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Computing is the most powerful and flexible media that humans have ever invented. In the 
1970s, the computer interface as we know it today (e.g., windows with multiple fonts and 
styles, menus, a pointers) was invented by a group of researchers who saw the computer as 
humans’ first meta-medium – it can represent any other medium (from text to photographs to 
video), plus it is interactive (Kay & Goldberg, 1977). The first part of this book introduced and 
defined the computational thinking skills, concepts, and perspectives that we might want 
students to develop. Chapters 4 and 5 introduced ways to help students develop these skills, 
and whether we might have courses specifically focused on computational thinking or if we 
would want to integrate computational thinking into other subjects. This chapter suggests that 
we might use the power and flexibility of computing to enhance student learning about 
computing. “Plugged” activities are where students actively explore the computing at the 
computer. We argue that plugged activities use computing to enhance student learning about 
the discipline and about computing in ways that “unplugged” activities simply can’t. No other 
medium can come close to what a computer can do. 
 
At the same time, as researcher Amy Ko writes1, programming is the most powerful way of 
interacting with the computer, but also the least usable. Programming can be hard for novices 
without previous computing experience or without the mathematics knowledge that many 
programming languages expect. It can be challenging to deal with programming constructs and 
concepts, such variables, loops, and Boolean conditions. Most importantly, the complexity of 
programming can be something extra, an extraneous load when using computing to learn 
disciplinary ideas. Does learning to get the computer to repeat something a million times help 
with learning to read or understanding why plants need light to grow? 
 
Fortunately, we can use the flexibility of computing to improve the usability of programming. In 
this chapter, we describe some of the work that we are doing to make new programming 
languages explicitly for specific tasks in a disciplinary context.  Rather than spending a bunch of 
time getting good at a general programming language, we ask teachers and students to spend a 
short amount of time to use a small programming language for a particular task. We call these 
task-specific programming (TSP) languages. You might think of them as Teaspoon (TSP) 
languages – they add a teaspoon of programming that brings some computing spice to the 
project. They can’t be used across the curriculum, or maybe not even on many days in a single 
subject.  Instead, TSP languages are about making it easier to integrate computing to enhance 
learning in other subjects for a subject-specific task. 
 

 
1 https://medium.com/bits-and-behavior/programming-languages-are-the-least-usable-but-most-powerful-
human-computer-interfaces-ever-invented-7509348dedc# 



The Technology Acceptance Model (Lee, Kozar, & Larsen, 2003) predicts that teachers will only 
adopt technology if teachers perceive that the technology is useful (e.g., facilitates learning 
towards standards and objectives) and is usable (which includes computer interface usability 
but also context, like fitting into course schedules). We argue that computing integration will 
occur in non-CS classes when (a) the computing is useful for achieving disciplinary goals and (b) 
the computing is usable.  If the cost in usability is too high (e.g., takes too much time to learn 
the programming language) or the benefit in usefulness is too low (e.g., students don’t learn 
enough about the discipline), then adoption is unlikely. 
 

I. Plugging with Scratch, Snap!, and other block-based languages 
 
If an elementary or middle school teacher wants to use programming in their class, they will 
most likely reach for Scratch, Snap!, or one of the other block-based programming languages. 
Programming languages used by professional software developers are mostly just prose text 
using specialized keywords (e.g., if, print, and for) with punctuation unusual in natural language 
(e.g., heavy use of semi-colons, colons, and curly braces). We call those general-purpose 
programming languages because is very little that you cannot build with these general-purpose 
programming languages like Python, Java, and C++.Block-based languages turn programming 
into a process of selecting and assembling colorful, jigsaw-like blocks. Some of the block-based 
languages are as powerful as general-purpose languages, but many have been simplified for 
students beginning at learning to program. The meaning of the blocks is still a direct mapping 
from those specialized keywords (e.g., there are blocks for if and for). So rather than typing, 
students drag and drop these blocks to construct programs without dealing with any of the 
strange punctuation nor having to type those keywords exactly right. 
 
