
Integrating Computing through Task-Specific Programming for
Disciplinary Relevance: Considerations and Examples
By Mark Guzdial and Tamara Shreiner

Computing is the most powerful and flexible media that humans have ever invented. In the
1970s, the computer interface as we know it today (e.g., windows with multiple fonts and
styles, menus, a pointers) was invented by a group of researchers who saw the computer as
humans’ first meta-medium – it can represent any other medium (from text to photographs to
video), plus it is interactive (Kay & Goldberg, 1977). The first part of this book introduced and
defined the computational thinking skills, concepts, and perspectives that we might want
students to develop. Chapters 4 and 5 introduced ways to help students develop these skills,
and whether we might have courses specifically focused on computational thinking or if we
would want to integrate computational thinking into other subjects. This chapter suggests that
we might use the power and flexibility of computing to enhance student learning about
computing. “Plugged” activities are where students actively explore the computing at the
computer. We argue that plugged activities use computing to enhance student learning about
the discipline and about computing in ways that “unplugged” activities simply can’t. No other
medium can come close to what a computer can do.

At the same time, as researcher Amy Ko writes1, programming is the most powerful way of
interacting with the computer, but also the least usable. Programming can be hard for novices
without previous computing experience or without the mathematics knowledge that many
programming languages expect. It can be challenging to deal with programming constructs and
concepts, such variables, loops, and Boolean conditions. Most importantly, the complexity of
programming can be something extra, an extraneous load when using computing to learn
disciplinary ideas. Does learning to get the computer to repeat something a million times help
with learning to read or understanding why plants need light to grow?

Fortunately, we can use the flexibility of computing to improve the usability of programming. In
this chapter, we describe some of the work that we are doing to make new programming
languages explicitly for specific tasks in a disciplinary context. Rather than spending a bunch of
time getting good at a general programming language, we ask teachers and students to spend a
short amount of time to use a small programming language for a particular task. We call these
task-specific programming (TSP) languages. You might think of them as Teaspoon (TSP)
languages – they add a teaspoon of programming that brings some computing spice to the
project. They can’t be used across the curriculum, or maybe not even on many days in a single
subject. Instead, TSP languages are about making it easier to integrate computing to enhance
learning in other subjects for a subject-specific task.

1 https://medium.com/bits-and-behavior/programming-languages-are-the-least-usable-but-most-powerful-
human-computer-interfaces-ever-invented-7509348dedc#

The Technology Acceptance Model (Lee, Kozar, & Larsen, 2003) predicts that teachers will only
adopt technology if teachers perceive that the technology is useful (e.g., facilitates learning
towards standards and objectives) and is usable (which includes computer interface usability
but also context, like fitting into course schedules). We argue that computing integration will
occur in non-CS classes when (a) the computing is useful for achieving disciplinary goals and (b)
the computing is usable. If the cost in usability is too high (e.g., takes too much time to learn
the programming language) or the benefit in usefulness is too low (e.g., students don’t learn
enough about the discipline), then adoption is unlikely.

I. Plugging with Scratch, Snap!, and other block-based languages

If an elementary or middle school teacher wants to use programming in their class, they will
most likely reach for Scratch, Snap!, or one of the other block-based programming languages.
Programming languages used by professional software developers are mostly just prose text
using specialized keywords (e.g., if, print, and for) with punctuation unusual in natural language
(e.g., heavy use of semi-colons, colons, and curly braces). We call those general-purpose
programming languages because is very little that you cannot build with these general-purpose
programming languages like Python, Java, and C++.Block-based languages turn programming
into a process of selecting and assembling colorful, jigsaw-like blocks. Some of the block-based
languages are as powerful as general-purpose languages, but many have been simplified for
students beginning at learning to program. The meaning of the blocks is still a direct mapping
from those specialized keywords (e.g., there are blocks for if and for). So rather than typing,
students drag and drop these blocks to construct programs without dealing with any of the
strange punctuation nor having to type those keywords exactly right.

The most popular of the block-based languages is Scratch2 with well over 30 million users.
Scratch was created after observing what students most liked to do in the Intel Computer
Clubhouses (J. Maloney, Resnick, Rusk, Silverman, & Eastmond, 2010; J. H. Maloney, Peppler,
Kafai, Resnick, & Rusk, 2008; Resnick et al., 2009). The most popular computational activities in
these Clubhouses students were choosing to do were photo manipulation (e.g., in Adobe
Photoshop) and music creation (e.g., with keyboards and drum machines). Scratch was
designed to give students the ability to use programming with their favorite kinds of activities,
such as making animations, telling stories with animations and music, and building video games
(Figure 1).

