample to another,
and therefore leads to increased variance in computation time.
Because GD is black-box, its computation time only depends
on the used dataset and is not affected by the complexity of the
DNN model (e.g., number of layers and neurons). In contrast,
the computation time of white-box coverage metrics is highly
sensitive to such complexity.

Answer to RQ4: Both diversity and coverage metrics are not
computationally expensive (seconds). However, GD signifi-
cantly outperforms coverage criteria. In application contexts,
such as test case selection and minimization, and based on
searches in which we perform many test set evaluations, this
difference can become practically significant.

6) RQ5. How Does Diversity Relate to Coverage?: We aimed
to study the relationship between diversity and coverage to assess
if diverse input sets increase the coverage of DNN models. Con-
versely, increasing coverage should, in theory, increase diversity.
Although the results of previous research questions make it
unlikely for such correlations to be strong, this needed to be
investigated.

We ran the same experiment as in RQ2 and RQ3 and used the
same selected subsets. For each subset, we calculated the geo-
metric diversity and coverage scores and measured the Spearman
correlation between each pair of diversity and coverage metrics.
We evaluated a total of 175 configurations (1 diversity metric
x 7 coverage criteria x 5 models & datasets x 5 test set sizes).
We include all the results in Appendix A (see supplementary

material), and they are available online [75]. Out of 175 con-
figurations, only 13 correlations were positive and statistically
significant. For example, the only positive correlation (46%)
between GD and LSC was for input sets of size 400 from Cifar-10
using ResNet-20. Furthermore, the only statistically significant
correlation (-35%) between GD and DSC was for input sets of
size 300 from Fashion-MNIST using LeNet-4. For NC, we found
only three statistically significant correlations in three different
models (LeNet-4, LeNet-5 and ResNet-20). Although we found
six statistically significant correlations between KMNC and GD,
these results were not consistent across all models and input set
sizes. Additionally, the only statistically significant correlation
(48%) between GD and NBC was for input sets of size 1,000
from MNIST using LeNet-5. Finally, for TKNC and SNAC, we
found only two statistically significant correlations for each met-
ric with GD. To summarize, most configurations (159) show no
significant correlations between diversity and coverage metrics,
which suggests that, in general, diversity and coverage in DNN
models are not correlated. In other words, diverse input sets
do not necessarily increase the coverage of DNN models and
higher coverage does not systematically lead to higher diversity.
These results are also consistent with our previous observations
in RQ3 and RQ4, where we found that while geometric diversity
is correlated to fault detection, coverage is not.

Answer to RQ5: In general, for most configurations there is
no significant correlation between diversity and coverage in
DNN models.

IV. DISCUSSION AND RECOMMENDATIONS

We should note that our correlation results between testing
criteria (diversity and coverage metrics) and faults are con-
sistent across different datasets and DNN models. Based on
our experiments, we show that studying the diversity of the
features embedded in test input sets is more reliable as a basis
to guide DNN testing than considering the coverage of their
hidden neurons. We show that geometric diversity is potentially
more effective than existing coverage metrics in guiding the
testing of DNN models. This metric requires neither knowledge
of the model under test nor access to the training set. Further, it
does not require execution of the test input nor reliance on the
output of the DNN model under test. It is therefore a practical,
black-box approach that can be used to guide the testing of
DNN models. Although the results are encouraging, we only
investigated geometric diversity with DNN models using images
as input. Further experiments should be conducted to evaluate
the performance on other input data types, such as audio and text
data. We will therefore explore appropriate feature extraction
models to represent new data types with feature vectors used by
our diversity metrics (mainly diversity and STD metrics, because
NCD supports, by default, any data type). Because diversity
metrics are black-box and do not depend on the type of DNN
model, we also aim in future work to consider other DNN models
for regression and multi-classification tasks to further generalize
our results.

3198 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 5, MAY 2023

In our experiments, we were surprised to see only a few
significant correlations between coverage and faults across all
the models and datasets we evaluated.

We selected both widely used coverage criteria in the liter-
ature and the best coverage metrics in published results and
reproducibility (Section III-C4). Nevertheless, coverage showed
poor performance as an indicator of detected faults in DNNs.
In traditional software, one of the potential reasons for the
effectiveness of coverage criteria is that they rely on the logical
structure of the system’s source code. However, the decision
logic in DNNs is not explicit, which makes the definition and
usage of coverage criteria more challenging in DNNs. Also,
in traditional software, relying on diverse test cases tends to
increase code coverage and the fault-detection capabilities of
test suites [19], [76]. In contrast, we show that in DNN testing
diverse test input sets do not lead to increased DNN coverage
but, at least for geometric diversity, lead to more fault detection
in the DNN model.

Furthermore, traditional software systems and DNNs are
fundamentally different with respect to the notion of fault
and their detection. Given a test input, in general, we de-
tect faults in software by comparing the actual test output to
the expected output. If there is a mismatch, we consider this
to be a failure, and we can debug the system using various
fault localization techniques [77], [78], [79] to identify faulty
statement(s). However, in DNN models, the notion of fault
is elusive because of the black-box nature of DNN models.
If the DNN model mispredicts an input, we consider this to
be a failure, but debugging and localizing faults in the DNN
causing such failure is challenging because there is no explicit
and interpretable decision logic. This is also why DNNs are
usually fixed through retraining [25]. Because it is common for
many mispredicted inputs to be caused by the same problems in
the DNN model [25], and because we cannot directly identify
root causes, we relied on a clustering-based approach to group
similar mispredicted inputs and therefore relied on the number of
these clusters to approximate fault-counting in our experiments.
Our clustering relied on a density-based clustering algorithm
that grouped similar mispredicted inputs based on their (image)
features and their misprediction behaviour (pairs of actual and
mispredicted classes). Our fault estimation approach is there-
fore not “complete” because we only considered faults with
a sufficient number of observed mispredictions to be grouped
into a cluster. The others were considered noisy inputs by our
clustering approach. In other words, we obtained a good approx-
imation of commonly occurring faults, which underestimates
the total number of faults because we do not account for noisy
inputs. Because it is more important for testing approaches to
detect faults, leading to more frequent mispredictions, this is
practically acceptable. As described in Table II and to reinforce
this point, the number of noisy inputs is very small compared to
the total number of mispredicted inputs. We acknowledge that
although our retraining-based validation and evaluation results
show promise, they only indirectly validate our fault model since
there is no direct way to check its fault estimation accuracy. More
research is needed to investigate alternative ways to enable fault
detection comparisons in experiments involving DNN models.

