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Abstract
Recurrent neural networks (RNNs) have gained significant at-
tention due to their effectiveness in modeling sequential data,
such as text and voice signal. However, due to the complex
data dependencies and limited parallelism, current inference
libraries for RNNs on GPUs produce either high latency or
poor scalability, leading to inefficient resource utilization.
Consequently, companies like Microsoft and Facebook use
CPUs to serve RNN models.
This work demonstrates the root causes of the unsatis-

factory performance of existing implementations for RNN
inference on GPUs from several aspects, including poor data
reuse, low on-chip resource utilization, and high synchroniza-
tion overhead. We systematically address these issues and
develop a GPU-based RNN inference library, called GRNN,
that provides low latency, high throughput, and efficient re-
source utilization. GRNN minimizes global memory accesses
and synchronization overhead, as well as balancing on-chip
resource usage through novel data reorganization, thread
mapping, and performance modeling techniques. Evaluated
on extensive benchmarking and real-world applications, we
show that GRNN outperforms the state-of-the-art CPU in-
ference library by up to 17.5X and state-of-the-art GPU in-
ference libraries by up to 9X in terms of latency reduction.
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1 Introduction
Recurrent Neural Networks (RNNs) are a class of impor-
tant deep neural networks widely deployed in various ap-
plications, including text classification [25, 38], question an-
swering [31, 37], speech recognition [12, 16], and machine
translation [11, 26]. The key feature of such models is that
they carry information across the input sequence through
an internal state, preserving the inherent context and hence
providing higher modeling accuracy for sequential data. As
such, RNNs present both data reuse and complex data de-
pendencies through the repeated execution of the cellular
computation graph, demanding quite different optimization
techniques compared to other popular network classes like
Convolutional Neural networks (CNNs).
RNN deployment consists of two stages that have drasti-

cally different computational properties. During the training
stage, the RNN model is supplied with a training data set
and the weights of the model are iteratively trained through
the back-propagation algorithm [20]. To improve training ef-
ficiency, modern deep learning systems use large batch sizes,
which introduces sufficient data parallelism and enables ef-
ficient resource utilization. Once the model is trained, the
second stage is to serve the model to perform inference for
real requests. To meet Service-Level Agreements (SLAs), a
responsive inference engine can only batch several requests,
leading to limited data parallelism.
Taking into account the difference between training and

serving, companies like Facebook primarily use GPUs for
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training RNN models and CPUs for serving them [19]. No-
tably, a recent RNN inference library called DeepCPU shows
that optimized RNN inference on the CPU outperforms two
GPU-based implementations by more than 10X [40]. On the
one hand, ignoring GPUs for serving means a significant
resource waste, especially because many data centers are
already equipped with GPUs [7]. Furthermore, it is intuitive
that GPUs should be suitable for serving RNN models given
that the basic operators in such models, like matrix multipli-
cations are efficiently executed on GPUs. RNN models are
a large part of modern data center workloads, comprising
29% of Google’s workload on Tensor Processing Units as of
2017 [22].
Motivated by the availability and potential of GPUs for

serving RNN models, we characterize three state-of-the-art
GPU-based implementations of RNN inference, namely Ten-
sorFlow [6], cuDNN [10] and TensorRT [5]. We find that
TensorFlow’s GPU implementation has up to 90X higher
latency than its CPU implementation for multiple common
model sizes. Analysis of the source code shows that the GPU
implementation repeatedly loads the model weights many
times, causing both high latency and low throughput. Ten-
sorRT, despite supporting sophisticated optimizations for
the operators, has the same problem. CuDNN is the only
implementation that addresses the problem and yields better
latency than DeepCPU for most configurations. However, it
hardly scales to even modest batch sizes (e.g., 5) and wastes
the opportunity to take advantage of the GPU’s massive par-
allelism. Moreover, cuDNN often achieves lower hardware
efficiency, measured as the fraction of achieved throughput
over theoretical peak throughput, on the GPU thanDeepCPU
does on the CPU.

In this work, we address the following research question:
Can a GPU-based RNN inference library achieve low latency,
high throughput, and efficient resource utilization? Specif-
ically, the library should provide lower latency than the
state-of-the-art CPU implementation even when the model
or batch size is small (i.e., limited data prallelism). Moreover,
it should outperform all the existing GPU implementations
when there is an opportunity to use moderately large batch
sizes to improve throughput.
We present a GPU-based library, named GRNN, for serv-

ing RNN models to provide a definite answer to this ques-
tion. To minimize unnecessary global memory accesses and
increase data reuse, GRNN applies the persistent threads
technique [17, 34, 35, 42] to stash the model in the regis-
ter files and on-chip shared memory. Although some other
GPU-based implementations use the a similar technique,
GRNN stands out by systematically addressing three techni-
cal challenges. First, to reduce global synchronization over-
head, GRNN employs a novel output-based tiling technique
to perform only one global synchronization in each time
step while satisfying all the data dependencies between op-
erators. Second, to achieve high on-chip resource utilization

given GPU’s complex architecture, GRNN leverages a flexi-
ble thread-to-computation mapping strategy that can make
various trade-offs to balance hardware resource usage. Third,
to quickly find out the optimal implementation for a given
RNN model from a tremendous configuration space, GRNN
accurately ranks the performance of different configurations
and employs an efficient pruning process that introduces
negligible overhead.

GRNN 1 is written in CUDA [2] and supports standard in-
terfaces as cuDNN does. It can be easily integrated in existing
deep learning frameworks, such as TensorFlow, Caffe [21],
and PyTorch [28] for RNN serving. In our evaluation on
a wide spectrum of configurations for two most popular
RNN models (i.e., LSTM and GRU), GRNN outperforms the
state-of-the-art CPU and GPU implementations by up to
17.46X and 9.2X, respectively. GRNN provides up to 14.6X
lower latency for moderate batch sizes on two real-world
RNN models. On average, GRNN shows at least 24% better
utilization than any of the optimized implementations.

In summary, this paper makes the following major contri-
butions: 1) Characterize existing GPU implementations to
understand their limitations for RNN inference; 2) Develop
novel flexible tiling and mapping techniques to efficiently
utilize the GPU; 3) Propose an accurate comparative model to
search for optimal configurations with negligible overhead;
4) Implement a GPU-based library called GRNN that inte-
grate all the proposed techniques to serve RNN models; 5)
Evaluate GRNN on benchmarks and real-world applications
and demonstrate GRNN’s lower latency, higher throughput,
and more efficient hardware utilization over state-of-the-art
implementations on both CPUs and GPUs.