2 https://scratch.mit.edu/

Figure 1: A Geography Review Game in Scratch3

Over 30 million users will likely attest to the ease of programming in Scratch. Many classes
teach with Scratch. Harvard’s introductory course, CS50, starts out using Scratch, because it’s so
easy to get started.

Scratch and Scratch Jr (Flannery et al., 2013) are terrific languages for exploring the ideas of
computing. Even before students learn ideas like variables and iteration, there are more
fundamental ideas of computing that students need to understand. These include the ideas
that programs are assembled out of basic elements, and different orderings of elements can
sometimes have the same result, and even that the program determines the computer’s
behavior (there’s no magic).

But what if you don’t teach computing, and instead you want to use computing to teach
mathematics, reading, science, and social studies in new ways? Can you use Scratch for your
tasks? Can you use Scratch for whatever topics you need to teach, using the power and
flexibility of the computational medium? Maybe, but Scratch may not be the simplest tool
anymore. Scratch can be used for building scientific simulations or analyzing data, but it’s
harder than what Scratch was originally designed for. Scratch is not what you would choose if
you wanted students to build a website or an application for a cellphone.

3 Screenshot from https://scratch.mit.edu/projects/1837844/

There are block-based tools designed to do other kinds of things. App Inventor is explicitly
designed to create mobile apps for Android phones. Snap! is a more general-purpose
programming language than Scratch or App Inventor, with amazing support for building
sophisticated graphics and manipulating digital media like sounds and video. Still, all of these
feature multi-colored jigsaw-like blocks that are dragged-and-dropped rather than typed.

Pencil Code4 (led by Google employee, David Bau) is another block-based programming
languages. It allows students to use blocks and JavaScript (a textual general-purpose
programming language) interchangeably. Any program can be viewed as blocks or as lines of
textual JavaScript code. Figure 2 is part of the Pencil Code program to represent a chatbot that
pretends to be Lady Macbeth5. This project is being used by middle school classes in literature
and English, where students modify the code to change what Lady Macbeth says or to create a
chatbot for a different character. The program searches for key words in input statements from
the user, then outputs a response. If the user asks a question like “Who are you?”, the rule
when “name”,”who” would be triggered (because the word “who” appears in the input), then
the chatbot would respond Lady Macbeth.

4 http://www.pencilcode.net
5 Screenshots are from Pencil Code with the example at
https://docs.google.com/document/u/0/d/1RCP3G2f9QUeRxKGSXcO9QhjX7mK9YDE4Bqeqnh8q3UM/mobilebasic

Figure 2: Building a Chatbot for Middle School English

Building a chatbot can be a terrific activity for getting students to think about what makes a
character unique. How would a character respond in a way that is particular and representative
of that character? Defining a chatbot invites the student to think about a character of interest,
and then executing the chatbot program makes the character seemingly come alive. The power
of the computer to be interactive makes the chatbot more than just an exercise in character
analysis. Chatbots can be shared among students. Students can interact with other students’
chatbots to try them out.

Creating a chatbot even in Pencil Code exposes underlying complexity that is not relevant to the
class. Note the replyto = (words) -> at the top of the program. At the bottom of the program,
the student finds a complicated while loop (Figure 3). It reads input phrases from a user
(interlocutor) and breaks them up into words.

Figure 3: The bottom of the Chatbot example

Pencil Code offers a block-based form on top of a general-purpose programming language
(JavaScript), which means that it has enormous expressive power. The cost of greater power is
greater complexity. Our claim is that the closer you move towards a general-purpose
programming language, the more there is to learn. You can have one programming language
for many tasks, but learning all of that programming will be hard. The programming becomes
easier when the fit is closer between what you are trying to do and the tasks that the
programming language was designed for. We believe that this insight can lead to a new class of
programming languages designed to be easier for disciplinary teachers to adopt.

II. Task-specific curriculum with general purpose languages
Researchers and developers are creating examples of task-specific curricula that use general
purpose languages. Several of these can be found at https://www.bootstrapworld.org/. For
example, Bootstrap:Algebra teaches algebra ideas around functions and variables by having
students build video games. The students write functions that define the position of video
game elements in the next frame in terms of the last frame. The students do not program the
repeated generation of frames of the program – that’s done for them with specialized code
behind the scenes from the student.