Our study of the computation time of diversity and coverage
metrics was generic and did not target a specific DNN testing
scenario (e.g., selection, generation, minimization). However,
this was intentional, as we wish to provide general insights into
the computational complexity of coverage and diversity metrics.
We showed that both types of metrics are not computationally
intensive and that GD is generally three-to-five times faster to
compute than the studied coverage metrics. However, whether
such differences practically matter and to what extent depends
on how frequently they are computed in a given application
context. Some coverage-based test selection approaches entail
computing the coverage score only once for each test input
and selecting the test inputs with the highest coverage score.
In contrast, in a typical diversity-based test selection approach,
where the goal is to select a set of diverse test inputs, the
GD score may be computed many times for selected subsets
when, for example, the GD metric is used to drive a search
algorithm. Finally, we aim in future work to further investigate
the computation time of coverage and diversity metrics when
used in specific DNN testing scenarios, such as test set selection,
generation and minimization.

To summarize, before using any testing criteria to support
a particular test scenario for DNNs (e.g., test selection, mini-
mization and generation), one should investigate the correlation
between the targeted testing criteria and faults. This is our main
motivation in this work, where we investigate the relationship
between testing criteria (coverage and diversity metrics) and
faults in DNNs. The stronger the correlation between testing
criteria and fault detection, the better. The practical implications
of our results suggest that one should not rely on coverage,
as currently defined, to guide DNN testing if the objective is
to detect as many faults as possible. Alternatively, we show
that geometric diversity has strong potential as an alternative.
It outperforms existing coverage metrics in fault-revealing ca-
pability, applicability (as it is black-box) and computation time.
We therefore recommend investigating its practical use in testing
DNNs to guide the selection, minimization or generation of test
input sets.

V. THREATS TO VALIDITY

In this section, we discuss the different threats to the validity
of our study and describe how we mitigated them.

Internal threats to validity concern the causal relationship
between the treatment and the outcome. We reimplemented three
diversity metrics because their source code was unavailable (GD
and STD) or not applicable on our datasets (NCD). Conse-
quently, an internal threat to validity might be related to our
implementations. To mitigate this threat, we carefully checked
our code and its conformance to the original papers in which
they were published. We also verified the correctness of our
implementation of the NCD metric by comparing our results
with an existing implementation3 that supported the calculation
of the NCD score only for pairs of images or txt files. In RQ1,
we tested, through a controlled experiment, the reliability of the

3https://github.com/simonpoulding/DataGenerators.jl

AGHABABAEYAN et al.: BLACK-BOX TESTING OF DEEP NEURAL NETWORKS THROUGH TEST CASE DIVERSITY 3199

selected diversity metrics in measuring actual data diversity and
excluded the metrics that failed the test.

As we were targeting black-box diversity metrics, we needed
to rely on a feature extraction model to build our feature matrix.
Therefore, an internal threat to validity might be caused by a low-
quality representation of inputs. To mitigate this threat, we relied
on VGG16, which is one of the most-used, accurate, state-of-
the-art feature extraction models. Furthermore, this DNN model
has been pre-trained on the extremely large ImageNet dataset,
which contains over 14 million labelled images belonging to
22,000 categories. Further, the configuration of the different hy-
perparameters in our study may induce additional internal threats
to validity. We mitigate this threat in two ways: (1) for coverage
metrics hyperparameters, we made use of the original papers’
hyperparameter values [10] for each dataset and model that we
used; and (2) for fault estimation hyperparameters (clustering),
we tried more than 500 configurations related to HDBSCAN and
UMAP for each of the datasets and models that we evaluated.
To reduce potential bias, we evaluated the configurations’ results
by using two clustering evaluation metrics (Section III-C1) and
by visualizing heatmaps.

A final internal threat to validity is related to randomness
when sampling test inputs. We addressed this issue by repeating
such sampling multiple times while considering different input
set sizes and different datasets and models.

Construct threats to validity concern the relation between
the theory and the observations. To study the effectiveness of
a given test criterion in guiding DNN testing, we relied on a
clustering-based approach to estimate detected faults in DNNs.
It is a potential threat to construct validity because this estimate
may not be sufficiently accurate. If that is the case, correlations
with diversity and coverage might appear weaker than they actu-
ally are. Alternatively, relying on misprediction rates is, as pre-
viously discussed, misleading, because in practice, many similar
mispredicted inputs typically result from the same problems in
the DNN model. Accounting for numerous redundant test inputs
would blur our correlation analysis, an effect we observed in our
study. Further, we relied on a density-based clustering algorithm
that is capable of grouping similar inputs in clusters of arbitrary
shapes, as opposed to other types of clustering algorithms, such
as k-means and hierarchical clustering, which assume that clus-
ters are convex. Next, we clustered similar mispredicted inputs
based on their (image) features and misprediction behaviour,
thus relying on what semantically distinguishes images. Finally,
we quantitatively and qualitatively assessed the obtained clusters
to group test inputs with similar characteristics.

Reliability threats to validity concern the replicability of
our study results. We relied on publicly available models and
datasets and provided all the materials required to replicate our
study results online [75]. This includes the set of all selected
samples in the experiments and the different configurations we
used for all the selected testing criteria.

Conclusion threats to validity concern the relation between
the treatment and the outcome. We relied on the Spearman
correlation because it does not rely on assumptions about the
data set distributions or on the shapes of the relationships, except
for the latter being monotonic.

External threats to validity concern the generalizability of
our study. We mitigated this threat by using four large datasets
and five widely used and architecturally different DNN models.
Further, in each of our experiments, we evaluated many samples
and input set sizes. The selected coverage metrics may not be
representative of all existing coverage criteria. However, we
selected the best metrics based on their published results and
our ability to reproduce their results.

VI. RELATED WORK

The work presented in this paper relies on concepts related to
test diversity, black-box testing and model coverage in DNNs.
In this section, we provide an overview of existing coverage
metrics for DNN models. We also describe existing work on
black-box DNN testing and studies making use of diversity to
guide testing of DNNs and traditional software systems.

A. Test Coverage Criteria for DNNs

Several coverage metrics have been proposed in the literature.
The first attempt was carried out by Pei et al. [12] who proposed
the Neuron Coverage (NC) metric for test inputs, which is
defined as the proportion of activated neurons (neurons whose
activation value is above the defined threshold) over all neurons
when all available test inputs are supplied to a DNN. However,
several studies [14], [15] have shown that 100% neuron coverage
is easy to achieve with a small set of inputs, and consequently
is going to limit the applicability of such metric when testing
DNNs.