2 Background
2.1 Computational Properties of RNN Inference
RNNs have recursive cells that carry over a hidden state
to maintain context information. In each iteration, the cell
takes one element of the input sequence (e.g., a word in
document classification application or a waveform sample
from an audio recording) and the previous hidden state as
inputs, updates the hidden state, and generates an output.
Thus, the length of the input determines howmany times the
cell is executed. RNNs carry information across elements in
the same input sequence, presenting both a challenge (data
dependencies) and an opportunity (data reuse) for non-trivial
performance optimization.
This paper focuses on two popular variations of RNNs,

LSTM and GRU, to illustrate the computational properties.
GRU and LSTM have 3 and 4 gates, respectively. Figure 1
shows the operators of one LSTM cell and their dependencies.
To produce one output (ot ) in iteration t , the cell takes an
input element (xt ) and the hidden state (ht ), and executes 8
independent matrix multiplications, two multiplications per
1https://github.com/cmikeh2/grnn
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Figure 1. Dependency structure of an LSTM cell. Element-
wise operations represented by circles are simplified to be
single nodes. Green rectangles are time independent matrix
multiplications, whereas the red ones are time dependent.

gate. Since the matrix multiplications dominate execution
time, for simplicity we use one element-wise operator shown
as E to represent the 5 element-wise operations in each itera-
tion. GRU’s operators have more complicated dependencies,
the details of which will be discussed later in Section 5.
As shown in prior work [40], we can classify the matrix

multiplications in two groups. The first group, represented by
top rectangles in the gates withU weight matrices, depend
solely on the input sequence, while the second group, con-
taining all the other matrix multiplications withW weight
matrices, have recursive dependence. We can then partition
the computation into two phases. In phase one, we concate-
nate the elements of the input sequence as one matrix and
precompute the sequence-independent matrix multiplica-
tions for each iteration. In the second phase, we execute
the second group of multiplications as well as the remain-
ing operators to produce the final output. The first phase
achieves high throughput as a large matrix multiplication.
Consequently, the second phase becomes the bottleneck for
RNN inference.

2.2 GPU Architecture and Optimization
Considerations

As shown in Figure 2, a GPU consists of tens of streaming
multi-processors (SMs), a shared L2 cache, the interconnect
network, and the off-chip global memory. In the newest
Nvidia Volta architecture, each SM is partitioned into shared
memory, L1 cache, and 4 scheduling partitions, each capable
of independently executing a number of threads. A func-
tion running on the GPU is called a kernel. The GPU driver
launches a group of thread blocks, all executing the same
kernel function. A hardware scheduler dispatches the thread
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Figure 2. A hierarchical view of Nvidia GPU architecture.

blocks to the SMs. Within each SM, the threads of the res-
ident thread blocks are organized into warps (32 threads
on Nvidia GPUs), which are further scheduled by the warp
scheduler to run on one of the scheduling partition.

GPU threads have different kinds of restrictions for inter-
thread communication, depending on how closely in the
hierarchy the threads are related. Threads in different thread
blocks can communicate with each other through global
memory, different warps in the same thread block can com-
municate through shared memory, and threads in the same
warp can communicate through the register file. Since higher-
level memory of the hierarchy provides dramatically more
bandwidth and lower latency, it is critical to maximize data
reuse in registers and shared memory.

3 Demand of Low-Latency and Scalable
RNN Inference

In this section, we investigate open-sourced and proprietary
RNN inference libraries to understand their performance lim-
itations. We then identify the opportunities and challenges
for building a low-latency, scalable, GPU-based inference
engine.

3.1 Poor performance of Open-Sourced GPU-Based
Inference Engines

To understand the RNN inference performance of state-of-
the-art deep learning systems, we experiment with Tensor-
Flow (v1.10) on a machine with an Intel CPU and an Nvidia
GPU (details in Section 8). We run both CPU and GPU-based
implementations on a LSTM cell, with 64, 256, and 1024 for
the input and hidden sizes. Surprisingly we find that the
GPU implementation has 6.3X worse latency than the CPU
implementation, despite the 8.1X higher theoretical floating
point throughput for the GPU.
TensorFlow’s GPU implementation fuses the eight inde-

pendent matrix multiplications of LSTM into a single one
to provide better throughput by increasing the amount of
work done by a kernel invocation. This also automatically en-
sures that all gate dependencies are prepared simultaneously.
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Figure 3. Latency comparisons of TensorFlow CPU and 3
proprietary libraries for RNN Inference.

However, despite following the general guidelines of optimiz-
ing GPU performance (i.e., increasing data parallelism), the
implementation suffers from inefficient resource utilization
due to two limitations. L1 - Repeated data loading. On
each iteration, the entire weight matrix must be loaded from
global memory, or in best case scenario the L2 cache. L2 -
Large kernel launch overhead. TensorFlow invokes one
or more kernel functions for each iteration, depending on
the degree of operation fusion. The implicit barrier between
kernel invocations satisfies the data dependencies but incurs
non-trivial overhead.

3.2 Poor Scalability of Proprietary Libraries
We study three popular proprietary libraries: DeepCPU [40],
TensorRT [5], and cuDNN [10] (default RNN API). DeepCPU
is a highly optimized RNN inference library for CPUs widely
deployed in Microsoft’s production systems. TensorRT and
cuDNN are Nvidia’s libraries to accelerate inference and
training, respectively. Figure 3 demonstrates that all the pro-
prietary libraries outperform TensorFlow’s CPU implementa-
tions. Note that since DeepCPU is not publicly available, we
use the performance numbers reported in the original paper
on a similar CPU.We observe that while cuDNN outperforms
TensorRT for 5 out of the 9 configurations, it experiences
poor scalability. Increasing the batch size from 1 to 20 leads
to on average 18.4X latency degradation, which indicates
that the implementation does not well reuse shared weight
data across the batched inputs.

Interestingly, we observe that DeepCPU outperforms cuDNN
for the smallest model. For larger models, cuDNN produces
superior performance to DeepCPU due to increased data
parallelism, indicating DeepCPU’s limited scaling to large
model sizes. However, the cuDNN’s better performance may
simply come from the significantly larger throughput of the
GPU instead of a more efficient implementation. For exam-
ple, when the hidden size is 256 and batch size 10, DeepCPU
reaches 14% of theoretical floating point throughput, while
cuDNN only achieves 6.26% of the theoretical throughput.
To summarize, we find that all the proprietary libraries

have a serious limitation: L3 - Poor scalability in either
model size or batch size.While the DeepCPU’s poor scala-
bility comes from the moderate theoretical throughput of the

CPU, the GPU libraries poor scalability roots in the inefficient
implementations that cause low floating point throughput.