The results of Bootstrap:Algebra are impressive in terms of improving student learning in
(Emmanuel Schanzer, Fisler, & Krishnamurthi, 2018; E. Schanzer, Fisler, Krishnamurthi, &
Felleisen, 2015). Students learn to solve word problems better through their experience with
Bootstrap. A striking result is that students after learning Boostrap:Algebra are less likely to
leave questions blank on an exam with story problems. Students learned how to get started on
a problem, even if they didn’t get to a solution. For mathematics teachers, Bootstrap:Algebra is
clearly useful – it addresses their learning objectives.

Boostrap:Algebra takes about 25 hours of class time to implement. Some of that time is
teaching programming, and some of it is teaching the curriculum components (e.g., how the
video games are created), and it’s probably not possible to tease out the distinctions between
mathematics, video games, and programming contexts. Much of the time is spent talking about
algebra ideas, but in a programming context. Variables and functions are the same in algebra
and Bootstrap. There is some translation from what appears in the textbooks and what appears
on the screen, which the Bootstrap team has made into a classroom practice called “circles of
evaluation.” By thinking through these mappings between mathematical notation and

programming, Bootstrap:Algebra is made usable. Students are not spending time learning
programing content that gets in their way of doing video games in algebra class.

Boostrap:Algebra is a great example of taking a general-purpose programming language (either
Racket or Pyret) and wrapping around it a task-specific curriculum (building video games) to
make it work for a given school topic (variables and functions in algebra). The idea is to enhance
students’ learning about algebra by adding in the excitement and rigor of programming. A
computer program requires the student to specify the variable and function right. It won’t work
otherwise. But once it is right, the student gets a video game to work. By working in the
programming language, the student gets a check on understanding about the course content (a
kind of formative feedback) and the motivation of making something real through the power of
the computation.

Programming languages such as Logo (including its descendants Netlogo and Starlogo) and
Pascal are designed to be simpler than professional programming languages, but are still
complete general-purpose programming languages. All the features of general-purpose
programming (from repetition to conditionals) are still there, which makes them powerful and
full-featured. However, it’s too easy for students to slip from an explainable subset of the
language which can be focused on a particular task into the other features which are harder to
explain – it’s for this reason that Racket uses language levels to define sublanguages (Findler et
al., 2002). We are proposing programming languages that are made even simpler by not even
providing the more sophisticated features. Only the features that are useful for the task are
implemented.

III. Example: Programming for Data Visualization in Social Studies classes

Can we get that computational power without investing as much class time in order to learn
enough programming? In our research, we are fine-tuning the programming language for
specific tasks to explore just how easy we can make. We want programming to be something
that takes no more than 10 minutes to learn, for tasks that might be useful only for an hour
lesson. For example, we are working on a data visualization tool that introduces programming
for use in social studies classes that introduces programming.

Much of the work in integrating computing into other subjects has focused on STEM areas.
While we may wish more students to take science and mathematics courses, not all students
do. All students take social studies. The diversity of students in almost any history class is far
greater than the average computer science class. Integrating programing into social studies
classes makes a dramatic improvement in reach.

A. Why Data Literacy is Important for Social Studies Classes

Data literacy—the ability to read, analyze, interpret, evaluate, and argue with data and data
visualizations—is an essential competency in social studies education. The National Council for

the Social Studies’ College, Career, and Civic Life (C3) Framework for Social Studies State
Standards (NCSS, 2013) recommends that by the end of second grade, students know how to
use and construct maps, graphs, and other data visualizations and that they will continue
working with data visualizations throughout elementary, middle, and high school. Such
recommendations for data literacy are reflected in curriculum standards from all fifty U.S.
states and the District of Columbia, which invariably require that students interpret, create, and
use data visualizations from elementary school through high school (Shreiner, 2020).
Standardized assessments of social studies, such as the National Assessment of Educational
Progress in U.S. History and the SAT subject area tests in U.S. and World History also include
items that require students to demonstrate proficiency with data visualizations (NAGB, 2010).
Furthermore, social studies textbooks, trade books, and periodicals are filled with a wide
variety of data visualizations. In the case of social studies textbooks, data visualizations become
increasingly prevalent and complex as students move through school, and as many as 90% of
them provide information not found in the surrounding verbal text (Fingeret, 2012; Shreiner,
2018). Perhaps most importantly, a core mission of social studies educators is to prepare
students for informed and competent citizenship (NCSS, 2017). And in a society where data
visualizations are regularly used to communicate information about problems, policies, and
trends, or persuade people to vote for a particular candidate or agenda, an informed citizen
must be a data-literate citizen (Bowen & Bartley, 2014; Franklin et al., 2015; Gould, 2017).