Ma et al. [13] proposed DeepGauge, a set of DNN cover-
age metrics. They introduced K-Multisection Neuron Coverage
(KMNC), Neuron Boundary Coverage (NBC) and Strong Neu-
ron Activation Coverage (SNAC). KMNC partitions the ranges
of neuron activation values into K buckets based on training
inputs and counts the number of total covered buckets by a given
test input set. NBC measures the ratio of corner-case regions
that have been covered. Corner-case regions correspond to the
activation values that are beyond the activation ranges observed
during training. SNAC measures how many upper corner-cases
have been covered. Upper corner-cases correspond to neuron
activation values that are greater than the activation ranges
observed during training. The authors showed that input tests
generated by adversarial methods increase coverage in terms of
their metrics. However, they did not study how these metrics
relate to DNN mispredictions using natural inputs.

Inspired by the MC/DC test coverage in traditional soft-
ware testing, Sun et al. [14] proposed four coverage metrics
that account for the causal relationship between neurons in
neighbouring layers of a DNN model. These metrics were used
to guide the generation of test inputs using adversarial methods
to test the robustness of DNN models.

Kim et al. [10] proposed two coverage criteria called Like-
lihood-based Surprise Coverage (LSC) and Distance-based Sur-
prise Coverage (DSC). These criteria are based on an analysis
of how surprising test sets are given the training set. LSC uses
Kernel Density Estimation (KDE) [80] to estimate the likelihood
of seeing a test input during the training phase. DSC relies

3200 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 5, MAY 2023

on the calculation of euclidean distances between vectors that
correspond to (1) the neurons’ activation values in inputs from
the test set, and (2) the neurons’ activation values in inputs from
the training set. They argue that an input set that covers a wide
and diverse range of surprise values is preferable to test and
retrain a DNN model. They show that their metrics are correlated
with existing coverage criteria [12], [13] when the diversity
of inputs is increased. However, our study shows that there is
no strong correlation between surprise adequacy coverage and
diversity by using only natural inputs. We also show that there is
no strong correlation between these coverage metrics and faults
in DNNs. Another study conducted by Chen et al. [18] showed
similar results with respect to DNN misprediction rates when
using only natural inputs.

Gerasimou et al. [11] proposed the Importance-Driven Cov-
erage (IDC) criterion to focus on the coverage of the most
influential neurons in DNN predictions. They argue that IDC
is sensitive to adversarial inputs and achieves higher values
when applied to input sets that comprise diverse inputs. They
also evaluated DeepGauge [10] and surprise adequacy coverage
criteria [13] in their experiments and observed that IDC shows a
similar increase in these coverage criteria when evaluated with
test sets augmented with adversarial inputs.

Byun et al. [81] have recently proposed Manifold Combina-
tion Coverage (MCC), a black-box coverage metric for testing
DNN models based on projecting test inputs onto a manifold
space using a Variational AutoEncoder (VAE). This metric relies
on manifold learning [82] that compresses a high-dimensional
input space into a lower-dimensional manifold space. It then
measures the coverage of test inputs within a subset in the
manifold space to assess test thoroughness [81]. The authors
compared the misprediction-revealing effectiveness and retrain-
ing efficacy of MCC and state-of-the-art white-box coverage
metrics. They found that the misprediction-revealing effective-
ness of MCC is similar to that of the selected white-box cover-
age metrics. Further, MCC failed to outperform the white-box
coverage metrics in retraining effectiveness. Given the reported
performance of MCC compared to white-box coverage metrics,
we did not consider this recent work in our empirical analysis.

Despite active research on DNN coverage, several recent
articles have questioned the usefulness of coverage criteria to
guide the testing of DNN models [16], [17], [18]. For example,
Li et al. [16] studied a number of structural coverage criteria
and discussed their limitations in fault detection capabilities in
DNN models. Their experiments found no strong correlation
between coverage and the number of misclassified inputs in a
natural test set. Furthermore, Dong et al. [17] found that retrain-
ing DNN models with new input sets that improve coverage
does not increase the robustness of the model to adversarial
attacks.

Our work on diversity metrics is orthogonal to existing re-
search regarding DNN test coverage. Most of the state-of-the-art
coverage metrics require full access to the internals of DNN
state or training data, both of which are often not available to
testers in practical contexts. Thus, in our approach we focused
on black-box diversity metrics, and aimed to provide guidance
to assess test suites or select test cases for DNNs.

State-of-the-art coverage criteria have been largely validated
with artificial inputs that have been generated based on ad-
versarial methods [10], [11], [12], [13], [14]. However, their
relationship to (often unrealistic) adversarial inputs does not
imply they relate to the fault detection capability of natural
test input sets. Li et al. [16] argue that adversarial inputs are
distributed pervasively over the divided space defined by existing
coverage criteria. On the other hand, misclassified natural inputs
are distributed sparsely, making their detection difficult when
using such coverage criteria [16]. Existing studies [16], [18]
have failed to find a significant correlation between coverage and
the number of misclassified inputs in a test set. Consequently,
coverage criteria may be ineffective at guiding DNN testing
to increase the fault-detection capability of natural input sets.
Furthermore, existing studies [10], [11], [12], [13], [14] have
used the number of mispredicted inputs to study the effectiveness
of coverage criteria to support DNN testing. However, as pre-
viously discussed, simply comparing mispredictions is highly
misleading because many test inputs may (and usually do) fail
due to the same causes in the DNN model. To address this
problem, we approximated faults (i.e., common misprediction
causes) by relying on a clustering strategy and by studying the
correlation between test criteria (i.e., coverage and diversity)
and faults instead of misprediction rates.