3.3 Opportunities and Challenges
Although the small dimensionality of RNNs leads to lim-
ited data parallelism, it also suggests that the total working
set is small. For example, an LSTM model with hidden di-
mension of 1024 needs 1024 × 1024 × 4 (number of gates) ×
4 (number of bytes of a weight) = 16M bytes for the weight
data. The Nvidia Volta GPU has in aggregate 20MB register
file space and 10MB shared memory, which is large enough
to fit the model. However, despite the reuse of the weights
and the state across time steps, they cannot stay in the on-
chip memory across kernel invocations. Fortunately, the
persistent threads based approach [17] well addresses the
problem by persisting the weights in register file and shared
memory across time steps (addressing L1). Specifically, it
launches just enough threads to saturate the GPU, which at
the beginning load the weights in the register file, perform
the operators, and synchronize with each other at the end of
each time step. As such, we just launch one kernel to perform
computation for the whole sequence (addressing L2). Once
the weight data can be reused in the register file, the imple-
mentation has potential to improve scalability (addressing
L3).

While the sufficient on-chip memory resource and the per-
sistent threads based approach provide great opportunities
to substantially improve the performance of RNN inference,
an efficient implementation faces three challenges.

C1. As prior work [30, 36] shows, global synchronization
of persistent threads has non-trivial overhead. However, ba-
sic implementationsmay incur toomany synchronizations to
handle the data dependencies between operators, canceling
the benefits of the persistent threads based approach.

C2. Once operators or partial operators are assigned to
persistent thread blocks, mapping the many threads to opera-
tors for maximum efficiency remains a complicated question.
The problem is exacerbated by the various types of hardware
resources each SM has, such as shared memory, registers,
ALUs, warp schedulers, and so on.

C3. The numerous mapping configurations that exist at
the global level (distributing operators to SMs) and the SM
level (mapping threads to computation) create a tremendous
kernel configuration space to navigate. Since optimization
goals are oftentimes conflicting (e.g., improving data reuse
may incur computation overhead), the configurations repre-
sent various trade-offs for resource utilization. Exhaustive
search for the optimal configuration incurs prohibitive over-
head.

4 Overview of GRNN
GRNN is a GPU-based library to serve RNN models with low
latency, high throughput, and efficient resource utilization
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Figure 4. Overview of GRNN’s workflow for a time step.

through a combination of tiling, mapping, and modeling
techniques. It supports standard interfaces as cuDNN RNN
family of operators such as LSTMs and GRUs. It can be easily
integrated into existing DL frameworks such as Tensorflow,
Caffe [21] and PyTorch [28] for RNN serving.

GRNN builds on top of the persistent threads technique. At
the beginning of the inference, it tiles the output, and loads
the corresponding weight data for each tile to the register
files and persists them acrossmultiple steps of the entire RNN
computation. As shown in Figure 4, GRNN then performs
each time step as follows. First, GRNN replicates the global
hidden state H in the shared memory of each SM (❶). Next,
GRNN maps the threads to the weight matrix and the state
(❷) and executes highly optimized operators to produce an
updated local copy of H (❸). Finally, GRNN synchronizes all
SMs and merges the local slices ofH into the global copy (❹).
Note that when the model is too large to fit in the register file,
GRNN’s implementation defaults to the traditional approach
(i.e., fusing independent matrix multiplications) to perform
inference. In this case, the amount of data parallelism is
sufficient to exploit the GPU’s abundant compute resources.
GRNN addresses the three challenges mentioned in Sec-

tion 3 to perform efficient inference for RNNs. To avoid global
synchronization overhead (C1), GRNN carefully organizes
the data layout of the model and employs output-based tiling.
As such, GRNN only requires one global synchronization for
each time step, though the numerous operators have complex
data dependencies. The number of synchronizations is opti-
mal because the SMs have to update the global copy of the
hidden state through a synchronization to move to the next
time step. In addition, GRNN includes a highly optimized
implementation of global synchronization tailored for the
unique features of RNNs. To maximize on-chip resource uti-
lization (C2), GRNN implements a flexible mapping strategy,
which balances register usage, locality of shared memory
accesses, and the critical path of the numerical operators.
To navigate the tremendous kernel configuration space and
select the optimal kernel configuration (C3), GRNN lever-
ages an accurate performance model to predict the top K
configurations with negligible overhead, where K is tunable.
GRNN then generates and compilesK kernels corresponding
to the predicted configurations. After a calibration process
to run all the K kernels, the one with the best performance

is returned for serving real requests. We next explain each
of these techniques in detail.

5 Tiling-Based Persistent Kernel
In this section, we first describe GRNN’s strategy to tile the
output matrix and the computation across different SMs to
reduce synchronization overhead, applicable to both LSTM
and GRU. We then present the special considerations for
GRU and its additional dependencies.

The persistent threads based approach provides a mecha-
nism to persist data in register files, but it does not imply how
to partition the computation for optimal performance. Yet
different partitioning strategies have dramatically different
performance characteristics and results. A basic persitent
approach assigns entire operators to SMs. Prior work [4]
applies this strategy to accelerate a model to generate sound
waveforms and produces state-of-the-art performance. How-
ever, such a strategy is inappropriate for RNNs, because the
weight matrix of a single matrix multiplication is often too
large to fit into the register file of a single SM. For example,
one of the weight matrices for an RNN cell with hidden size
128—a relatively small cell—requires 256 KB of memory. This
already consumes the entirety of the register file on an SM
without including other necessary execution data, such as
indexing variables. Therefore, partitioning operators across
SMs is essential for non-trivial models.
Figure 5(a) demonstrates a more advanced approach to

using persistent threads. Given two independent matrix mul-
tiplications in each timestep and a GPU of 4 SMs, this ap-
proach uses two SMs to perform each multiplication. It splits
the weight matrix into halves, each being persisted in one
SM. The aggregate register files successfully address the ca-
pacity problem, but the approach has to perform a global syn-
chronization after the matrix multiplications for the output
vectors to be ready for the following element-wise operators.
After performing the element-wise operators, this approach
still needs another global synchronization to produce one
single state vector for the next timestep. For LSTM, the ap-
proach incurs 8 more synchronizations other than the final
synchronization due to the 8 independent matrix multiplica-
tions. As this approach initializes tiling by partitioning the
inputs, we refer to it as input-based tiling.
To minimize synchronization overhead, GRNN instead

tiles the output between SMs. Working backwards through
the dependencies from the output tile, GRNN determines
which weights from each of the weight matrices will be re-
quired to produce the assigned output tile. These weights
are then co-located on the same SM, enabling the SM to per-
form all element-wise operations and activations without
any inter-SM communication within a timestep until the last
global synchronization. As the example shows in Figure 5(b),
the output is split vertically into 4 equal-sized tiles, each of
which should be produced by a distinct SM. Consequently,
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Critically, the h gate is dependent on the output of the r gate
and the final hidden state requires direct outputs from the h
and z gates.