The most popular of the block-based languages is Scratch2 with well over 30 million users. 
Scratch was created after observing what students most liked to do in the Intel Computer 
Clubhouses (J. Maloney, Resnick, Rusk, Silverman, & Eastmond, 2010; J. H. Maloney, Peppler, 
Kafai, Resnick, & Rusk, 2008; Resnick et al., 2009). The most popular computational activities in 
these Clubhouses students were choosing to do were photo manipulation (e.g., in Adobe 
Photoshop) and music creation (e.g., with keyboards and drum machines). Scratch was 
designed to give students the ability to use programming with their favorite kinds of activities, 
such as making animations, telling stories with animations and music, and building video games 
(Figure 1). 
 

 
2 https://scratch.mit.edu/ 



 
Figure 1: A Geography Review Game in Scratch3 
 
Over 30 million users will likely attest to the ease of programming in Scratch. Many classes 
teach with Scratch. Harvard’s introductory course, CS50, starts out using Scratch, because it’s so 
easy to get started. 
 
Scratch and Scratch Jr (Flannery et al., 2013) are terrific languages for exploring the ideas of 
computing.  Even before students learn ideas like variables and iteration, there are more 
fundamental ideas of computing that students need to understand.  These include the ideas 
that programs are assembled out of basic elements, and different orderings of elements can 
sometimes have the same result, and even that the program determines the computer’s 
behavior (there’s no magic).  
 
But what if you don’t teach computing, and instead you want to use computing to teach 
mathematics, reading, science, and social studies in new ways?  Can you use Scratch for your 
tasks? Can you use Scratch for whatever topics you need to teach, using the power and 
flexibility of the computational medium?  Maybe, but Scratch may not be the simplest tool 
anymore. Scratch can be used for building scientific simulations or analyzing data, but it’s 
harder than what Scratch was originally designed for. Scratch is not what you would choose if 
you wanted students to build a website or an application for a cellphone. 
 

 
3 Screenshot from https://scratch.mit.edu/projects/1837844/  



There are block-based tools designed to do other kinds of things. App Inventor is explicitly 
designed to create mobile apps for Android phones. Snap! is a more general-purpose 
programming language than Scratch or App Inventor, with amazing support for building 
sophisticated graphics and manipulating digital media like sounds and video. Still, all of these 
feature multi-colored jigsaw-like blocks that are dragged-and-dropped rather than typed. 
 
Pencil Code4 (led by Google employee, David Bau) is another block-based programming 
languages. It allows students to use blocks and JavaScript (a textual general-purpose 
programming language) interchangeably. Any program can be viewed as blocks or as lines of 
textual JavaScript code. Figure 2 is part of the Pencil Code program to represent a chatbot that 
pretends to be Lady Macbeth5. This project is being used by middle school classes in literature 
and English, where students modify the code to change what Lady Macbeth says or to create a 
chatbot for a different character. The program searches for key words in input statements from 
the user, then outputs a response. If the user asks a question like “Who are you?”, the rule 
when “name”,”who” would be triggered (because the word “who” appears in the input), then 
the chatbot would respond Lady Macbeth. 
 

 
4 http://www.pencilcode.net  
5 Screenshots are from Pencil Code with the example at 
https://docs.google.com/document/u/0/d/1RCP3G2f9QUeRxKGSXcO9QhjX7mK9YDE4Bqeqnh8q3UM/mobilebasic 



 

 
Figure 2: Building a Chatbot for Middle School English 
 
Building a chatbot can be a terrific activity for getting students to think about what makes a 
character unique. How would a character respond in a way that is particular and representative 
of that character? Defining a chatbot invites the student to think about a character of interest, 
and then executing the chatbot program makes the character seemingly come alive. The power 
of the computer to be interactive makes the chatbot more than just an exercise in character 
analysis. Chatbots can be shared among students. Students can interact with other students’ 
chatbots to try them out.  
 