B. Black-Box DNN Testing

In this section we describe black-box testing approaches for
DNN models because the focus of this paper is on black-box
metrics and diversity metrics, and on their association with
detected faults in DNN models. Feng et al. [83] proposed
DeepGini, a black-box test selection approach that prioritizes
test inputs along with higher uncertainty scores. Intuitively, a
test input is likely to be misclassified by a DNN if the model is
uncertain about the classification and outputs similar probabili-
ties for each class [83]. They found that DeepGini outperforms
random and coverage-based test selection approaches to reveal
misclassifications. However, this approach is only applicable to
classification problems and cannot be used for regression tasks.
A recent study by Gao et al. [84], developed concurrently to our
work, proposed Adaptive Test Selection (ATS), a method based
on uncertainty scores and distribution of the output probability
vectors of test inputs in DNN models. The selection is guided
by a fault pattern coverage score that is computed using the
output probability vectors of the DNN under test. They introduce
a mapping from the output domain of the DNN model to a
set of intervals in local domains to describe the fault pattern
of a given test input or test set. They select test inputs that
both cover different fault patterns [84] and have higher uncer-
tainty scores. Similar to DeepGini, this approach can only be
used for classification problems. Empirical results show that
ATS outperforms coverage and uncertainty-based test selection
methods (including DeepGini [83]) in misprediction-revealing
capability. They also studied the effectiveness of the proposed
approach in finding diverse mispredicted inputs. Consequently,
they introduced the concept of fault types by looking at pairs of
actual test input labels and labels predicted by the DNN model

AGHABABAEYAN et al.: BLACK-BOX TESTING OF DEEP NEURAL NETWORKS THROUGH TEST CASE DIVERSITY 3201

under test. Inputs that have different pairs of actual and predicted
labels are assumed to correspond to different types of faults.
However, as opposed to our work, this proposed method for
counting distinct faults was not validated. We relied on a more
fine-grained fault estimation approach that is based on clustering
mispredicted inputs and accounts for their labels (actual and
mispredicted) as well as their features.

Li et al. [22] proposed two black-box metrics called Cross
Entropy-based Sampling (CES) and Confidence-based Stratified
Sampling (CSS) for DNN test set minimization. These metrics
are used to guide the selection of a small set of test inputs that can
accurately estimate the entire testing dataset. The authors show
that their approach outperforms random sampling and requires
only about half the labeled test inputs to achieve the same level
of accuracy as the whole testing set. The authors also report that
CSS does not perform well on poorly trained DNNs because the
confidence values it produces cannot be trusted [22].

These black-box testing approaches and their underlying
metrics are conceptually different from our black-box diversity
metrics. They are model-dependent because they rely on DNN
outputs (output diversity) and uncertainty assessments. From a
practical standpoint, this implies that all inputs must first be
executed to be selected based on their diversity, which is a
strong practical impediment in many application contexts, for
example when working with large models and large databases
of unlabeled inputs. Further, as mentioned above, these diversity
metrics cannot be trusted when the model is not accurate. In
contrast, our diversity metrics are model-independent and based
on an analysis of the diversity of input features, thus requiring
no model execution. Finally, these black-box testing approaches
focus on specific testing scenarios, while our study is generic and
focuses on investigating fundamental and pervasive assumptions
related to the relationship between testing criteria and faults in
DNNs.

C. Diversity in Testing

In this section, we describe existing work that relied on
diversity to test DNNs and regular software.

Diversity in DNN Testing. A recent study by Langford and
Cheng [85] proposed Enki, a DNN input-generation approach
based on evolutionary search [86]. Their objective is to diversify
image transformation types and to generate new inputs from
existing ones to test and retrain DNN models. They started by
evolving an archive of image transformation types that have a
diverse impact on the DNN model. Given a subset of synthetic
inputs generated with a certain image transformation type, the
diversity of the impact was evaluated against three elements: (1)
the F1-score of the DNN model when applied on the subset; (2)
the neuron coverage score [12]; and (3) the neuron’s activation
pattern [85]. After building the final Enki archive containing
the most diverse image transformation types, they (1) tested the
DNN models using synthetic inputs generated with the identified
image transformation types, and (2) studied the accuracy of the
DNNs by retraining them with such synthetic training data. They
also compared their results with random input generation and
DeepTest [87]. They concluded that Enki outperformed these

two input generation approaches, and reported that testing DNNs
with their generated data led to the lowest DNN model accuracy.
They also reported that retraining DNNs with their generated
data increased the accuracy of DNN models.

What differentiates our work from Enki is that Enki provides a
search-based approach to diversify image transformation types.
Its goal is to minimize the model accuracy and then use it to guide
the generation of synthetic inputs to test and retrain DNNs. In
contrast, our approach investigated ways to measure diversity
in natural test input sets and compared the best diversity metric
with state-of-the-art coverage criteria to guide DNN testing to
maximize fault detection. Such diversity metrics can then be
used for multiple purposes such as test suite assessment and
guidance for selection, minimization and generation. Our focus
on faults, as opposed to accuracy, aimed to find test inputs
whose mispredictions resulted from distinct root causes. For
practical reasons, as already discussed and as opposed to Enki,
we intentionally devised an approach that is black-box and did
not rely on internal information about the model or its training
set.

Diversity in Software Testing. Input and output diversity has
been investigated to support different aspects related to tradi-
tional software testing. Since executing similar test cases tends
to exercise similar parts of the source code, this is likely to lead
to revealing the same faults in the system under test. Therefore,
relying on diverse test cases should increase the exploration of
the fault space and thus increase fault detection rates [20], [88],
[89].

Feldt et al. [21] proposed Test Set Diameter (TDSm), a di-
versity-based test case selection strategy. The approach uses the
NCD metric to measure the diversity of test inputs. They applied
their approach on four systems and concluded that diverse
test input sets increase code coverage. Finally, they show that
test sets with larger NCD scores exhibit better fault-detection
capabilities.

Hemmati et al. [90] conducted an empirical study on similarity
-based test selection techniques for test cases generated from
state machine models. They studied and compared over 320
variants that relied on different similarity metrics and selection
algorithms. Based on their experiments, they found that the best
test-selection technique used the Gower-Legendre similarity
function [91] and applied a (1+1) Evolutionary Algorithm [92]
to select tests with minimum pairwise similarity and thus max-
imized the diversity of the selected test cases. They further
showed that such similarity-based test selection configuration
outperformed random selection and coverage-based techniques
in fault detection rates and computational cost.

Biagiola et al. [19] introduced a web test generation algorithm
that produces and selects candidate test cases that are executed in
the browser based on their diversity. They showed that their test
generation technique achieved higher code coverage and fault
detection rates when compared to state of-the-art, search-based
web test generators [76], [93].

Our objectives in this paper are similar to these studies, but
in the context of DNN testing. As several studies have shown
the effectiveness of diversity metrics in guiding the testing of
software systems, we investigated its usefulness in testing DNN

3202 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 5, MAY 2023

models. We compared the performance of existing diversity
metrics with state-of-the-art DNN coverage criteria in terms of
their fault detection capabilities and computational cost.