each SM persists a quarter of each weight matrix and per-
form a sequence of operations. This technique eliminates
the synchronizations in the of the input-based tiling method
after each matrix multiplication, and minimizes the number
of global synchronizations.
Figure 5(b) shows just one way to tile the output, while

GRNN supports arbitrary tile sizes. For example, assuming
that a whole weight matrix can fit into the register file, GRNN
can select a tile size of 2 × h as illustrated in Figure 5(c).
Because each tile on the top shares the column indices with
the tile below it, every matrix is duplicated in the register
files, increasing register pressure. However, the benefit is that
the state vector, once loaded from shared memory, is reused
h times, 2 times more compared to the previous method due
to the doubled width of the persisted weight matrix. Flexible
tiling adapts GRNN to different workload and hardware.

5.1 Special Considerations for GRU
The GRU cell, unlike LSTM, has dependent matrix multi-
plications. As Figure 6 shows, a GRU cell has 3 gates, each
containing 2 multiplications. Since the h gate depends on
the r gate, the time-dependent multiplication (the bottom
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Figure 7. Synchronization strategies for GRU Cells

multiplication) in the h gate must wait till the multiplica-
tions in the r gate finish. To ease the discussion, we focus
on these two dependent multiplications and explain GRNN’s
technique to minimize synchronization overhead.
Figure 7(a) illustrates how a basic method deals with the

dependency. Each of the matrix multiplications is tiled by
vertically partitioning the weigh matrices. Since the second
matrix multiplication needs the full output of the first ma-
trix multiplication, this implementation has to perform two
global synchronizations, each after an multiplication. To
eliminate one synchronization, GRNN partitions the weight
matrix of the first multiplication horizontally and adds a
global synchronization after it to produce the output vector
by reducing the partial sums as shown in Figure 7(b). Hence,
the second multiplication can be performed with the full in-
put vector and vertically partitioned weight matrix. Note that
then the output vectors are not merged but directly passed
to the first multiplication in the next timestep. Although
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the one-synchronization method reduces synchronization
overhead, it incurs additional computation overhead for the
reduction. Due to these trade-offs, selecting between them
will be addressed on a model-by-model basis in Section 7.

6 Flexible Thread Mapping to Balance SM
Resource Usage

Once GRNN assigns an output tile to a thread block, the block
should perform a series of operators on the persistent weight
data in the register file and the state vector in shared memory.
There exist a variety of ways or configurations to map the
threads to the computation, especially because a thread block
size is non-trivial, typically over a hundred. The mapping
configurations have drastically different degrees of impact
on data reuse, critical path of the computation, and latency
hiding. The goal of GRNN is to develop a flexible mapping
strategy, which enables various mapping configurations that
contains the optimal and have clear trade-offs for modeling.

Since matrix multiplications dominate execution time, we
focus on them to explain the key techniques of GRNN. To
further simplify the discussion, we assume the thread block
only needs to compute one matrix multiplication. Then a
mapping configuration determines which threads should
work together to produce which output elements in the re-
sults matrix. As mentioned in Section 2, the thread block has
a hierarchical organization of threads. A thread block con-
sists of a number of warps, each of which further contains
a constant number of threads. GRNN leverages this 2-level
organization and implements a 2-level thread mapping. First,
GRNN partitions the output matrix and assigns each par-
tition to a warp. Second, GRNN assigns the threads inside
each warp to specific output elements.

For the first-level mapping, GRNN simply tiles the output
matrix vertically and uses each warp to produce a distinct
equal-sized tile. Hence, a warp performs a smaller matrix
multiplication that has three steps. The first step loads the
state vector into the register file. GRNN should strive to mini-
mize the number of loads of the state vector. The second step
computes the partial sums, because the number of threads
is typically larger than the number of output elements. Fi-
nally, GRNN reduce the partial sums to produce the final
outputs. For each output element, GRNN should try to mini-
mize the number of partial sums for reduced computation
time. We next show two contrasting mapping configurations
to optimize step 1 and step 2, respectively. We then present
GRNN’s flexible mapping strategy to cover a spectrum of
configurations for the best trade-off.

6.1 Mapping for Minimized Shared Memory
Accesses

This mapping configuration uses the whole warp to pro-
duce the output elements sequentially. All the threads run
in parallel when producing each element. Figure 8 (a) shows

an example, which assumes that the vector length is 4, the
weight matrix’s dimensions are 8 × 4, and the warp has
8 threads. The numbers in the weight matrix demonstrate
the IDs of the threads, whose registers the corresponding
weights persist on. Since all the weights in the same row
belong to the same thread, that thread accesses the same ele-
ment in the state vector to perform the dot produces. Hence,
this mapping configuration minimizes shared memory ac-
cesses. The downside, however, is that the warp produces 8
partial sums on the different threads for the reduction step,
incuring non-trivial computation overhead.

6.2 Mapping for Minimized Reduction Overhead
This mapping configuration addresses the large reduction
overhead by assigning as few threads as possible to pro-
duce an output elements. Specifically, given N threads and
K output elements, a work group of N /K threads are mapped
to each output element without wasting any thread. In the
example shown in Figure 8 (b), 2 threads for each output
element produce 2 partial sums, substantially reducing re-
duction overhead compared to the previous mapping con-
figuration. However, a thread now persists 4 weights in the
same column, indicating that it has to access 4 different el-
ements in the state vector. In other words, the state vector
has to be loaded 4 times, without any reuse.