However, social studies teachers don’t necessarily feel prepared to teach data literacy. In a
recent survey of 242 practicing teachers, fewer than a quarter of respondents reported
regularly teaching data literacy, or feeling that they could do so effectively (Shreiner & Dykes,
2020). This neglect of data literacy may be due a lack of teacher preparation and resources–
97% of teachers said they had no coursework or professional development to prepare them for
teaching data literacy in social studies, and over half said they lacked classroom resources to
help them teach.

For students, a lack of data literacy instruction may come at a high cost. Roberts, Norman, and
Cocco (2015) found in a study of 156 third graders that comprehension of so-called graphical
devices, which include data visualizations, was positively correlated with reading
comprehension, suggesting that students who increase graphical comprehension might
increase overall reading comprehension. In a think aloud study with 27 elementary, middle, and
high school students, Shreiner (2019) found that students across grade levels tended to ignore
data visualizations when using a history text to reason about historical questions, but that 85%
of the students who initially ignored the data visualization in the passage they were reading
later reported that it was helpful in answering the historical question with which they were
tasked. Analysis of students’ responses after considering the data visualization revealed that it
helped students develop a richer context for the historical situation under study, an important
but difficult aspect of historical reasoning.

Although it is often assumed that data visualizations are easy to understand, research indicates
that students are likely to face numerous challenges as they attempt to make sense of data
visualizations or integrate them with other information (Brugar & Roberts, 2017; Duke, Martin,

Norman, Knight, & Roberts, 2013; Maltese, Harsh, & Svetina, 2015; Roberts et al., 2013; Shah &
Hoeffner, 2002; Shah, Mayer, & Hegarty, 1999). Brugar and Roberts (2017) found in a study of
326 elementary students that even when children attempted to use visual displays that
included maps and graphs as sources of meaning in a text, they were challenged in doing so,
answering questions related to the visual displays incorrectly more often than questions related
to verbal written text. Such challenges seem to continue into adolescence and adulthood. In a
think aloud study that included eight high school students, Shreiner (2009) found that while
using bar and pie graphs to grapple with a political problem, students could extract basic
information from the graphs, but did not employ evaluative strategies indicative of more expert
analysis, such as sourcing, contextualizing, and considering methodological factors. Börner et al.
(2016) concluded in a study of 127 participants aged eight to twelve and 146 participants aged
18 or older that a high proportion of both groups could not name different types of data
visualizations or interpret them beyond basic reference systems.

Given the importance of data visualizations and associated challenges, teaching data literacy
from elementary through secondary school is critical. Importantly, researchers suggest that it is
not enough to learn data literacy skills in courses like mathematics alone. Different contexts can
influence readers’ comprehension of data visualizations, so teaching data literacy skills in
multiple contexts is important, especially in light of all the different contexts in which data
visualizations appear (Shah & Hoeffner, 2002). In history, for example, maps and graphs are
used for unique, discipline-specific purposes. Maps help historians conceive of space, place, and
time in concert, and at both small and large scales. Maps make the invisible processes visible—
revealing ways that people moved over long stretches of time, or how diseases or languages
spread. Likewise, by aggregating, compressing, and reducing complexity until obscure patterns
and relationships become clear, graphs make it easier for historians to grasp incredibly large
processes of change. Graphs are also critical in the historical inquiry process for testing
hypotheses and providing evidence for historical interpretations about how and why past
changes occurred.

B. Helping Students to Build Data Visualizations

We want students learning data literacy in their history classes to build data visualizations as
part of an inquiry process. Building a data visualization is specifying a computational process –
what data should the computer process and how in order to build a visualization? A data
visualization over hundreds or thousands of years of history requires the power of the
computer. A human is unlikely to go through two hundred years of population data to build a
chart by hand, for example. There are tools designed for middle school students to use in
making data visualizations (such as CODAP (Finzer & Damelin, 2016)), but they may not make
visible to students that they are specifying a program. If we asked students to specify their data
visualization as a program, students might lose confidence or be distracted by the details of
programming. We have ample evidence that programming can reduce student self-efficacy
(Kinnunen & Simon, 2012). In our work with teachers, we have found that our social studies
teachers like Vega-Lite (Satyanarayan, Moritz, & Wongsuphasawat, 2017) for its power and

flexibility, but they find the programming language complicated and off-putting (Guzdial &
Naimipour, 2019; Naimipour, Guzdial, & Shreiner, 2019).