VII. CONCLUSION

In this paper, we studied the effectiveness of input diversity
metrics in guiding the testing of DNN models. We focused
on DNN models using images as inputs, as they are common
in many systems. Our motivation is to provide a black-box
mechanism that does not rely on DNN internal information or
training data to assess test sets. This requirement aims to make
our approach more applicable in the many practical contexts
where such information is not (easily) accessible. We also do
not rely on output diversity because this approach would require
executing the model with all inputs and would be affected by
poor model accuracy. Further, we compare the results achieved
by white-box coverage criteria defined for DNNs with those
achieved by black-box input diversity.

To this end, we selected and adapted three input diversity
metrics and, by means of a controlled experiment, evaluated
their capability to measure actual input diversity. We selected
the best metrics and analyzed their association with fault de-
tection in DNNs using four datasets and five DNN models.
Because simply comparing mispredictions is highly misleading,
as many test inputs fail for the same reasons, we relied on a
clustering-based approach to group similar mispredicted inputs
and thus estimated faults based on the number of such clusters.
We further selected the best state-of-the-art coverage criteria
based on published results and our ability to reproduce such
results. We studied the associations of the selected coverage
criteria to both diversity and fault detection.

Based on our experiments, we found that the best diversity
metric is geometric diversity and that, though there is still room
for improvement (e.g., fault estimation in DNNs, investigating
other diversity metrics and feature extraction models), it is a far
better surrogate metric than the investigated coverage criteria
in terms of their relationship to fault detection. This metric
outperforms these coverage criteria in correlation to detected
faults and computational time. We therefore recommend inves-
tigating the use of geometric diversity as a black-box metric to
guide the testing of DNN models using images as inputs. We
aim to extend our work by studying the application of input
diversity in supporting different testing applications such as test
set selection, minimization and generation. We also intend to
investigate alternatives for DNN fault estimation.

ACKNOWLEDGMENTS

We are grateful to Kim et al. [10] for their help and support
to replicate the surprise adequacy coverage results.

REFERENCES

[1] X. Yang, F. Li, and H. Liu, “A survey of DNN methods for blind image
quality assessment,” IEEE Access, vol. 7, pp. 123 788–123 806, 2019.

[2] A. Giusti, D. C. Cireşan, J. Masci, L. M. Gambardella, and J. Schmidhuber,
“Fast image scanning with deep max-pooling convolutional neural
networks,” in Proc. IEEE Int. Conf. Image Process., 2013, pp. 4034–4038.

[3] P. K. Mallick, S. H. Ryu, S. K. Satapathy, S. Mishra, G. N. Nguyen, and P.
Tiwari, “Brain MRI image classification for cancer detection using deep
wavelet autoencoder-based deep neural network,” IEEE Access, vol. 7,
pp. 46 278–46 287, 2019.

[4] V. Rajinikanth, A. N. Joseph Raj, K. P. Thanaraj, and G. R. Naik, “A
customized VGG19 network with concatenation of deep and handcrafted
features for brain tumor detection,” Appl. Sci., vol. 10, no. 10, 2020,
Art. no. 3429.

[5] T. G. Debelee, S. R. Kebede, F. Schwenker, and Z. M. Shewarega, “Deep
learning in selected cancers’ image analysis—a survey,” J. Imag., vol. 6,
no. 11, 2020, Art. no. 121.

[6] J. Pan, C. Liu, Z. Wang, Y. Hu, and H. Jiang, “Investigation of deep neural
networks (DNN) for large vocabulary continuous speech recognition:
Why DNN surpasses GMMS in acoustic modeling,” in Proc. IEEE 8th
Int. Symp. Chin. Spoken Lang. Process., 2012, pp. 301–305.

[7] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep reinforcement
learning framework for autonomous driving,” Electron. Imag., vol. 2017,
no. 19, pp. 70–76, 2017.

[8] A. Stocco, M. Weiss, M. Calzana, and P. Tonella, “Misbehaviour
prediction for autonomous driving systems,” in Proc. IEEE/ACM 42nd
Int. Conf. Softw. Eng., 2020, pp. 359–371.

[9] X. Cai and M. R. Lyu, “The effect of code coverage on fault detection under
different testing profiles,” in Proc. 1st Int. Workshop Adv. Model-Based
Testing, 2005, pp. 1–7.

[10] J. Kim, R. Feldt, and S. Yoo, “Guiding deep learning system testing using
surprise adequacy,” in Proc. IEEE/ACM 41st Int. Conf. Softw. Eng., 2019,
pp. 1039–1049.

[11] S. Gerasimou, H. F. Eniser, A. Sen, and A. Cakan, “Importance-driven
deep learning system testing,” in Proc. IEEE/ACM 42nd Int. Conf. Softw.
Eng., 2020, pp. 702–713.

[12] K. Pei, Y. Cao, J. Yang, and S. Jana, “DeepXplore: Automated whitebox
testing of deep learning systems,” in Proc. 26th Symp. Operating Syst.
Princ., 2017, pp. 1–18.

[13] L. Ma et al., “DeepGauge: Multi-granularity testing criteria for deep
learning systems,” Proc. IEEE/ACM 33rd Int. Conf. Automated Softw.
Eng., 2018, pp. 120–131.

[14] Y. Sun, X. Huang, D. Kroening, J. Sharp, M. Hill, and R. Ashmore,
“Structural test coverage criteria for deep neural networks,” ACM Trans.
Embedded Comput. Syst., vol. 18, no. 5s, pp. 1–23, 2019.

[15] J. Sekhon and C. Fleming, “Towards improved testing for deep learning,”
in Proc. IEEE/ACM 41st Int. Conf. Softw. Eng. New Ideas Emerg. Results,
2019, pp. 85–88.

[16] Z. Li, X. Ma, C. Xu, and C. Cao, “Structural coverage criteria for neural
networks could be misleading,” in Proc. IEEE/ACM 41st Int. Conf. Softw.
Eng. New Ideas Emerg. Results, IEEE, 2019, pp. 89–92.

[17] Y. Dong et al., “An empirical study on correlation between coverage and
robustness for deep neural networks,” in Proc. IEEE 25th Int. Conf. Eng.
Complex Comput. Syst., 2020, pp. 73–82.

[18] J. Chen, M. Yan, Z. Wang, Y. Kang, and Z. Wu, “Deep neural network
test coverage: How far are we?,” 2020, arXiv:2010.04946.

[19] M. Biagiola, A. Stocco, F. Ricca, and P. Tonella, “Diversity-based web
test generation,” in Proc. 27th ACM Joint Meeting Eur. Softw. Eng. Conf.
Symp. Found. Softw. Eng., 2019, pp. 142–153.