6.3 Fully Configurable Mapping
The two aforementioned mapping configurations represent
two extreme ways to map threads to computation. Which
produces better performance depends on a number of factors,
including shared memory access latency/bandwidth, warp
size, matrix multiplication dimensions, and so on. It is not
surprising if a compromised mapping configuration achieves
superior performance to both of them due to a better trade-
off between communication and computation overhead. For
instance, Figure 8 (c) shows another configuration that uses
a work group of 4 threads to produce 2 output elements
sequentially. It demands 2 loads of the state vector (better
than the first mapping configuration) and produces 4 partial
sums (better than the second mapping configuration), which
may turn out to be the optimal for final performance. This
insight motivates GRNN to implement a fully configurable
mapping strategy. GRNN introduces the concept of work
groups of configurable sizes, each producing a subset of the
output elements sequentially.
In practice, GRNN deals with various types of operators

andmultiple dominantmatrixmultiplications for each timestep.
We find the fully configurable mapping strategy a powerful
idea which can be generally applied. Particularly, though the
basic idea remains the same, we apply its two variations to
GRU because of the more complex dependencies compared
to LSTM. We omit the details due to the space limitations.
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Figure 8. Three thread-to-data mapping strategies.
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Figure 9. Overview of the performance model.

7 Performance Modeling and
Configuration Selection

The previous two sections describe GRNN’s capability of
arbitrarily tiling the outputs to divide work among SMs and
flexibly map threads to computation to balance resource uti-
lization. These techniques introduce 4 parameters, which
compose a tremendous configuration space. For example, for
a LSTM model of hidden size 256 and batch size 20, the total
number of configurations in the space is over 100,000. Ex-
haustive search is prohibitive, especially because the kernel
is templated to enable unrolling, so running a configuration
requiring a distinct compilation.
To quickly find high-performing configurations, GRNN

constructs a performance model using a hybrid approach,
combining analytical models with light-weighted measure-
ments and benchmarking results. Instead of predicting ex-
ecution time, the model aims at ranking the performance
of all the configurations. We next describe the performance
model.

7.1 Performance Model
Figure 9 shows a top-down view of the performance model.
We estimate the cost of a configuration for a single timestep
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• Number of Warp Schedulers (NS)
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• Tile Width (TW); Tile Height (TH)
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Figure 10. Performance Model.

according to two components: communication cost and com-
putation cost. The communication cost arises from two sources:
state matrix movement and synchronization. The state ma-
trix must be loaded from global memory to shared mem-
ory at the beginning of the timestep and stored back at the
end. We develop an analytical model to estimate the cost of
that movement in Section 7.1.2. The cost of global synchro-
nization can be easily estimated by a rule-based model. We
break down the computation cost into partial dot product
cost and reduction cost because GRNN’s mapping strategy
(explained in Section 6) divides the matrix multiplication
into two phases: computation of partial sums and reduction.
It is difficult to build accurate analytical models for these
two costs due to the various optimizations applied by the
compiler and the architecture. We address this problem by
designing micro-benchmarks to facilitate modeling as ex-
plained in Section 7.1.3. The performance model sums up
the 4 costs shown at the bottom of Figure 9 to produce the
total cost, as their execution cannot be overlapped due to
data dependencies.

8



7.1.1 Model Parameters
As Figure 10 shows, the performance model uses five cate-
gories of parameters. The parameters in the first two cate-
gories (model inputs and hardware parameters) are straight-
forward to obtain. The third category contains the tunable
parameters introduced by GRNN’s tiling and mapping tech-
niques. The fourth category has parameters measured by
micro benchmarks. The last category contains all the derived
parameters.
During each timestep, each SM reads in the hidden state

(left-hand side matrix for the matrix multiplication). As Equa-
tion (1) shows, its height equals tile_heiдht of the output tile,
its width the same as hidden size. Since each SM processes
a single output tile, Equation (2) computes the number of
active SMs as the number of tiles. From these two equations,
Equation (3) determines the total amount of data loaded from
the global memory to shared memory. Critically this demon-
strates that increasing tile width decreases total memory
reads proportionally, but increasing the tile height has no
effect.

The thread block size is the product of the number of work
groups and the work group size, which is used to compute
the register pressure for each SM (Equation 5) and number
warps assigned to each warp scheduler (Equation (6)). The
register pressure metric is not used to model performance,
but helps prune configurations whose register pressure is
larger than the capacity of the register file. The sub-tile width
computed by Equation (7), together with the work group size,
determines how many partial dot products are produced (i.e.,
reduction width) as shown in Equation (8). Finally, Equation
(9) computes the number of Fused Multiply-Adds (FMAs)
each thread performs named sequential length.

7.1.2 Communication Cost
Global data loading cost. The global data loading cost of a
configuration determines the effective latency of loading the
hidden state. We assume that for all model configurations
all memory requests are able to hit L2 cache—the L2 cache
is more than a magnitude larger than the maximum hidden
state footprint and prefetching helps to ensure data resides
in L2. Pairs of SMs share a bus to access inter-SM resources,
including the global L2 cache. So if the number of thread
blocks (i.e., active SMs) crosses half of the SMs, the cost is
doubled due to congestion on the shared bus. Equation (10)
captures this effect and normalizes the cost to the number
of FMAs.

Synchronization cost. While the synchronization cost
is high from an absolute standpoint, our implementation
has practically no marginal cost associated with it. As such,
for model configurations, such as LSTM, where all potential
configurations have the same number of synchronizations
per timestep, the synchronization cost is not included in the

model. Otherwise (e.g., the GRU implementation with 2 syn-
chronizations per timestep), the cost of the synchronization
is modeled as two round trip accesses to L2 cache, which
holds the global variables for the synchronizations.

7.1.3 Computation Cost
Partial dot produce cost.Modeling the computation of par-
tial dot products analytically is difficult due to two reasons.
First, the compiler and architecture implement significant op-
timizations like instruction re-ordering and multi-threading
to hide latency under low utilization conditions. Second,
when the hardware resources are saturated, these optimiza-
tions tend to have little or no benefits. For example, when
we increase the number of warps per warp scheduler from 1
to 2, multi-threading helps the concurrent warps hide each
other’s memory access latency, producing significant benefit.
But when the number of warps assigned to that scheduler is
already large, further increasing its load does not increase
throughput. The same rationale also applies to data reuse,
which beyond some point do not improve throughput due
to the saturated data path.