For teachers to use the power of computing, we need programming tools that are both useful
and usable. We are working on tools that scaffold the process of connecting data visualization
and programming for students. Our goal is to use the power of computing to enhance learning
of data literacy in history classes while also helping students to learn concepts and skills in
computing. We want students to have the ease of block-based programming, or even better
usability.

In our tool (Figure 4), students specify visualizations with pull-down menus. In this example, a
student is comparing the populations of the United Kingdom and France from 1800 to 2018. We
always show two visualizations because historical inquiry often begins with two pieces of data
or accounts that do not agree (Bain, 2000).

Figure 4: Data Visualization of Populations in the United Kingdom and France

The visualizations become the focus of inquiry. The student notices (perhaps with some
scaffolding) that France has two clear dips in its population during World Wars I and II that the
United Kingdom does not have. Both France and the UK were combatants in the World Wars.
Didn’t both countries suffer many casualties from their military? What might explain the larger
relative dips in France’s population?

With curriculum and a tool, we are supporting a historical inquiry process. The student can drag
the France and UK graphs into saved spots on the right, and explore with other visualizations.
What might explain the relative population drops? Maybe it has to do with the amount of time
that the combatants were in the wars. The US entered late in both wars. In World War II, the
Belgian military lasted only 18 days against the Nazis. In Figure 5, our student decides to
compare the United States and Belgium.

Figure 5: Comparing the Populations of the United States and Belgium

There are clear dips in Belgium’s population, but not much in the US. At this point, the student
would probably discard the earlier hypothesis that the dips were due to casualties of soldiers in
the war, but might consider a new one. Maybe it has to do with the war being on the ground in
the country. The student could continue building visualizations to test the hypothesis, e.g., by
exploring the population drops in neighboring countries during the World Wars, or looking at
the populations in other countries during the time periods of other wars.

As visualizations pile up in the Saved graphs area, the student might lose track. Which graph
was which? By clicking on them, a textual description of how the graph was generated appears
on top of the graph (Figure 6). We use a program representation like the one used for Vega-
Lite. The program is declarative, which means that it specifies the visualization but does not
specify the steps of the program (which is sometimes called procedural or imperative
programs). The program lists keywords on the left and values for those keywords on the right,
using a format called JSON.

Figure 6: Saved visualizations with pop-up scripts visible

We show the program as a concise description of how the graph is presented. The student does
not write the program. We present the program as a useful description to read.

We have a second version of our visualization tool (Figure 7) where scripts are literally at the
center of the interface. Students can specify visualizations in the same way, by making choices
in the pull-down menus. As they specify visualizations, the visible script updates. Students may
also edit the script directly (e.g., change the Yaxis to “Germany”). As either the pull-down
menus or textual script is changed, the other representation is updated to match, and the
graph is re-drawn to match. The pull-down menus and textual scripts are multiply-linked
representations (Vosniadou, De Corte, Glaser, & Mandl, 2012), which helps students to
understand the mappings between the visualizations, the scripts, and the menu settings.

Figure 7: Visualization tool where scripts are available as a multiply-linked representation

Our hypothesis is that specifying a visualization with pull-down menus is even easier (i.e., less
complexity, less cognitive load, and fewer errors) than assembling a set of blocks to construct a
similar visualization. By providing both representations, our goal is to scaffold students in
seeing textual programming as readable, accessible, and usable, much as Pencil Code does for
JavaScript.

JSON is an unusual notation for general-purpose languages, but it’s similar to the notation used
in the visualization language Vega-Lite. Social studies teachers in our participatory design
classes are interested in using Vega-Lite (Naimipour, Shreiner, & Guzdial, 2020). If students will
one day use Vega-Lite, we might expect transfer from the experience. But even if students
never use Vega-Lite, we hypothesize that students using our scaffolded visualization tools
would learn new understanding of what programming and computing is about. Use of this
visualization tool can be a place to learn that programs specify output deterministically, and
that getting the syntax right is necessary for a program to run. We would need to design
curriculum around the use of this visualization tool to make explicit that this is programming in
order to prepare students for future learning (Grover, Pea, & Cooper, 2014).

IV. Example: Programming to build Chatbots in English classes

Earlier in the chapter, we suggest that creating a chatbot is a powerful activity in which to use
computing to enhance learning about literature. Defining a chatbot requires students to think
carefully about what makes a character unique. How would this character respond to an
interlocutor? How would one character’s responses differ from another’s? Deeply analyzing
characters is a useful activity in an English Language Arts (ELA) classroom.

The Pencil Code example in Figure 2 defines a chatbot meant to represent Shakespeare’s Lady
Macbeth. We argue (using Figure 3) that there are details in the Pencil Code example that are a
distraction from the activity of defining chatbots in order to explore a character.