Creating a chatbot even in Pencil Code exposes underlying complexity that is not relevant to the 
class. Note the replyto = (words) -> at the top of the program. At the bottom of the program, 
the student finds a complicated while loop (Figure 3). It reads input phrases from a user 
(interlocutor) and breaks them up into words. 
 



 
Figure 3: The bottom of the Chatbot example 
 
Pencil Code offers a block-based form on top of a general-purpose programming language 
(JavaScript), which means that it has enormous expressive power. The cost of greater power is 
greater complexity. Our claim is that the closer you move towards a general-purpose 
programming language, the more there is to learn. You can have one programming language 
for many tasks, but learning all of that programming will be hard. The programming becomes 
easier when the fit is closer between what you are trying to do and the tasks that the 
programming language was designed for. We believe that this insight can lead to a new class of 
programming languages designed to be easier for disciplinary teachers to adopt. 
 

II. Task-specific curriculum with general purpose languages 
Researchers and developers are creating examples of task-specific curricula that use general 
purpose languages. Several of these can be found at https://www.bootstrapworld.org/. For 
example, Bootstrap:Algebra teaches algebra ideas around functions and variables by having 
students build video games. The students write functions that define the position of video 
game elements in the next frame in terms of the last frame. The students do not program the 
repeated generation of frames of the program – that’s done for them with specialized code 
behind the scenes from the student.  
 
The results of Bootstrap:Algebra are impressive in terms of improving student learning in  
(Emmanuel Schanzer, Fisler, & Krishnamurthi, 2018; E. Schanzer, Fisler, Krishnamurthi, & 
Felleisen, 2015). Students learn to solve word problems better through their experience with 
Bootstrap. A striking result is that students after learning Boostrap:Algebra are less likely to 
leave questions blank on an exam with story problems. Students learned how to get started on 
a problem, even if they didn’t get to a solution. For mathematics teachers, Bootstrap:Algebra is 
clearly useful – it addresses their learning objectives. 
 
Boostrap:Algebra takes about 25 hours of class time to implement. Some of that time is 
teaching programming, and some of it is teaching the curriculum components (e.g., how the 
video games are created), and it’s probably not possible to tease out the distinctions between 
mathematics, video games, and programming contexts. Much of the time is spent talking about 
algebra ideas, but in a programming context. Variables and functions are the same in algebra 
and Bootstrap. There is some translation from what appears in the textbooks and what appears 
on the screen, which the Bootstrap team has made into a classroom practice called “circles of 
evaluation.” By thinking through these mappings between mathematical notation and 



programming, Bootstrap:Algebra is made usable. Students are not spending time learning 
programing content that gets in their way of doing video games in algebra class. 
 
Boostrap:Algebra is a great example of taking a general-purpose programming language (either 
Racket or Pyret) and wrapping around it a task-specific curriculum (building video games) to 
make it work for a given school topic (variables and functions in algebra). The idea is to enhance 
students’ learning about algebra by adding in the excitement and rigor of programming. A 
computer program requires the student to specify the variable and function right. It won’t work 
otherwise. But once it is right, the student gets a video game to work. By working in the 
programming language, the student gets a check on understanding about the course content (a 
kind of formative feedback) and the motivation of making something real through the power of 
the computation. 
 
Programming languages such as Logo (including its descendants Netlogo and Starlogo) and 
Pascal are designed to be simpler than professional programming languages, but are still 
complete general-purpose programming languages. All the features of general-purpose 
programming (from repetition to conditionals) are still there, which makes them powerful and 
full-featured. However, it’s too easy for students to slip from an explainable subset of the 
language which can be focused on a particular task into the other features which are harder to 
explain – it’s for this reason that Racket uses language levels to define sublanguages (Findler et 
al., 2002). We are proposing programming languages that are made even simpler by not even 
providing the more sophisticated features. Only the features that are useful for the task are 
implemented. 
 

III. Example: Programming for Data Visualization in Social Studies classes 
 
Can we get that computational power without investing as much class time in order to learn 
enough programming? In our research, we are fine-tuning the programming language for 
specific tasks to explore just how easy we can make. We want programming to be something 
that takes no more than 10 minutes to learn, for tasks that might be useful only for an hour 
lesson. For example, we are working on a data visualization tool that introduces programming 
for use in social studies classes that introduces programming. 
 