Based on this insight, we design a micro-benchmark to run
a number of FMAs with varied numbers of warps per sched-
uler and the degrees of data reuse (controlled by sub-tile
size). We use the benchmarking results to fit two functions
S1 and S2 to predict speedups for increased number of warps
per scheduler and increased sub-tile sizes, respectively, over
a baseline with one warp per scheduler and no data reuse.
Note that we choose to not include both metrics in one sin-
gle function to reduce benchmarking overhead (linear vs
quadratic cost). Given the tile height (the number of output
elements a thread needs to work on) and sequential length
(the number of FMAs to perform for each output element),
the baseline cost in terms of the number of FMAs is given by
Equation (11). We then estimate the final cost by dividing the
baseline cost by the product of the two predicted speedups.

Reduction cost. The reduction cost is also difficult to
model analytically due to similar reasons as for the partial
dot product cost. Fortunately, since all the input data for
this phase are in the register files, we only need to fit one
speedup function (S3) for the number of warps per scheduler
metric. To estimate the cost of the baseline, we assume a
warp scheduler is only assigned one warp. The number of
reductions is given by the product of sub-tile width and tile
height. To normalize the reduction cost to FMAs, we mea-
sure the latency of a single shuffle operation to implement
reduction, which is as long as FPS (7 for the Nvidia Volta
architecture) FMAs. Equation 13 shows the formula to com-
pute the baseline cost in terms of FMAs, and Equation 14
applies the speedup function (S3) to take into account the
benefit of having concurrent warps.
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Model Parameters LSTM GRU
Hidden Size Batch Size GRNN Top-5 cuDNN Traditional cuDNN Persistent DeepCPU GRNN Top-5 DeepCPU

64 1 0.2 0.96 0.19 0.31 0.18 0.7
64 10 0.23 1.79 1.14 1.1 0.19 1.1
64 20 0.24 1.8 2.24 1.5 0.2 1.5
256 1 0.3 1.1 0.21 0.74 0.28 0.9
256 10 0.38 1.89 1.28 4.4 0.32 3.7
256 20 0.49 1.98 2.54 6.4 0.43 5.4
1024 1 0.63 4.43 1.22 11 0.68 8.4
1024 10 4.3 6.1 9.07 42 3.16 36
1024 20 8.01 8.51 18.42 68 6.32 60

Table 1. Execution latencies for LSTM RNNs, measured in milliseconds. All configurations have sequence length 100.

7.2 Configuration Selection
GRNN implements the following procedure to select a high-
performing configuration. Starting from a full set of possible
configurations, GRNN first removes the configurations that
use more registers than the SMs can provide. GRNN next
applies the performance model to rank all the remaining
configurations and selects the topK configurations, whereK
is a small positive integer specified by the user. GRNN finally
compiles and runs each of these configurations, and uses the
fastest configuration to serve real requests. The procedure
effectively reduces the number of configurations to bench-
mark from tens of thousands to a small constant, usually less
than 10. Given a model of hidden size 256, this translates to 4
orders of magnitude improvement of the cost. Thanks to the
accurate performance model, when K is 1, the selected con-
figuration achieves 96.7% of the optimal throughput. When
K is 5, the 98.0% of optimal throughput is achieved.

8 Evaluation
In this section, we evaluate GRNN against state-of-the-art
implementations on a wide spectrum of benchmark config-
urations and two real-world models. Our evaluation shows
that GRNN outperforms the other implementations in terms
of latency, scalability, and achieved throughput. The high-
lights of the results are as follows:

• GRNN always outperforms the state-of-the-art CPU
implementation even if the model and batch sizes
are both small, with a maximum latency reduction of
94%. GRNN scales up to 7.4X better than state-of-the-
art GPU implementations while producing the lowest
latency for most of the configurations. On average,
GRNN improves resource utilization over all the other
implementations.

• GRNN’s performance model is highly accurate. Its
Top-1 and Top-5 configuration performs only 1.03X
and 1.02X worse than the optimal configuration found
through exhaustive search.

• For end-to-end inference, GRNN achieves up to 14.6X
speedup over state-of-the-art GPU implementations

for two real-world models with non-trivial architec-
tures.

8.1 Experimental Setup
Machine environment. GPU runtimes are benchmarked
on an Nvidia Titan V system with a Xeon E3-1286 v3 host
processor paired with 32 GB of RAM and running Ubuntu
16.04. The Titan V has 80 SMs and a total of 5120 FP32 cores
alongside 12 GB of HBM2 memory. The theoretical peak
throughput of the Titan V is 13.67 TFLOPs. The DeepCPU
configurations are from a dual socket E5-2650 v4 system,
each socket having 12 cores at 2.2 GHz.

Comparison systems. While numerous deep learning
environments exist, we chooseDeepCPU, and cuDNN (v7.2)’s
traditional and persistent threads based implementations.
DeepCPU is the highest performing CPU implementation
with public data and it easily outperforms the CPU imple-
mentations of popular frameworks such as Caffe, CNTK,
and Tensorflow. cuDNN’s heavily optimized GPU implemen-
tations are considered state of the art for the GPU. Both
the traditional (non-persistent) and persistent versions are
considered because cuDNN does not provide extensive guid-
ance on which implementation to use within a deep learn-
ing framework and each has a different latency-throughput
curve. TensorRT is a popular inference engine compatible
with deep learning training environments. Since TensorRT
makes direct calls to cuDNN for RNNs, we do not explicitly
include its performance. Note that cuDNN implements a sim-
plified GRU that eliminates the dependency between matrix
multiplications. Since GRNN implements the canonical GRU
cell, performance comparisons between the two libraries
would be meaningless and are not included.

8.2 Benchmark Results
We vary the hidden and batch dimensions with a fixed se-
quence length of 100 and the input dimension the same as
the hidden dimension. We run each configuration 1000 times
and report the average latency. Table 1 shows all the latency
results and Figure 11 plots the speedup results. We next
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Figure 11. Speedup provided by each library compared to the DeepCPU baseline

discuss them by comparing GRNN with each of other evalu-
ated implementations. The latencies reported measure the
layer execution time with the cost of sending/receiving in-
puts/outputs over the PCIe bus. This represents a worst-case
scenario for GRNN, as most models require other operations,
such as embedding lookups or classification, to be performed
before and after layer execution, meaning that oftentimes
the data already resides or requires further execution on the
GPU.

GRNN vs cuDNN Traditional: cuDNN Traditional is
built directly on top of the highly effective cuBLAS [1] ma-
trix multiplication kernel. It yields on average 6.67X and
4.21X higher latency than GRNN when the hidden size is
64 and 256, respectively. The reason is that the traditional
cuDNN implementation performs a new kernel launch each
iteration, the overhead of loading the weights into the regis-
ter file on each iteration dominates execution time. GRNN’s
ability to persist the weights and reduce synchronization
overhead plays a critical role when the data parallelism is
limited for small model size and batch size. When the hidden
size is 1024, the abundant data prallelism makes it easier
to exploit compute resources. Hence, the performance gap
between GRNN and cuDNN shrinks, but GRNN still reduces
the latency by 40.6% on average.