[20] H. Hemmati, Z. Fang, and M. V. Mantyla, “Prioritizing manual test cases
in traditional and rapid release environments,” in Proc. IEEE 8th Int.
Conf. Softw. Testing Verification Validation, 2015, pp. 1–10.

[21] R. Feldt, S. Poulding, D. Clark, and S. Yoo, “Test set diameter: Quantifying
the diversity of sets of test cases,” in Proc. IEEE Int. Conf. Softw. Testing
Verification Validation, 2016, pp. 223–233.

[22] Z. Li, X. Ma, C. Xu, C. Cao, J. Xu, and J. Lü, “Boosting operational dnn
testing efficiency through conditioning,” in Proc. 27th ACM Joint Meeting
Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., 2019, pp. 499–509.

[23] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. Tse, “Adaptive random testing:
The art of test case diversity,” J. Syst. Softw., vol. 83, no. 1, pp. 60–66,
2010.

[24] T. Y. Chen, R. Merkel, P. Wong, and G. Eddy, “Adaptive random testing
through dynamic partitioning,” in Proc. IEEE 4th Int. Conf. onQuality
Softw., 2004, pp. 79–86.

[25] H. Fahmy, F. Pastore, M. Bagherzadeh, and L. Briand, “Supporting deep
neural network safety analysis and retraining through heatmap-based
unsupervised learning,” IEEE Trans. Rel., vol. 70, no. 4, pp. 1641–1657,
Dec. 2021.

[26] A. Kulesza and B. Taskar, “Determinantal point processes for machine
learning,” 2012, arXiv:1207.6083.

[27] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

AGHABABAEYAN et al.: BLACK-BOX TESTING OF DEEP NEURAL NETWORKS THROUGH TEST CASE DIVERSITY 3203

[28] W. Mousser and S. Ouadfel, “Deep feature extraction for pap-smear image
classification: A comparative study,” in Proc. 5th Int. Conf. Comput.
Technol. Appl., 2019, pp. 6–10.

[29] T. Kaur and T. K. Gandhi, “Automated brain image classification based
on VGG-16 and transfer learning,” in Proc. IEEE Int. Conf. Inf. Technol.,
2019, pp. 94–98.

[30] Z. Gong, P. Zhong, and W. Hu, “Diversity in machine learning,” IEEE
Access, vol. 7, pp. 64 323–64 350, 2019.

[31] A. R. Cohen and P. M. Vitányi, “Normalized compression distance of
multisets with applications,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 37, no. 8, pp. 1602–1614, Aug. 2015.

[32] J. R. Hershey and P. A. Olsen, “Approximating the kullback leibler
divergence between Gaussian mixture models,” in Proc. IEEE Int. Conf.
Acoust. Speech Signal Process., 2007, pp. IV-317–IV-320.

[33] B. Chen, X. He, B. Pan, X. Zou, and N. You, “Comparison of beta
diversity measures in clustering the high-dimensional microbial data,”
PLoS One, vol. 16, no. 2, 2021, Art. no. e0246893.

[34] H. Lin and J. A. Bilmes, “Learning mixtures of submodular shells with
application to document summarization,” 2012, arXiv:1210.4871.

[35] B. Kang, “Fast determinantal point process sampling with application
to clustering,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2013,
pp. 2321–2329.

[36] H. Xu and Z. Ou, “Scalable discovery of audio fingerprint motifs
in broadcast streams with determinantal point process based motif
clustering,” IEEE/ACM Trans. Audio, Speech, Lang. Process, vol. 24,
no. 5, pp. 978–989, May 2016.

[37] H. Z. Nafchi, A. Shahkolaei, R. Hedjam, and M. Cheriet, “Mean deviation
similarity index: Efficient and reliable full-reference image quality
evaluator,” IEEE Access, vol. 4, pp. 5579–5590, 2016.

[38] R. S. Borbely, “On normalized compression distance and large malware,”
J. Comput. Virol. Hacking Techn., vol. 12, no. 4, pp. 235–242, 2016.

[39] R. Cilibrasi and P. M. Vitányi, “Clustering by compression,” IEEE Trans.
Inf. Theory, vol. 51, no. 4, pp. 1523–1545, Apr. 2005.

[40] M. Elfeki, C. Couprie, M. Riviere, and M. Elhoseiny, “GDPP: Learning
diverse generations using determinantal point processes,” in Proc. Int.
Conf. Mach. Learn., PMLR, 2019, pp. 1774–1783.

[41] B. Gong, W.-L. Chao, K. Grauman, and F. Sha, “Diverse sequential subset
selection for supervised video summarization,” in Proc. Int. Conf. Neural
Inf. Process. Syst., 2014, pp. 2069–2077.

[42] T. Zhou, Z. Kuscsik, J.-G. Liu, M. Medo, J. R. Wakeling, and Y.-C. Zhang,
“Solving the apparent diversity-accuracy dilemma of recommender
systems,” Proc. Nat. Acad. Sci. USA, vol. 107, no. 10, pp. 4511–4515,
2010.

[43] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements in
Gaussian processes: Theory, efficient algorithms and empirical studies,”
J. Mach. Learn. Res., vol. 9, no. 2, pp. 235–284, 2008.

[44] E. Celis, V. Keswani, D. Straszak, A. Deshpande, T. Kathuria, and N.
Vishnoi, “Fair and diverse DPP-based data summarization,” in Proc. Int.
Conf. Mach. Learn., PMLR, 2018, pp. 716–725.

[45] Y. Bengio, G. Mesnil, Y. Dauphin, and S. Rifai, “Better mixing via
deep representations,” in Proc. Int. Conf. Mach. Learn., PMLR, 2013,
pp. 552–560.

[46] A. N. Kolmogorov, “Three approaches to the quantitative definition
ofinformation’,” Problems Inf. Transmiss., vol. 1, no. 1, pp. 1–7, 1965.

[47] C. H. Bennett, P. Gács, M. Li, P. M. Vitányi, and W. H. Zurek, “Information
distance,” IEEE Trans. Inf. Theory, vol. 44, no. 4, pp. 1407–1423,
Jul. 1998.

[48] M. Li, X. Chen, X. Li, B. Ma, and P. M. Vitányi, “The similarity metric,”
IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3250–3264, Dec. 2004.

[49] R. Feldt, R. Torkar, T. Gorschek, and W. Afzal, “Searching for cognitively
diverse tests: Towards universal test diversity metrics,” in Proc. IEEE Int.
Conf. Softw. Testing Verification Validation Workshop, 2008, pp. 178–186.