Much of the work in integrating computing into other subjects has focused on STEM areas. 
While we may wish more students to take science and mathematics courses, not all students 
do. All students take social studies. The diversity of students in almost any history class is far 
greater than the average computer science class. Integrating programing into social studies 
classes makes a dramatic improvement in reach. 
 

A. Why Data Literacy is Important for Social Studies Classes 
 
Data literacy—the ability to read, analyze, interpret, evaluate, and argue with data and data 
visualizations—is an essential competency in social studies education. The National Council for 



the Social Studies’ College, Career, and Civic Life (C3) Framework for Social Studies State 
Standards (NCSS, 2013) recommends that by the end of second grade, students know how to 
use and construct maps, graphs, and other data visualizations and that they will continue 
working with data visualizations throughout elementary, middle, and high school. Such 
recommendations for data literacy are reflected in curriculum standards from all fifty U.S. 
states and the District of Columbia, which invariably require that students interpret, create, and 
use data visualizations from elementary school through high school (Shreiner, 2020). 
Standardized assessments of social studies, such as the National Assessment of Educational 
Progress in U.S. History and the SAT subject area tests in U.S. and World History also include 
items that require students to demonstrate proficiency with data visualizations (NAGB, 2010). 
Furthermore, social studies textbooks, trade books, and periodicals are filled with a wide 
variety of data visualizations. In the case of social studies textbooks, data visualizations become 
increasingly prevalent and complex as students move through school, and as many as 90% of 
them provide information not found in the surrounding verbal text (Fingeret, 2012; Shreiner, 
2018). Perhaps most importantly, a core mission of social studies educators is to prepare 
students for informed and competent citizenship (NCSS, 2017). And in a society where data 
visualizations are regularly used to communicate information about problems, policies, and 
trends, or persuade people to vote for a particular candidate or agenda, an informed citizen 
must be a data-literate citizen (Bowen & Bartley, 2014; Franklin et al., 2015; Gould, 2017).  
 
However, social studies teachers don’t necessarily feel prepared to teach data literacy. In a 
recent survey of 242 practicing teachers, fewer than a quarter of respondents reported 
regularly teaching data literacy, or feeling that they could do so effectively (Shreiner & Dykes, 
2020).  This neglect of data literacy may be due a lack of teacher preparation and resources– 
97% of teachers said they had no coursework or professional development to prepare them for 
teaching data literacy in social studies, and over half said they lacked classroom resources to 
help them teach.  
 
For students, a lack of data literacy instruction may come at a high cost. Roberts, Norman, and 
Cocco (2015) found in a study of 156 third graders that comprehension of so-called graphical 
devices, which include data visualizations, was positively correlated with reading 
comprehension, suggesting that students who increase graphical comprehension might 
increase overall reading comprehension. In a think aloud study with 27 elementary, middle, and 
high school students, Shreiner (2019) found that students across grade levels tended to ignore 
data visualizations when using a history text to reason about historical questions, but that 85% 
of the students who initially ignored the data visualization in the passage they were reading 
later reported that it was helpful in answering the historical question with which they were 
tasked. Analysis of students’ responses after considering the data visualization revealed that it 
helped students develop a richer context for the historical situation under study, an important 
but difficult aspect of historical reasoning. 
 