GRNN vs cuDNN Persistent: cuDNN Persistent, like
GRNN, persists its weights between timesteps in the register
file. However, cuDNN persistent does not appear to reuse
weights effectively in order to provide scalable performance.
When the batch size is 5 (a common size used in produc-
tion [40]), GRNN provides on average 3.46X speedup over
cuDNN Persistent, even if cuDNN outperforms GRNN for
unbatched inference (possibly due to heavy assembly-level
optimizations). As the batch size further increases to 20, the
performance gap becomes quite large. For example, when
hidden size is 64, GRNN is 9.2X faster than cuDNN Persistent.

Figure 12. Speedup provided by GRNN for GRUmodels over
the DeepCPU baseline.

Figure 13. Normalized achieved throughput by DeepCPU
and GRNN.

GRNN vs DeepCPU: The key optimization of DeepCPU
isminimizing datamovement between last-level shared cache
and private cache. It enables DeepCPU outperforms cuDNN
Traditional and cuDNN Persistent for some LSTM configu-
rations. For instance, when the hidden size is 64 and batch
size 1, DeepCPU is 3.1X faster than cuDNN Traditional. For
the same hidden size and batch size 20, DeepCPU improves
latency by 16.7% over cuDNN Persistent. However, DeepCPU

11



Work Groups Group Size Latency Cost Cost Rank
128 2 0.57 449 17
64 4 0.5 322 3
32 8 0.5 252 1
16 16 0.6 443 14
8 32 0.93 561 35

Table 2.Model parameters: hidden size = 256, batch size =
20. Output tile dimensions: width = 32, height = 2.

Figure 14. Normalized latency over Oracle.

scales poorly in model sizes and shows significantly worse re-
sults for hidden size 1024. GRNN is the only GPU implemen-
tation that surpasses DeepCPU for all the LSTM configura-
tions with up to 17.5X speedup. For the GRU configurations,
GRNN also produces superior performance, reducing the la-
tency by up to 12.5X compared with DeepCPU. Although the
GPU architecture is more difficult to optimize due to its vari-
ous types of hardware resources, GRNN also demonstrates
better throughput once normalizing against maximum float-
ing point throughput compared with DeepCPU for LSTM.
As Figure 13 shows, GRNN on average achieves 15.7% of
the GPU’s theoretical throughput, while DeepCPU achieves
12.6% of the CPU’s theoretical throughput.

8.3 Accuracy of the Performance Model
Due to space limitations, we only show the accuracy of the
performance model for LSTM in Figure 14 but the results
for GRU are similar. Observe that the Top-1 predicted con-
figuration matches the optimal configuration by the Ora-
cle for 5 out of the 9 input configurations. In the worst
case, GRNN’s Top-1 configuration shows 1.14X latency in-
crease over the Oracle. The Top-5 configuration reduces the
maximum latency increase to 1.08X. On average, Top-1 and
Top-5 configurations show just 1.03X and 1.02X latency in-
creases, respectively, while searching orders-of-magnitude
more quickly than a brute force search. Note that randomly
selecting configurations would yield poor performance, be-
cause on average, the Top-1 configuration outperforms the
median configuration by 1.8X. These results confirm the
complexity of the trade-off to balance resource utilization
and the necessity to build a sophisticated performance model
to address it.
To more closely examine the results, we use the model

configuration of hidden size 256 and batch size 20 (See Ta-
ble 2). While all of these configurations produce the same

Hidden Batch Single Double
64 1 0.181 0.28
64 10 0.186 0.285
64 20 0.201 0.307
256 1 0.275 0.372
256 10 0.323 0.411
256 20 0.431 0.498
1024 1 6.46 0.683
1024 10 64.76 3.162
1024 20 129.52 6.324

Table 3. Comparison between Top-5 performance of Single
and Double Synchronization GRU

output tile with the same number of threads, the least perfor-
mant configuration has 1.9X worse latency than the fastest
configuration. The performance model is able to discern that
the reduction costs are too high for the bottom two configu-
rations (118 and 236, respectively). Similarly, it could discern
the partial produce cost (409) is too high for the first configu-
ration. The model successfully selects the third configuration
as the top-1 result.

8.4 Single vs Double Synchronization
implementations of GRU

Recall that to reduce the number of necessary synchroniza-
tions, GRNN introduces a novel tiling method that trades off
one synchronization for an extra reduction. Table 3 shows
that this single synchronization tiling method improves per-
formance over the default two synchronization approach
by 1.15X to 1.5X across small to medium hidden sizes. The
optimization is effective because for small models, synchro-
nization overhead dominates execution time. However, as the
model size increases, the incurred overhead also increases
dramatically due to extra data movement from global mem-
ory and redundant computation, while the synchronization
overhead remains roughly the same. This causes the one
synchronization approach to lose performance compared
with the other approach for large hidden sizes like 1024 as
shown in Table 3.

Since both tiling strategies provide strong performances at
different regions of the optimization space, both are included
as options for the GRU performance model. The marginal
costs are tracked between different tiling strategies, allowing
GRNN to select the appropriate tiling strategy across the
entire optimization space. As demonstrated in the topline
results in Table 1, the total Top-5 heuristic successfully lever-
ages the strengths of each tiling strategy.

8.5 Real World Models
To more rigorously evaluate the performance of GRNN, we
use two real-world models with multi-layer RNNs. The char-
RNN model [23] is a character-level language model with
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(a) Latency and scalability re-
sults for text classification.

(b) Latency and scalability re-
sults for CharRNN.

Figure 15. Performance results for real-world models.

3 LSTM cells, each with input and hidden sizes 128 and se-
quence length 100. The text classification model [41] is a
2-cell LSTM network with input and hidden sizes of 256
and sequence length 20. We do not run GRU-based models
on cuDNN because it does not support the canonical GRU
architecture.