[50] D. Coltuc, M. Datcu, and D. Coltuc, “On the use of normalized
compression distances for image similarity detection,” Entropy, vol. 20,
no. 2, pp. 99–114, 2018.

[51] A. Kocsor, A. Kertész-Farkas, L. Kaján, and S. Pongor, “Application of
compression-based distance measures to protein sequence classification: A
methodological study,” Bioinformatics, vol. 22, no. 4, pp. 407–412, 2006.

[52] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. Le Traon, “Comparing
white-box and black-box test prioritization,” in Proc. IEEE/ACM 38th
Int. Conf. Softw. Eng., 2016, pp. 523–534.

[53] P. M. Bueno, W. E. Wong, and M. Jino, “Improving random test sets using
the diversity oriented test data generation,” in Proc. IEEE/ACM 2nd Int.
Workshop Random Testing Co-Located 22nd Int. Conf. Automated Softw.
Eng., 2007, pp. 10–17.

[54] D. Leon and A. Podgurski, “A comparison of coverage-based and
distribution-based techniques for filtering and prioritizing test cases,” in
Proc. IEEE 14th Int. Symp. Softw. Rel. Eng., 2003, pp. 442–453.

[55] F. Harel-Canada, L. Wang, M. A. Gulzar, Q. Gu, and M. Kim, “Is neuron
coverage a meaningful measure for testing deep neural networks?,” in
Proc. 28th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw.
Eng., 2020, pp. 851–862.

[56] S. Yan et al., “Correlations between deep neural network model coverage
criteria and model quality,” in Proc. 28th ACM Joint Meeting Eur. Softw.
Eng. Conf. Symp. Found. Softw. Eng., 2020, pp. 775–787.

[57] K. Alex, N. Vinod, and H. Geoffrey, The CIFAR-10 dataset, 2009.
[Online]. Available: http://www.cs.toronto.edu/kriz/cifar.html

[58] L. Deng, “The MNIST database of handwritten digit images for machine
learning research [best of the Web],” IEEE Signal Process. Mag., vol. 29,
no. 6, pp. 141–142, Nov. 2012.

[59] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
in Proc. NIPS Workshop Deep Learn. Unsupervised Feature Learn.,
2011. [Online]. Available: http://ufldl.stanford.edu/housenumbers/
nips2011housenumbers.pdf

[60] T. Zohdinasab, V. Riccio, A. Gambi, and P. Tonella, “DeepHyperion:
Exploring the feature space of deep learning-based systems through
illumination search,” in Proc. 30th ACM SIGSOFT Int. Symp. Softw.
Testing Anal., 2021, pp. 79–90.

[61] M. O. Attaoui, H. Fahmy, F. Pastore, and L. Briand, “Black-box
safety analysis and retraining of DNNs based on feature extraction and
clustering,” ACM Trans. Softw. Eng. Methodol., Jul. 2022. [Online].
Available: https://doi.org/10.1145/3550271

[62] M. Joswiak, Y. Peng, I. Castillo, and L. H. Chiang, “Dimensionality
reduction for visualizing industrial chemical process data,” Control Eng.
Pract., vol. 93, 2019, Art. no. 104189.

[63] L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform manifold approx-
imation and projection for dimension reduction,” 2018, arXiv:1802.03426.

[64] A. Diaz-Papkovich, L. Anderson-Trocmé, and S. Gravel, “A review of
UMAP in population genetics,” J. Hum. Genet., vol. 66, no. 1, pp. 85–91,
2021.

[65] Y. Hozumi, R. Wang, C. Yin, and G.-W. Wei, “UMAP-assisted K-means
clustering of large-scale SARS-CoV-2 mutation datasets,” Comput. Biol.
Med., vol. 131, 2021, Art. no. 104264.

[66] I. T. Jolliffe and J. Cadima, “Principal component analysis: A review and
recent developments,” Philos. Trans. Roy. Soc. A Math., Phys. Eng. Sci.,
vol. 374, no. 2065, 2016, Art. no. 20150202.

[67] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J.
Mach. Learn. Res., vol. 9, no. 11, pp. 2579–2605, 2008.

[68] L. McInnes, J. Healy, and S. Astels, “HDBSCAN: Hierarchical density
based clustering,” J. Open Source Softw., vol. 2, no. 11, pp. 205–206,
2017.

[69] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis,” J. Comput. Appl. Math., vol. 20, pp. 53–65,
1987.

[70] D. Moulavi, P. A. Jaskowiak, R. J. Campello, A. Zimek, and J. Sander,
“Density-based clustering validation,” in Proc. SIAM Int. Conf. Data
Mining, SIAM, 2014, pp. 839–847.

[71] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “Density-connected sets
and their application for trend detection in spatial databases,” in Proc. Int.
Conf. Knowl. Discov. Data Mining, 1997, pp. 10–15.

[72] Q. Hu et al., “An empirical study on data distribution-aware test selection
for deep learning enhancement,” ACM Trans. Softw. Eng. Methodol.,
vol. 31, pp. 1–30, 2022.

[73] D. G. Bonett and T. A. Wright, “Sample size requirements for estimating
pearson, Kendall and Spearman correlations,” Psychometrika, vol. 65,
no. 1, pp. 23–28, 2000.

[74] R. F. Woolson, “Wilcoxon signed-rank test,” Wiley Encyclopedia of
Clinical Trials. Hoboken, NJ, USA: Wiley, 2007, pp. 1–3.

[75] Z. Aghababaeyan, M. Abdellatif, L. Briand, R. S., and M. Bagherzadeh,
DNN testing replication package, 2022. [Online]. Available: https://
github.com/zohreh-aaa/DNN-Testing

[76] M. Biagiola, F. Ricca, and P. Tonella, “Search based path and input data
generation for web application testing,” in Proc. Int. Symp. Search Based
Softw. Eng., Springer, 2017, pp. 18–32.

[77] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empirical
study of fault localization families and their combinations,” IEEE Trans.
Softw. Eng., vol. 47, no. 2, pp. 332–347, Feb. 2021.

[78] S. Pearson et al., “Evaluating and improving fault localization,” in Proc.
IEEE/ACM 39th Int. Conf. Softw. Eng., 2017, pp. 609–620.

http://www.cs.toronto.edu/kriz/cifar.html
http://ufldl.stanford.edu/housenumbers/nips2011housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011housenumbers.pdf
https://doi.org/10.1145/3550271
https://github.com/zohreh-aaa/DNN-Testing
https://github.com/zohreh-aaa/DNN-Testing

3204 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 5, MAY 2023

[79] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The DStar method for
effective software fault localization,” IEEE Trans. Rel., vol. 63, no. 1,
pp. 290–308, Mar. 2014.