Although it is often assumed that data visualizations are easy to understand, research indicates 
that students are likely to face numerous challenges as they attempt to make sense of data 
visualizations or integrate them with other information (Brugar & Roberts, 2017; Duke, Martin, 



Norman, Knight, & Roberts, 2013; Maltese, Harsh, & Svetina, 2015; Roberts et al., 2013; Shah & 
Hoeffner, 2002; Shah, Mayer, & Hegarty, 1999). Brugar and Roberts (2017) found in a study of 
326 elementary students that even when children attempted to use visual displays that 
included maps and graphs as sources of meaning in a text, they were challenged in doing so, 
answering questions related to the visual displays incorrectly more often than questions related 
to verbal written text. Such challenges seem to continue into adolescence and adulthood. In a 
think aloud study that included eight high school students, Shreiner (2009) found that while 
using bar and pie graphs to grapple with a political problem, students could extract basic 
information from the graphs, but did not employ evaluative strategies indicative of more expert 
analysis, such as sourcing, contextualizing, and considering methodological factors. Börner et al. 
(2016) concluded in a study of 127 participants aged eight to twelve and 146 participants aged 
18 or older that a high proportion of both groups could not name different types of data 
visualizations or interpret them beyond basic reference systems.  
 
Given the importance of data visualizations and associated challenges, teaching data literacy 
from elementary through secondary school is critical. Importantly, researchers suggest that it is 
not enough to learn data literacy skills in courses like mathematics alone. Different contexts can 
influence readers’ comprehension of data visualizations, so teaching data literacy skills in 
multiple contexts is important, especially in light of all the different contexts in which data 
visualizations appear (Shah & Hoeffner, 2002). In history, for example, maps and graphs are 
used for unique, discipline-specific purposes. Maps help historians conceive of space, place, and 
time in concert, and at both small and large scales. Maps make the invisible processes visible—
revealing ways that people moved over long stretches of time, or how diseases or languages 
spread.  Likewise, by aggregating, compressing, and reducing complexity until obscure patterns 
and relationships become clear, graphs make it easier for historians to grasp incredibly large 
processes of change. Graphs are also critical in the historical inquiry process for testing 
hypotheses and providing evidence for historical interpretations about how and why past 
changes occurred.  
 

B. Helping Students to Build Data Visualizations 
 
We want students learning data literacy in their history classes to build data visualizations as 
part of an inquiry process. Building a data visualization is specifying a computational process – 
what data should the computer process and how in order to build a visualization? A data 
visualization over hundreds or thousands of years of history requires the power of the 
computer. A human is unlikely to go through two hundred years of population data to build a 
chart by hand, for example. There are tools designed for middle school students to use in 
making data visualizations (such as CODAP (Finzer & Damelin, 2016)), but they may not make 
visible to students that they are specifying a program. If we asked students to specify their data 
visualization as a program, students might lose confidence or be distracted by the details of 
programming. We have ample evidence that programming can reduce student self-efficacy 
(Kinnunen & Simon, 2012). In our work with teachers, we have found that our social studies 
teachers like Vega-Lite (Satyanarayan, Moritz, & Wongsuphasawat, 2017) for its power and 



flexibility, but they find the programming language complicated and off-putting (Guzdial & 
Naimipour, 2019; Naimipour, Guzdial, & Shreiner, 2019). 
 
For teachers to use the power of computing, we need programming tools that are both useful 
and usable. We are working on tools that scaffold the process of connecting data visualization 
and programming for students. Our goal is to use the power of computing to enhance learning 
of data literacy in history classes while also helping students to learn concepts and skills in 
computing. We want students to have the ease of block-based programming, or even better 
usability. 
 
In our tool (Figure 4), students specify visualizations with pull-down menus. In this example, a 
student is comparing the populations of the United Kingdom and France from 1800 to 2018. We 
always show two visualizations because historical inquiry often begins with two pieces of data 
or accounts that do not agree (Bain, 2000). 
 

 
Figure 4: Data Visualization of Populations in the United Kingdom and France 
 
The visualizations become the focus of inquiry. The student notices (perhaps with some 
scaffolding) that France has two clear dips in its population during World Wars I and II that the 
United Kingdom does not have. Both France and the UK were combatants in the World Wars. 
Didn’t both countries suffer many casualties from their military? What might explain the larger 
relative dips in France’s population? 



 
With curriculum and a tool, we are supporting a historical inquiry process. The student can drag 
the France and UK graphs into saved spots on the right, and explore with other visualizations. 
What might explain the relative population drops? Maybe it has to do with the amount of time 
that the combatants were in the wars. The US entered late in both wars. In World War II, the 
Belgian military lasted only 18 days against the Nazis. In Figure 5, our student decides to 
compare the United States and Belgium.  
 