We have defined a new chatbot language which simplifies the process of defining chatbots.
Figure 8 is shows part of the program for defining Lady Macbeth in our Teaspoon chatbot
language6. In this language, there are no quote marks. There is no use of programming
constructs like while. There are no variables. Instead, the programming language consists of if
clauses that match any of these words to the interlocutor’s input. The if match rules are tested
from top to bottom. Whenever any rule matches, no other rules in the program are tested. So,
more specific forms (e.g., matching to all of green,apple) can appear before more general
mores (e.g., matching to any of apple).

Figure 8: A program to create a Lady Macbeth chatbot

Figure 9 shows the execution of the Lady Macbeth chatbot. It works exactly the same as the
Pencil Code version.

Our Teaspoon chatbot language has fewer punctuation details than the Pencil Code version. It
is a much more limited language. Using this language creates an opportunity for students to
learn computational ideas like what an if conditional does. It could also be used to learn
fundamental concepts in learning trajectories for programming (Rich, Strickland, Binkowski,
Moran, & Franklin, 2017) like programs are assembled out of basic elements, and different
orderings of elements can sometimes have the same result, and even that the program
determines the computer’s behavior (there’s no magic).

6 http://teaspoon.livecodehosting.com/chatbot/index.html

Figure 9: The Lady Macbeth Chatbot executing, exactly like the one in Pencil Code

V. Teaspoon Computing as a Preparation for Future Learning

Our work with task-specific programming (“teaspoon”) languages is still at an early stage of
research. We have been working with teachers in a participatory design process as we have
iteratively defined and developed our languages. Our future work will involve K-12 students and
how the use of our tools support their learning of disciplinary ideas.

We return here to the Technology Acceptance Model that we started the chapter with. In order
to adopt technology for data literacy, the teacher must believe that the technology can help to
achieve their learning goals (e.g., address a student learning challenge) while fitting into their
existing structures and constraints (e.g., available class time), and that the teacher can
successfully implement the activity (e.g., self-efficacy stemming from knowledge and
experience) (Holden & Rada, 2011). Our first question has been whether we can define
computing to be integrated into other subjects that will actually be adopted by teachers.
Languages like Scratch and Pencil Code have existed for years, and are used in courses other
than computer science. But our best evidence suggests that less than 10% of high school
students in any US state see any computing education (Parker, 2019; Parker & Guzdial, 2019). If
we define languages that support the tasks that teachers find valuable (perhaps even
impossible without the technology), we hope that we can create programming that will actually
be adopted.

We argue that our tools can be useful in meeting teachers’ goals. For social studies teachers,
data literacy is part of state standards. Some brave early adopter ELA teachers are trying
chatbots. Our research is about showing that teaspoon languages might make programming
usable enough to be adopted.

It’s an open research question if we can design instruction using these teaspoon languages such
that (a) student learning is enhanced in the domain and (b) students learn about computing,
too. Our task-specific languages are not based on general-purpose languages. At a surface-level,
there is little about traditional programming languages that students might be learning. These
are trade-offs to explore in the research, which will involve both design of tools and design of
the associate curriculum. What gets emphasized when?

We believe that teaspoon languages can be a place to prepare for future learning in computing
(Grover et al., 2014). Students are actually programming in these languages. They are
addressing the concepts appearing at the earlier stages in the Rich et al. trajectories of student
learning in computer science (Rich, Strickland, Binkowski, & Franklin, 2019; Rich et al., 2017).
For example, students will specify programs, make mistakes, and need to debug. The challenge
will be to construct contexts so that students recognize programming and computing when
they face it again. Another research question about teaspoon languages is whether students
get bored with such a small and simple core of programming. Do we provide enough
programming? Frankly, if we achieve our learning and adoptability goals, and leave students
wanting more programming, we will have achieved everything we could hope for.

In summary, we believe that plugged activities offer so much to support student learning.
Computer programming is powerful and flexible. Our challenge is to also make it usable enough
that it is useful to meet teacher and student needs.

References

Bain, R. B. (2000). Into the breach: Using research and theory to shape history instruction. In P.

N. Stearns, P. C. Seixas, & S. S. Wineburg (Eds.), Knowing, teaching, and learning history :
national and international perspectives (pp. 331-352). New York: New York University
Press.