[80] M. P. Wand and M. C. Jones, Kernel Smoothing. Boca Raton, FL, USA:
CRC, 1994.

[81] T. Byun, S. Rayadurgam, and M. P. Heimdahl, “Black-box testing of deep
neural networks,” in Proc. IEEE 32nd Int. Symp. Softw. Rel. Eng., 2021,
pp. 309–320.

[82] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[83] Y. Feng, Q. Shi, X. Gao, J. Wan, C. Fang, and Z. Chen, “DeepGini:
Prioritizing massive tests to enhance the robustness of deep neural
networks,” in Proc. 29th ACM SIGSOFT Int. Symp. Softw. Testing Anal.,
2020, pp. 177–188.

[84] X. Gao, Y. Feng, Y. Yin, Z. Liu, Z. Chen, and B. Xu, “Adaptive test
selection for deep neural networks,” in Proc. IEEE/ACM 44th Int. Conf.
Softw. Eng., 2022, pp. 73–85.

[85] M. A. Langford and B. H. Cheng, “Enki: A diversity-driven approach
to test and train robust learning-enabled systems,” ACM Trans. Auton.
Adaptive Syst., vol. 15, no. 2, pp. 1–32, 2021.

[86] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing,
Berlin, Germany: Springer, 2003.

[87] Y. Tian, K. Pei, S. Jana, and B. Ray, “DeepTest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proc. 40th Int.
Conf. Softw. Eng., ser. ICSE ’18. New York, NY, USA: Association
for Computing Machinery, 2018, pp. 303–314. [Online]. Available:
https://doi.org/10.1145/3180155.3180220

[88] E. G. Cartaxo, P. D. Machado, and F. G. O. Neto, “On the use of a
similarity function for test case selection in the context of model-based
testing,” Softw. Testing Verification Rel., vol. 21, no. 2, pp. 75–100, 2011.

[89] F. G. de Oliveira Neto, A. Ahmad, O. Leifler, K. Sandahl, and E. Enoiu,
“Improving continuous integration with similarity-based test case selec-
tion,” in Proc. 13th Int. Workshop Automat. Softw. Test, 2018, pp. 39–45.

[90] H. Hemmati, A. Arcuri, and L. Briand, “Achieving scalable model-based
testing through test case diversity,” ACM Trans. Softw. Eng. Methodol.,
vol. 22, no. 1, pp. 1–42, 2013.

[91] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Trans.
Neural Netw., vol. 16, no. 3, pp. 645–678, May 2005.

[92] S. Droste, T. Jansen, and I. Wegener, “On the analysis of the (1+ 1) evolu-
tionary algorithm,” Theor. Comput. Sci., vol. 276, no. 1/2, pp. 51–81, 2002.

[93] A. Mesbah, A. Van Deursen, and D. Roest, “Invariant-based automatic
testing of modern web applications,” IEEE Trans. Softw. Eng., vol. 38,
no. 1, pp. 35–53, Jan./Feb. 2012.

Zohreh Aghababaeyan is currently working toward
the PhD degree with the School of EECS, the Uni-
versity of Ottawa and a member of the Nanda Lab.
She gained practical experience during her intern-
ship with the research and development laboratory in
General Motors, USA. She received several academic
awards, including a PhD admission scholarship, an
international doctoral scholarship from University of
Ottawa, and an honourable award of direct admis-
sion to the master’s program in computer science
at Amirkabir university. She was also ranked the

third-best student among all computer science students at Amirkabir University
in 2017. Her research interests include testing and verification of machine
learning-based systems and empirical software engineering.

Manel Abdellatif received the bachelor’s degree
from École Nationale d’Ingénieurs de Tunis, in 2013
and the master’s degree in information technology
from École de Technologie Supérieure, in 2016, and
the PhD in computer science from Polytechnique
Montréal, Canada, in 2021. She is a faculty member
with École de Technologie Supérieure, Canada. She
was a postdoctoral fellow with the School of EECS,
University of Ottawa (2022). She served as a program
committee member and a reviewer in several journals
and conferences. Her research interests include test-

ing machine learning-based systems, service computing, and empirical software
engineering.

Lionel Briand (Fellow, IEEE) is professor of soft-
ware engineering and has shared appointments be-
tween (1) School of Electrical Engineering and Com-
puter Science, University of Ottawa, Canada and (2)
The SnT centre for Security, Reliability, and Trust,
University of Luxembourg. He is the head of the
SVV department with the SnT Centre and a Canada
research chair in Intelligent Software Dependabil-
ity and Compliance (Tier 1). He has conducted ap-
plied research in collaboration with industry for more
than 25 years, including projects in the automotive,

aerospace, manufacturing, financial, and energy domains. He is a fellow of ACM.
He was also granted the IEEE Computer Society Harlan Mills award (2012),
the IEEE Reliability Society Engineer-of-the-year award (2013), and the ACM
SIGSOFT Outstanding Research Award (2022) for his work on software testing
and verification. For more information, please visit: http://www.lbriand.info.

Ramesh S has been with General Motors Research
and Development (R&D) for more than 15 years
conducting and leading advanced research projects in
the areas of model-based development of embedded
systems and software, rigorous verification and vali-
dation and more recently AI/ML based systems. Prior
to joining GM R&D, he was a full professor with the
department of Computer Science and Engineering,
Indian Institute of Technology Bombay, India where
he co-founded a Centre for Formal Design and Veri-
fication of Software. He has published more than 125

research papers in International Journals and Conferences and author many
patents in the areas of modeling, analysis and verification of embedded systems
and software. He has been on the program committees of several international
research conferences and on the editorial boards of journals. He is leading an
USCAR committee and serving as an expert in ISO and SAE committees for
developing guidelines for AI/ML based systems.

Mojtaba Bagherzadeh received the PhD degree in
computer science from Queen’s University, Canada,
in 2019. He is a highly experienced Software Engi-
neer with a proven track record of success in both
industry and academia. He currently works as a soft-
ware engineer with Cisco Systems and has previously
worked as a software developer with IBM and a
startup company. He has contributed to this research
during his tenure as a postdoctoral researcher with the
University of Ottawa. His research interests include
testing and debugging of machine learning-based

systems, model-driven engineering, software testing, and empirical software
engineering.

https://doi.org/10.1145/3180155.3180220
http://www.lbriand.info

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