 
Figure 5: Comparing the Populations of the United States and Belgium 
 
There are clear dips in Belgium’s population, but not much in the US. At this point, the student 
would probably discard the earlier hypothesis that the dips were due to casualties of soldiers in 
the war, but might consider a new one. Maybe it has to do with the war being on the ground in 
the country. The student could continue building visualizations to test the hypothesis, e.g., by 
exploring the population drops in neighboring countries during the World Wars, or looking at 
the populations in other countries during the time periods of other wars. 
 
As visualizations pile up in the Saved graphs area, the student might lose track. Which graph 
was which? By clicking on them, a textual description of how the graph was generated appears 
on top of the graph (Figure 6). We use a program representation like the one used for Vega-
Lite. The program is declarative, which means that it specifies the visualization but does not 
specify the steps of the program (which is sometimes called procedural or imperative 
programs). The program lists keywords on the left and values for those keywords on the right, 
using a format called JSON. 
 



 
Figure 6: Saved visualizations with pop-up scripts visible 
 
We show the program as a concise description of how the graph is presented. The student does 
not write the program. We present the program as a useful description to read. 
 
We have a second version of our visualization tool (Figure 7) where scripts are literally at the 
center of the interface. Students can specify visualizations in the same way, by making choices 
in the pull-down menus. As they specify visualizations, the visible script updates. Students may 
also edit the script directly (e.g., change the Yaxis to “Germany”). As either the pull-down 
menus or textual script is changed, the other representation is updated to match, and the 
graph is re-drawn to match. The pull-down menus and textual scripts are multiply-linked 
representations (Vosniadou, De Corte, Glaser, & Mandl, 2012), which helps students to 
understand the mappings between the visualizations, the scripts, and the menu settings. 
 



 
Figure 7: Visualization tool where scripts are available as a multiply-linked representation 
 
Our hypothesis is that specifying a visualization with pull-down menus is even easier (i.e., less 
complexity, less cognitive load, and fewer errors) than assembling a set of blocks to construct a 
similar visualization. By providing both representations, our goal is to scaffold students in 
seeing textual programming as readable, accessible, and usable, much as Pencil Code does for 
JavaScript. 
 
JSON is an unusual notation for general-purpose languages, but it’s similar to the notation used 
in the visualization language Vega-Lite. Social studies teachers in our participatory design 
classes are interested in using Vega-Lite (Naimipour, Shreiner, & Guzdial, 2020). If students will 
one day use Vega-Lite, we might expect transfer from the experience. But even if students 
never use Vega-Lite, we hypothesize that students using our scaffolded visualization tools 
would learn new understanding of what programming and computing is about. Use of this 
visualization tool can be a place to learn that programs specify output deterministically, and 
that getting the syntax right is necessary for a program to run. We would need to design 
curriculum around the use of this visualization tool to make explicit that this is programming in 
order to prepare students for future learning (Grover, Pea, & Cooper, 2014). 
 

IV. Example: Programming to build Chatbots in English classes 
 
Earlier in the chapter, we suggest that creating a chatbot is a powerful activity in which to use 
computing to enhance learning about literature. Defining a chatbot requires students to think 
carefully about what makes a character unique. How would this character respond to an 
interlocutor? How would one character’s responses differ from another’s?  Deeply analyzing 
characters is a useful activity in an English Language Arts (ELA) classroom. 
 



The Pencil Code example in Figure 2 defines a chatbot meant to represent Shakespeare’s Lady 
Macbeth. We argue (using Figure 3) that there are details in the Pencil Code example that are a 
distraction from the activity of defining chatbots in order to explore a character. 
 