Börner, K., Maltese, A. V., Balliet, R. N., & Heimlich, J. (2016). Investigating aspects of data
visualization literacy using 20 information visualizations and 273 science museum
visitors. Information Visualization, 15, 198-213. doi:10.1177/1473871615594652

Bowen, M., & Bartley, A. (2014). The basics of data literacy: Helping your students (and you!)
make sense of data. Arlington, VA: National Science Teachers Association Press.

Brugar, K. A., & Roberts, K. L. (2017). Elementary students' challenges with informational texts:
Reading the words and the world. The Journal of Social Studies Research. Retrieved from
http://dx.doi.org/10.1016/j.jssr.2017.02.001

Duke, N. K., Martin, N. M., Norman, R. R., Knight, J. A., & Roberts, K. L. (2013). Beyond concepts
of print: Development of concepts of graphics in text, preK to grade 3. Research in the
Teaching of English, 48, 175-203.

Findler, R. B., Clements, J., Flanagan, C., Flatt, M., Krishnamurthi, S., Steckler, P., & Felleisen, M.
(2002). DrScheme: A programming environment for Scheme. Journal of functional
programming, 12(2), 159.

Fingeret, L. (2012). Graphics in children's informational texts: A content analysis. (Doctoral
dissertation Doctoral dissertation). Michigan State University, East Lansing, MI. Proquest
Dissertations Publishing database. (3524408)

Finzer, W., & Damelin, D. (2016). Design perspective on the Common Online Data Analysis
Platform (CODAP). Paper presented at the Paper presented at American Educational
Research Association (AERA) conference, Washington DC.

Flannery, L. P., Silverman, B., Kazakoff, E. R., Bers, M. U., Bontá, P., & Resnick, M. (2013).
Designing ScratchJr: Support for early childhood learning through computer
programming. Paper presented at the proceedings of the 12th international conference
on interaction design and children.

Franklin, C. A., Kader, G. D., Bargagliotti, A. E., Scheaffer, R. L., Case, C. A., & Spangler, D. A.
(2015). Statistical Education of Teachers. Retrieved from

Gould, R. (2017). Data literacy is statistical literacy. Statistics Education Research Journal, 16(1).
Retrieved from https://iase-web.org/documents/SERJ/SERJ16(1)_Gould.pdf

Grover, S., Pea, R., & Cooper, S. (2014). Expansive framing and preparation for future learning in
middle-school computer science. Paper presented at the International Conference of the
Learning Sciences (ICLS) Conference.

Guzdial, M., & Naimipour, B. (2019). Task-Specific Programming Languages for Promoting
Computing Integration: A Precalculus Example. Paper presented at the Proceedings of
the 19th Koli Calling International Conference on Computing Education Research, New
York, NY, USA.

Holden, H., & Rada, R. (2011). Understanding the Influence of Perceived Usability and
Technology Self-Efficacy on Teachers' Technology Acceptance. Journal of Research on
Technology in Education, 43(4), 343-367. Retrieved from
https://doi.org/10.1080/15391523.2011.10782576

Kay, A., & Goldberg, A. (1977). Personal dynamic media. IEEE Computer, 31-41.
Kinnunen, P., & Simon, B. (2012). My program is ok–am I? Computing freshmen's experiences

of doing programming assignments. Computer Science Education, 22(1), 1-28.
Lee, Y., Kozar, K. A., & Larsen, K. R. T. (2003). The technology acceptance model: Past, present,

and future. Communications of the Association for information systems, 12(1), 50.
Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch

programming language and environment. ACM Transactions on Computing Education,
10(4), 16:11-16:15.

Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., & Rusk, N. (2008). Programming by choice:
urban youth learning programming with Scratch. Paper presented at the SIGCSE '08:
Proceedings of the 39th SIGCSE technical symposium on Computer science education,
New York, NY, USA.

Maltese, A. V., Harsh, J. A., & Svetina, D. (2015). Data visualization literacy: Investigating data
interpretation along the novice-expert continuum. Journal of College Science Teaching,
45, 84-90.

NAGB. (2010). U.S. History Framework for the 2010 National Assessment of Educational
Progress. Retrieved from Washington, DC:

Naimipour, B., Guzdial, M., & Shreiner, T. (2019). Helping Social Studies Teachers to Design
Learning Experiences Around Data: Participatory Design for New Teacher-Centric
Programming Languages. Paper presented at the Proceedings of the 2019 ACM
Conference on International Computing Education Research, New York, NY, USA.

Naimipour, B., Shreiner, T. L., & Guzdial, M. (2020). Engaging Teachers in Front-End Design:
Developing Technology for a Social Studies Classroom. Paper presented at the
Proceedings of the ASEE/IEEE 2020 Frontiers in Education Conference.