Figures 15 shows latency and scalability in batch sizes for
cuDNN’s implementations and Top-5 GRNN for the two real-
world models. Similar to the results on benchmarks, while
the persistent cuDNN implementation yields low latency for
unbatched inference, it exhibits poor scalability and across
the range of batch sizes degrades dramatically in perfor-
mance. In contrast, the traditional cuDNN implementation
produces high latency for unbatched inference but provides
high scalability, having marginal increases in latency for
additional batched inputs. GRNN combines the best proper-
ties of those two implementations and provides comparable
latency for unbatched inference to cuDNN Persistent while
scaling at a similar rate to cuDNN Traditional.

9 Discussion
GRNN’s techniques can be effectively applied to cell designs
that differ from LSTM and GRU cells. Output-driven tiling,
SM thread mapping, and the performance modeling funda-
mentals are fully portable across RNN cell designs. Output
driven tiling and SM thread mapping are applied directly
to the fused hidden state matrix multiplication, which will
change dimensionally but not structurally for a new cell
design. If the cell includes dependent gates, additional syn-
chronization can be inserted between dependencies, as in
the two-synchronization GRU implementation. Furthermore,
the partial matrix multiplication, used in the single synchro-
nization GRU implementation, can be inserted for cells with
dependent gates to reduce the number of synchronizations
by up to 50 percent, with similar performance ramifications
as in GRU. Finally, the components of the performance model
are agnostic to the actual cell topology, so long as the number

of synchronizations, gate dimensions, and number of gates
are supplied.
Parameter persistence does not benefit other neural net-

work as effectively as RNNs, although efficient register file
usage may still provide value. At a high level, convolutional
neural networks and multi-layer perceptrons (MLP) do not
reuse weight matrices in the course of a single inference,
eliminating the primary opportunity that GRNN exploits.
Furthermore, CNNs and MLPs tend to use larger matrix mul-
tiplications that do achieve high throughput in traditional
GEMM kernels, again in contrast with RNNs. However, for
CNNs where the input and intermediates tend to have larger
footprints than the weight matrices themselves—layer fu-
sion to avoid unnecessary reloading of the intermediates
is a similar technique that uses the register file to achieve
higher performance. Orthogonally, for models when per-
sistence may not improve performance, avoiding DRAM
accesses through parameter persistence may provide energy
efficiency benefits. We leave this to be explored in future
work.

GRNN uses only the GPU for inference, but heterogeneous
solutions that utilize both the CPU and GPU may provide
higher combined throughput. For datacenter RNN serving,
however, heterogeneous solutions introduce overhead from
bidirectional communication between the host and the GPU
at each timestep. Given the throughput difference between
the CPU and GPU (10X in the systems studied by this paper),
the maximum performance benefit would be on the order of
10% before accounting for the aforementioned overhead. Per-
forming CPU inference would also inhibit the ability of the
host processor to batch new requests or perform embedding
lookups, a common RNN layer that achieves dramatically
better resource utilization on CPU than GPU. However, for
Systems on Chip (SoCs) that share portions of the memory
hierarchy, such as mobile processors with a unified last level
cache (LLC), a heterogeneous implementation may achieve
better inference performance.

10 Related Works
Full-fledged deep learning systems. Recent years have
seen the rise of a variety of deep learning systems, such
as TensorFlow [6], PyTorch [28], CNTK [29], Caffe [21],
Theano [32], and MXNeT [8] to name a few. All those sys-
tems support inference by default, but the focus is on im-
proved productivity in declaring deep learning models and
accelerated training through distributed systems and ac-
celerators. During training, they can leverage large batch
sizes to achieve high throughput. However, serving enforces
certain SLAs and hence substantially limits the maximum
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batch size. As such, these full-fledged systems tend to per-
form suboptimally due to the lack of sufficient data paral-
lelism [9, 40]. These systems’ default GPU-based implemen-
tations for RNNs produce particularly poor performance
because they fail to exploit the inherent data reuse.

Specialized Inference engines.TensorFlow Serving [27]
is an open-sourced inference engine developed by Google to
serve TensorFlow models. It supports dynamic batching and
user-defined SLAs. However, it shares with TensorFlow the
same set of operators to perform inference, inheriting the per-
formance problems when serving RNN models. Clipper [13]
is a recent serving system that addresses both latency and
throughput by intelligently assembling models defined in
different frameworks. Since it reuses operators in existing
systems, it does not mitigate the low-performance issues
for RNNs. BatchMaker [15] is specially designed to improve
inference speed for RNNs on GPUs. Built on top of MXNeT,
BatchMaker enables cell-level batching and reduces waiting
time. Similar to the above mentioned systems, it also reuses
the default operators implemented in a full-fledged system
(in this case MXNeT). All these inference engines perform op-
timizations at a high-level through, for example, scheduling
without tackling the implementation problem of the RNN op-
erators themselves, which dictate the maximum performance
of an individual timestep. On the contrary, the TVM [9] and
XLA [3] compilers can generate high-performance inference
implementations for deep learning models such as RNNs.
We may implement the proposed techniques in this work in
one of those compilers to support more applications.

RNN libraries.DeepCPU [40] is the state-of-the-art CPU-
based library to serve RNN models, which is deployed in
Micorosoft’s production system and outperforms default
TensorFlow and CNTK by more than 10X. DeepCPU’s key
contribution is to persist the weight data in private cache
to minimize data movement. Similarly, PersistentRNN [14]
leverages the persistent threads technique [17] to stash the
weight data in register files. But it only supports basic RNN
models, ignoring more complex yet more popular models
like LSTM and GRU. cuDNN [10] implements a persistent
version for LSTM and a simplified GRU model, which out-
performs DeepCPU for many configurations. However, as
we discussed earlier, cuDNN’s scalability is unsatisfactory
and often achieves low floating point throughput.

Model compression. A notable trend for serving ma-
chine learning models is to reduce the model size through
pruning [18, 39] and quantization [24, 33]. Interestingly, such
techniques even further broaden the applicability of GRNN
because the reduced models can be more easily persisted
in the GPU. Moreover, one may even include GRNN to esti-
mate inference performance when, for instance, iteratively
pruning the mdoel.

11 Conclusion
In this paper, we present a GPU-based RNN inference library
named GRNN with low latency, high scalability, and efficient
resource utilization. GRNN features an output-oriented tiling
technique to minimize synchronization overhead, a flexible
mapping technique to balance on-chip hardware resource
usage, and an accurate comparative performance model to
select high-performing configurations from a tremendous
configuration space with negligible overhead. Experiments
on various benchmark settings and two real-world models
show that GRNN reduces latency by up to 94% compared
with the state-of-the-art CPU implementation and improves
throughput by up to 14.6X compared with state-of-the-art
GPU implementations.
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