We have defined a new chatbot language which simplifies the process of defining chatbots. 
Figure 8 is shows part of the program for defining Lady Macbeth in our Teaspoon chatbot 
language6. In this language, there are no quote marks. There is no use of programming 
constructs like while. There are no variables. Instead, the programming language consists of if 
clauses that match any of these words to the interlocutor’s input. The if match rules are tested 
from top to bottom. Whenever any rule matches, no other rules in the program are tested. So, 
more specific forms (e.g., matching to all of green,apple) can appear before more general 
mores (e.g., matching to any of apple). 
 

 
Figure 8: A program to create a Lady Macbeth chatbot 
 
Figure 9 shows the execution of the Lady Macbeth chatbot. It works exactly the same as the 
Pencil Code version. 
 
Our Teaspoon chatbot language has fewer punctuation details than the Pencil Code version. It 
is a much more limited language. Using this language creates an opportunity for students to 
learn computational ideas like what an if conditional does. It could also be used to learn 
fundamental concepts in learning trajectories for programming (Rich, Strickland, Binkowski, 
Moran, & Franklin, 2017) like programs are assembled out of basic elements, and different 
orderings of elements can sometimes have the same result, and even that the program 
determines the computer’s behavior (there’s no magic).  
 

 
6 http://teaspoon.livecodehosting.com/chatbot/index.html 



 
Figure 9: The Lady Macbeth Chatbot executing, exactly like the one in Pencil Code 
 

V. Teaspoon Computing as a Preparation for Future Learning 
 
Our work with task-specific programming (“teaspoon”) languages is still at an early stage of 
research. We have been working with teachers in a participatory design process as we have 
iteratively defined and developed our languages. Our future work will involve K-12 students and 
how the use of our tools support their learning of disciplinary ideas. 
 
We return here to the Technology Acceptance Model that we started the chapter with. In order 
to adopt technology for data literacy, the teacher must believe that the technology can help to 
achieve their learning goals (e.g., address a student learning challenge) while fitting into their 
existing structures and constraints (e.g., available class time), and that the teacher can 
successfully implement the activity (e.g., self-efficacy stemming from knowledge and 
experience) (Holden & Rada, 2011). Our first question has been whether we can define 
computing to be integrated into other subjects that will actually be adopted by teachers. 
Languages like Scratch and Pencil Code have existed for years, and are used in courses other 
than computer science. But our best evidence suggests that less than 10% of high school 
students in any US state see any computing education (Parker, 2019; Parker & Guzdial, 2019). If 
we define languages that support the tasks that teachers find valuable (perhaps even 
impossible without the technology), we hope that we can create programming that will actually 
be adopted. 
 



We argue that our tools can be useful in meeting teachers’ goals. For social studies teachers, 
data literacy is part of state standards. Some brave early adopter ELA teachers are trying 
chatbots. Our research is about showing that teaspoon languages might make programming 
usable enough to be adopted. 
 
It’s an open research question if we can design instruction using these teaspoon languages such 
that (a) student learning is enhanced in the domain and (b) students learn about computing, 
too. Our task-specific languages are not based on general-purpose languages. At a surface-level, 
there is little about traditional programming languages that students might be learning. These 
are trade-offs to explore in the research, which will involve both design of tools and design of 
the associate curriculum. What gets emphasized when? 
 
We believe that teaspoon languages can be a place to prepare for future learning in computing 
(Grover et al., 2014). Students are actually programming in these languages. They are 
addressing the concepts appearing at the earlier stages in the Rich et al. trajectories of student 
learning in computer science (Rich, Strickland, Binkowski, & Franklin, 2019; Rich et al., 2017). 
For example, students will specify programs, make mistakes, and need to debug. The challenge 
will be to construct contexts so that students recognize programming and computing when 
they face it again.  Another research question about teaspoon languages is whether students 
get bored with such a small and simple core of programming. Do we provide enough 
programming?  Frankly, if we achieve our learning and adoptability goals, and leave students 
wanting more programming, we will have achieved everything we could hope for. 
 
In summary, we believe that plugged activities offer so much to support student learning. 
Computer programming is powerful and flexible. Our challenge is to also make it usable enough 
that it is useful to meet teacher and student needs. 
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