NCSS. (2013). Scholarly rationale for the C3 Framework. In N. C. f. t. S. Studies (Ed.), Social
Studies for the Next Generation: Purposes, practices, and implications of the College,
Career, and Civic Life (C3) Framework for Social Studies Standards (pp. 82-91). Silver
Springs, MD: National Council for the Social Studies.

Parker, M. C. (2019). An Analysis of Supports and Barriers to Offering Computer Science in
Georgia Public High Schools. (Human-Centered Computing). Georgia Institute of
Technology,

Parker, M. C., & Guzdial, M. (2019). A Statewide Quantitative Analysis of Computer Science:
What Predicts CS in Georgia Public High School? Paper presented at the Proceedings of
the 2019 ACM Conference on International Computing Education Research, New York,
NY, USA.

Resnick, M., Maloney, J., Monroy-Hern\'a, n., Andr\'e,s, Rusk, N., Eastmond, E., Brennan, K., . . .
Kafai, Y. (2009). Scratch: programming for all. Commun. ACM, 52(11), 60-67.

Rich, K. M., Strickland, C., Binkowski, T. A., & Franklin, D. (2019). A K-8 Debugging Learning
Trajectory Derived from Research Literature. Paper presented at the Proceedings of the
50th ACM Technical Symposium on Computer Science Education.

Rich, K. M., Strickland, C., Binkowski, T. A., Moran, C., & Franklin, D. (2017). K-8 Learning
Trajectories Derived from Research Literature: Sequence, Repetition, Conditionals. Paper
presented at the Proceedings of the 2017 ACM Conference on International Computing
Education Research, New York, NY, USA.

Roberts, K. L., Norman, R. R., & Cocco, J. (2015). Relationship between graphical device
comprehension and overall text comprehension for third-grade children. Reading
Psychology, 36, 389-420. doi:10.1080/02702711.2013.865693

Roberts, K. L., Norman, R. R., Duke, N. K., Morsink, P., Martin, N. M., & Knight, J. A. (2013).
Diagrams, Timelines, and Tables – Oh, My!: Fostering Graphical Literacy. The Reading
Teacher, 67, 12-23. doi:10.1002/TRTR.1174

Satyanarayan, A., Moritz, D., & Wongsuphasawat, K. (2017). Vega-lite: A grammar of interactive
graphics. IEEE Transactions on Visualization and Computer Graphics, 23(1), 341-350.

Schanzer, E., Fisler, K., & Krishnamurthi, S. (2018). Assessing Bootstrap: Algebra students on
scaffolded and unscaffolded word problems. Paper presented at the Proceedings of the
2018 ACM SIGCSE Technical Symposium.

Schanzer, E., Fisler, K., Krishnamurthi, S., & Felleisen, M. (2015). Transferring skills at solving
word problems from computing algebra through bootstrap. Proceedings of 46th ACM
Technical Symposium on Computer Science Education, 616-621.

Shah, P., & Hoeffner, J. (2002). Review of graphic comprehension research: Implications for
instruction. Educational Psychology Review, 14, 47-69. doi:10.1023/a:1013180410169

Shah, P., Mayer, R. E., & Hegarty, M. (1999). Graphs as aids to knowledge comprehension:
Signaling techniques for guiding the process of graph comprehension. Journal of
Educational Psychology, 91, 690-702. doi:10.1037/0022-0663.91.4.690

Shreiner, T. L. (2009). Framing a model of democratic thinking to inform teaching and learning
in civic education. (Doctoral dissertation). University of Michigan, Ann Arbor, MI.
Proquest Dissertations Publishing database. (3354111)

Shreiner, T. L. (2018). Data literacy for social studies: Examining the role of data visualizations in
K-12 textbooks. Theory & Research in Social Education, 46, 194-231.
doi:https://doi.org/10.1080/00933104.2017.1400483

Shreiner, T. L. (2020). Lies, damned lies, and statistics in social studies: How social studies state
standards address data literacy across grades and disciplines. Journal of Curriculum
Studies.

Shreiner, T. L., & Dykes, B. (2020). Teaching Data Literacy for Social Studies: Teacher Practices,
Beliefs, and Knowledge Paper presented at the American Educational Research
Association Annual Meeting, San Francisco, CA.

Vosniadou, S., De Corte, E., Glaser, R., & Mandl, H. (2012) The use of multiple, linked
representations to facilitate science understanding. In. International perspectives on the
design of technology-supported learning environments (pp. 51--70): Routledge.

